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With the increasing integration of renewable energy sources, the optimization of
distribution networks has become a critical challenge to ensure sustainable and
reliable energy supply. In this paper, a robust comprehensive optimization (RCO)
strategy based on multi-scenarios is proposed to manage the uncertainty of
distributed power supply and load in regional distribution networks, for making
up for the shortcomings of existing methods in multi-scenario integrated
energy optimization of distribution networks. Firstly, the development of a
holistic model that concurrently considers constraints related to wind power,
photovoltaics (PVs), gas turbines (GTs), energy storage systems, reactive power
compensation, and carbon dioxide (CO2) emissions, ensuring a comprehensive
approach to network management. Then, the application of Latin Hypercube
Sampling (LHS) for scenario generation, combined with an adaptive K-means
clustering approach using the elbow method (EM), which results in the creation
of highly representative prototypical scenarios. In addition, the imposition of
1-norm and ∞-norm constraints on the probability confidence intervals for
scenario distribution, provides a rigorous framework for addressing uncertainty
in energy scenarios. Furthermore, a novel two-phase decomposition model
based on the box decomposition algorithm will be introduced to handle
the temporal dependencies between energy storage and unit commitment,
optimizing both operational costs and system flexibility. Using the column and
constraint generation (C&CG) algorithm, the proposed complex optimization
problem has been solved comprehensively. Finally, the validation of the model
using the IEEE 33-note system based on the Matlab/Simulink platform from four
regional distribution networks, demonstrates that the proposed method can
effectively improve the practicability, reduce the clustering error, enhance the
robustness, and have better scene representation.
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1 Introduction

In the wake of the global energy structure’s metamorphosis
and the relentless progress of new energy technologies, distributed
generation (DG) has attracted widespread scrutiny and undergone
rapid proliferation on a global scale (Cheng et al., 2023).
Nonetheless, this has also brought to the fore an increasingly
prominent tension between the unpredictability of DG output and
the flexibility of the power grid, presenting immense challenges
to the security of the worldwide electrical system (Li et al., 2021).
Under conventional centralized power management systems, the
distribution of system load and power generation is orchestrated
and allocated by a central control mechanism, thereby ensuring
a higher degree of operational stability (Saaklayen et al., 2024).
However, with the integration of DG, the power sources within
the grid have become more dispersed, and the output of DG
is subject to the vagaries of weather and environmental factors,
thereby exhibiting considerable uncertainty (Zhang et al., 2020).
This unpredictability complicates the forecasting of the power
grid’s operation, substantially impacting its flexibility and stability,
and consequently placing increased demands on system security
(Mahdavi et al., 2023). Thus, the conundrum of reconciling the
uncertainty of DG output with the grid’s flexibility to enhance the
security of the global energy infrastructure has become a paramount
challenge for the international energy sector (Wang et al., 2020).

Randomized optimization (Wada and Fujisaki, 2015) and
robust optimization (RO) (Margellos et al., 2014) are the two
principal approaches to addressing the uncertainty in DG output,
yet its own challenges beset each: the former with issues of
statistical optimality, where decision accuracy is contingent upon
the quantity of statistical data, and the latter with problems
of conservatism. The literature Zhang et al., (2018) introduces
a method to evaluate distribution systems’ maximum hosting
capacity (MHC) for DG, considering the optimal operation of on-
load tap changers and static var compensators under uncertain
conditions. However, the method may not account for all MHC
scenarios and does not address robustness against data errors.
The literature Wang et al. (2016) examined the use of fractional
order (FO) automatic generation control for controlling power
system frequency oscillations in a hybrid distributed energy system.
Compared to optimal solutions, its parameters are tuned using
RO with particle swarm optimization (PSO) variants. However,
the method may face challenges in accurately approximating
FO operators and could be computationally intensive, potentially
leading to a large number of function evaluations despite the
archival-based strategy. The literature Abboud et al. (2016) suggests
a frequency control scheme for electric vehicles (EVs) that
adjusts operational modes based on grid frequency thresholds,
aiming to stabilize the grid during supply-demand imbalances.
The method’s limitations include the requirement for accurate
threshold determination and potential vulnerability to variations
in EV participation rates. The asynchronous distributed alternating
direction method of multipliers (ADMM) algorithm investigated in
the literature Moghadam et al. (2016) offers flexibility in handling
synchronization constraints and random local failures, making
it suitable for applications like the direct-current optimal power
flow in power transmission networks. Whereas, the algorithm may
encounter challenges in maintaining convergence due to substantial

network delays or communication failures. The literature Yuan et al.
(2016) proposed probability-weighted RO method for long-term
DG planning in micro-grids effectively handles the uncertainty of
intermittent sources like wind turbines. The method provides full
operational robustness. However, it is computationally intensive,
which may limit its practicality for large-scale systems or in
resource-constrained environments.

Distributed robust optimization (DRO) (Bürger et al., 2014)
effectively mediates the tension between randomized optimization
and RO, emerging as a potent strategy for coping with uncertainty.
By leveraging the 1-norm (Barni, 1997) and∞-norm (Campo and
Morari, 1986) to circumscribe confidence intervals, this method
circumvents the complexities of non-deterministic polynomial
problems, thus simplifying the solution process. To date, this
approach has garnered preliminary application in areas such as
energy storage management (Darivianakis et al., 2017), integrated
energy system dispatch (Zhang et al., 2021), and transmission
network planning (Bagheri et al., 2017). Such applications have
demonstrated that DRO holds great promise, offering precise and
robust solutions in the management of DG output uncertainty. The
literature Wang et al. (2021) proposes a DRO approach for hybrid
AC/DC regional distribution networks, which simultaneously
minimizes network losses, voltage deviations, and operational
costs, enhancing safety, flexibility, and economy. However, its
computational requirements should be considered for large-scale
systems, and the method’s effectiveness may be sensitive to the
selection of parameters and the accuracy of input data. The
literature Wang et al. (2022) proposed a transactive energy sharing
(TES) approach for micro-grids aims to minimize social costs
while addressing uncertainties in renewable generation and loads.
The TES problem is solved using ADMM, with adaptive RO and
column and constraint generation (C&CG)managing uncertainties.
An alternating uncertainty update procedure is introduced to
improve ADMM convergence. Nevertheless, the method may be
computationally intensive, especially for large-scale micro-grids,
and its performance could be sensitive to parameter selection and
input data accuracy.

To address the deficiencies inherent in the aforementioned
research, this paper constructs a robust comprehensive optimization
(RCO) model that amalgamates wind, solar, load, and storage,
taking into account the network architecture. By manipulating the
network topology and the output of various distributed generators,
themodel ascertains themost cost-effective solutionwhile satisfying
system security constraints. Considering the dynamic constraints
imposed by energy storage, turbines, and topology on the solution
efficiency, the variables are decoupled into two categories for
resolution: the continuous variables such as turbines and energy
storage are designated as the first category, whereas the discrete
variables associated with network topology are classified as the
second. The box decomposition algorithm Ratschan (2002) is
applied to regional distribution network optimization, with the
first category of variables undergoing a two-phase resolution
process. Phase 1 introduces dynamic constraints, and the original
multi-period optimization problem is decomposed into several
single-period optimization problems in Phase 2. The resultant
first-category variables are then incorporated into the dynamic
reconstruction model, with a heuristic rule-based particle swarm
algorithm employed to determine the second-category variables.
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The 1-norm and ∞-norm are utilized to identify the probability
distribution under the worst-case scenario.The RCOmodel uses the
C&CG algorithm and intelligent algorithms for iterative solutions.

The content of this paper is organized as follows: Second
2 analyzes the scene generation process of RCO method, and
gives the design steps of data sampling and scenario clustering;
Section 3, the optimization model of regional distribution network
is presented, the objective function and constraint conditions
are given in two-phase, and the random optimization model is
proposed based on the dynamic reconstruction mechanism. In
Section 4, the detailed solving steps of the proposed model are
given based on the classification mechanism of the main problem
and sub-problem. In Section 5, the performance of the proposed
model is analyzed with an IEEE 33-node example system to verify
the superior performance of the two-phase RCO, comprehensive
optimal scheduling model for solving the integrated energy system
of the regional distribution network.

2 Integrated energy system scenario
generation

The RO approach predicated on scenario probability
distributions exacts a premium on both the quantity and the
precision of scenario generation. In light of the inter dependencies
among load, wind power, and photovoltaic (PV) output, which
are influenced by geographical and anthropogenic factors
within real-world scenarios, this paper employs Latin hypercube
sampling (LHS) (Shin et al., 2009) to treat the initial sample data
for correlation, thereby yielding sample datasets with defined
correlation coefficients. Subsequently, the elbow method (EM)
(Liu and Deng, 2021) is utilized to ascertain the most appropriate
number of scenarios, followed by the application of an enhanced
K-means clustering technique (Sinaga and Yang, 2020) to derive
more representative prototypical scenarios.

2.1 Data sampling

The distribution of errors in random variables significantly
impacts the rationality of random scenario generation under
multiple scenarios.The kernel density estimation method (Hu et al.,
2017) can validate that the error distributions of load and DG
outputs conform to a normal distribution. LHS accomplishes
a stratified sampling process, uniformly and comprehensively
covering the distribution range of variables, encompassing both
sampling and correlation control.

2.1.1 Sampling process
The essence of sampling is to divide the value range of the

distribution function intoN equal parts without altering the original
density function, then to apply inverse function transformations
based on the probability density function to the sampling values
of each part, ultimately yielding the sampling results. The specific
sampling procedure is shown in Figure 1. The detailed steps
are as follows:

FIGURE 1
Latin hypercube sampling process.

Step 1: It is presupposed that there are M random variables, each
requiring N samples to generate an M×N order sample
matrix denoted as XMN :

XMN =

[[[[[[[

[

x11 x21 ⋯ xN1
x12 x22 ⋯ xN2
⋮ ⋮ ⋮

x1M x2M ⋯ xNM

]]]]]]]

]

(1)

Step 2: The F(X) represents the probability density function of X,
which is a normal distribution function. To facilitate the
inversion of the function, F(X) is halved at its median point,
and then sampling is conducted separately for the left and
right halves.

Step 3: Assuming that the sampling result set of the M-th random
variable is XM = {xM1, xM2, …, xMk, …, xMN}, with the value
domain of the normal distribution function being [0, R],
the interval is divided into N non-overlapping sub-intervals
based on the required sample size N. The k-th sampling
result yMk obtained by random samplingwithin each interval
according to a uniform distribution is as follows:

ykM =
Rk
N
−U(0,1) (2)

where, U (0,1) denotes the uniformly distributed random sample
values within the interval (0,1).

Step 4: Taking the inverse of the probability distribution function
yields the actual sampling value xMk as follows:

xkM = F
−1(ykM) (3)

Step 5: Continuing to sample from the remaining sub-intervals,
the steps above are repeated until the sampling process
is complete.
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FIGURE 2
Schematic diagram of typical regional distribution network.

2.1.2 Correlation control method
Among the methods for correlation control, the Cholesky

decomposition method (Hakkarinen et al., 2015) is widely utilized
due to its computational simplicity. The steps are as follows:

Step 1: A random N×M matrix ANM is generated, which has the
exact dimensions the original sampled data XNM . N and M
represent the number of variables and the number of samples
drawn for each variable, respectively.

Step 2: Calculate the correlation coefficient matrix RA between
the row vectors of matrix ANM. Perform Cholesky
decomposition on RA to obtain a non-singular lower
triangular matrix Q, and then can calculate the matrix D
by the relationship as D = Q−1A.

Step 3: The correlationmatrix of the input variable is denoted asRset .
Perform the Cholesky decomposition on Rset to obtain the
lower triangular matrixQset , and then calculateDset =QsetD.

Step 4: Subsequently, rearrange the elements of each row in matrix
A according to themagnitude of the corresponding elements
in Dset , resulting in a novel matrix Aset . By reordering the
original data matrix in accordance with Aset , the ultimate
samplematrixXset is derived. At this juncture, the correlation
matrix of Xset conforms to the predetermined correlation
coefficient matrix.

2.2 Scenario clustering

2.2.1 Determine the number of clusters
As the number of clusters increases, the resulting scenarios

more closely approximate the probability distribution of random
variables. However, an excessively high number of clusters
can compromise the computational efficiency of DRO models.
Therefore, it is imperative to determine the most appropriate
number of clusters based on the intrinsic characteristics of the
data. The EM, renowned for its simplicity and efficacy, has emerged
as a prevalent algorithm for determining the optimal number
of clusters.

The EM employs the ratio of intra-cluster average distance (nSE)
to inter-cluster average distance (wSE) as an indicator to describe
the clustering error (SE). As the number of clusters increases, the
sample partition becomes more refined, and the cohesion within
each cluster gradually improves, resulting in a smaller nSE. However,
when the number of clusters becomes too large, wSE is also tiny,

yet SE may not necessarily be small. Therefore, a smaller clustering
distance is observed only when nSE is relatively tiny, and wSE is
relatively large. When the number of clusters k is less than the actual
number of clusters, as k increases,wSE does not change significantly,
while nSE decreases sharply, leading to a substantial decrease in
SE. When k reaches the number of clusters, the decrease in nSE
diminishes, and wSE remains unchanged or may even decrease
slightly. At this point, the reduction rate in SE slows down, forming
an elbow-shaped curve in the relationship between SE and the
number of clusters k.The value of k corresponding to the elbowpoint
represents the number of clusters within the data. The model can be
expressed as follows:

SE = nSE
wSE

(4)

nSE =
k

∑
i=1
(∑

ks∈δi

|ks−mi|
2/kn)/k (5)

wSE =
k

∑
i=1

k

∑
j=i+1
|mi −mj|

2/(k(k− 1)/2) (6)

where, δi represents the i-th cluster, ks denotes the samples within
δi, mi is the centroid of δi, which is the mean of the samples in δi,
and kn is the number of samples within δi.

2.2.2 Improved K-means clustering
The primary steps for determining the optimal number of

clusters using the EM, in conjunction with an enhanced K-means
clustering algorithm, are as follows:

Step 1: Set the number of clusters to k and randomly select a scenario
as the first cluster centroid, denoted as K1.

Step 2: Calculate the Euclidean distance (Schouhamer Immink and
Weber, 2015) between the remaining scenarios andK1. Select
the scenario with the greatest distance as the second cluster
centroid, K2. Then, calculate the sum of distances from the
remaining scenarios to the two cluster centroids, identifying
the scenario with the maximum sum as the third cluster
centroid, K3. Continue this process iteratively to obtain k
initial cluster centroids.

Step 3: Compute the distances between the remaining scenarios and
each cluster centroid, assigning the scenarios to the nearest
cluster centroid and recalculating the cluster centroids for
each category.

Step 4: Define the sum of squared distances between each scenario
and its assigned cluster centroid as the clustering error H.
When the difference in clustering error H between two
consecutive iterations falls below a certain convergence
threshold, terminate the iteration process, output the
cluster centroids from the final iteration, and otherwise
return to Step 3.

3 Regional distribution network
optimization model

For a typical regional distribution network, as shown in Figure 2,
in this paper, the box decomposition algorithm Ratschan (2002)
is employed to decompose the variables into a two-phase solution
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process: dynamic constraints are incorporated into Phase 1, where
the operational domains of microturbines and energy storage
during each period are constrained, yielding the operational status
and domain for each period of the unit, as well as the single-
period operational domain for energy storage. In Phase 2, utilizing
the results from Phase 1, the dynamic optimization problem
across multiple time scales is decomposed into several single-scale
optimization problems, from which the values of the first type of
variables are obtained. Under the condition of known injection
powers at each node, the PSO algorithm is used for dynamic
reconstruction to solve for the second type of variables.

3.1 Model of phase 1

3.1.1 Objective function of the phase 1 model
The objective function for the first phase comprises the constant

running cost of the gas turbine (GT), denoted as CGT, the wind
power generator operation costCWI, and the PV generator operation
cost CPV, as illustrated following:

fP1 =min(CGT +CWI +CPV) (7)

where

{{{{{{{{{{{{
{{{{{{{{{{{{
{

CGT = C
GT
S

T

∑
t=1
∑

j∈ΩGT

vGTj,t S
GT
j,t

CGT
S =

T

∑
t=1
∑

j∈ΩGT

uGTj,t c
GT
j

SGTj,t = α
GT
j + β

GT
j
[

[
1− exp(

TGT,off
j,t−1

τGTj
)]

]
 ∀t,∀j ∈ΩGT

(8)

{{{{
{{{{
{

CWI = C
WI
S

r(1+ r)T

(1+ r)T − 1
∑

j∈ΩWI

NWI
j

CWI
S = ∑

j∈ΩWI

uWI
j cWI

j

(9)

{{{{
{{{{
{

CPV = C
PV
S

r(1+ r)T

(1+ r)T − 1
∑

j∈ΩPV

NPV
j

CPV
S = ∑

j∈ΩPV

uPVj cPVj
(10)

where,CS
GT,CS

WI andCS
PV are the operating cost constants of GTs,

wind power generators andPVgenerators, respectively;T represents
the number of time periods; ΩGT, ΩWI and ΩPV denotes the set of
nodes containing GTs, wind power generators and PV generators;
Sj,t

GT signifies the startup cost of the unit at node j during time
period t; vj,tGT indicates the startup status of the unit at node j during
time period t, where a value of 1 signifies that the unit has been
started, and 0 indicates that it has not; uj,tGT denotes the operating
status of the unit at node j during time period t, with a value of 1
indicating that the unit is running, and 0 indicating that it is not;
αj,t

GT and βj,t
GT are the given constants for the unit at node j; τj,tGT

represents the time constant for the unit at node j; cjGT stands for the
coefficient of the constant term for the operating cost of the unit at
node j; andT denotes the consecutive downtime of the unit at node j
during the time period t−1; r represents the discount rate;N j

WI and
N j

PV respectively represent the number of wind power generators
and PV generators installed at node j; ujWI and uj

PV denote the

operating status of wind power generators and PV generators of the
unit at node j; cjWI and cjPV stand for the coefficient of constant terms
for the operating cost of wind power generators and PV generators
of the unit at node j.

3.1.2 Phase 1 constraints
Phase 1 of the unit constraint conditions encompasses the

upper and lower bounds of the unit operating domain, the
ramping constraints within the operating domain of the unit, and
the minimum continuous running time constraint for the unit,
which are respectively represented by (Equations 11–13), as shown
in following:

uGTj,t P
GT,min
j,t ≤ PGTj,t ≤ P

GT
j,t ≤ u

GT
j,t P

GT,max
j,t  ∀t,∀j ∈ΩGT (11)

{{{{{{
{{{{{{
{

0 ≤ t(uGTj,t − u
GT
j,t−1) +

min(t−1+TGT,on
j ,T)

∑
γ=t+1

uGTj,γ ≤min(t− 1+TGT,on
j ,T) ∀t,∀j ∈ΩGT

0 ≤ t(uGTj,t−1 − u
GT
j,t ) +

min(t−1+TGT,off
j ,T)

∑
γ=t+1

(1− uGTj,γ ) ≤min(t− 1+TGT,off
j ,T) ∀t,∀j ∈ΩGT

(12)

{{{{{
{{{{{
{

PGTj,t − P
GT
j,t−1

Δt
≤ ΔPGT+j,t  ∀t,∀j ∈ΩGT

PGTj,t−1 − P
GT
j,t

Δt
≤ ΔPGT−j,t  ∀t,∀j ∈ΩGT

(13)

where: Pj,t
GT,min and Pj,t

GT,max respectively denote theminimumand
maximum technical output of the unit at node j during period t;
PGTj,t and PGTj,t respectively signify the upper and lower limits of the
production Pj,t

GT of the unit at node j during period t; T j
GT,on and

T j
GT,off respectively represent the continuous operating time and the

continuous downtime of the unit at node j; ΔPj,t
GT+ and ΔPj,t

GT−

respectively indicate the maximum ramping up and ramping down
power of the unit at node j during period t; and Δt denotes the
time interval.

Phase 1 of the energy storage operational constraints includes
the energy storage charging and discharging state constraints, the
upper and lower bounds of the energy storage operating domain
constraints, and the energy storage capacity constraints, which are
respectively illustrated by (Equations 14–16) as follows:

yE,chj,t + y
E,dis
j,t ≤ 1 ∀t,∀j ∈ΩE (14)

{
{
{

0 ≤ PE,chj,t ≤ P
E,ch
j,t ≤ y

E,ch
j,t Pch,max

j  ∀t,∀j ∈ΩE

0 ≤ PE,disj,t ≤ P
E,dis
j,t ≤ y

E,dis
j,t Pdis,max

j  ∀t,∀j ∈ΩE

(15)

{{{{
{{{{
{

0 ≤
t

∑
v=1
(1− ζEj )

t−v[ηE,chj PE,chj,v − (η
E,dis
j )
−1PE,disj,v ] +E

E0
j (1− ζ

E
j )

t ∀t,∀j ∈ΩE

t

∑
v=1
(1− ζEj )

t−v[ηE,chj PE,chj,v − (η
E,dis
j )
−1PE,disj,v ] +E

E0
j (1− ζ

E
j )

t ≤ EE,max
j  ∀t,∀j ∈ΩE

(16)

where: ΩE denotes the set of nodes containing energy storage
systems; yj,tE,ch and yj,t

E,dis respectively represent the charging and
discharging states of the energy storage at node j during period t,
which are 0–1 variables; PE,chj,t , PE,chj,t and PE,disj,t , PE,disj,t respectively
indicate the upper and lower limits of the charging and discharging
power PE,chj,t and PE,disj,t of the energy storage at node j during period
t; Pch,max

j and Pdis,max
j respectively signify the maximum charging

and discharging powers of the energy storage at node j; Ej
E0 is the

initial energy of the energy storage at node j; ζ j
E represents the self-

discharge efficiency of the energy storage at node j; ηjE,ch and ηj
E,dis
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are the charging and discharging efficiencies of the energy storage
at node j, respectively; and Ej

E,max denotes the maximum storage
energy capacity of the energy storage at node j.

3.2 Model of phase 2

3.2.1 Objective function of the phase 2 model
The objective function for Phase 2, as represented by

(Equation 17), encompasses the operating cost of the GT unit, Cfuel;
the aging cost of the energy storage system (ESS), Cdge; the network
loss cost, CPloss; the curtailment cost of wind and solar energy, CDlos;
the cost of purchasing electricity from the main grid, Cgrid; and the
carbon emissions penalty cost, CCO2.

fP2 =min(Cfule +Cdge +CPloss +CDloss +Cgrid +CCO2) (17)

where,

Cfule =
T

∑
t=1
∑

j∈ΩGT

[aGTj (P
GT
j.t )

2 + bGTj PGTj,t ] (18)

{{{{{{
{{{{{{
{

Cdge =
T

∑
t=1
∑
j∈ΩE

[gdgej (P
E,ch
j.t + P

E,dis
j.t )]

gdgej =
CE
j

2BE
j (Q

E
j )E

E,max
j QE

j

 ∀t,∀j ∈ΩE

(19)

{{{
{{{
{

CPloss = CL

T

∑
t=1
∑
(i,j)

rij ̃Iij,t

  ̃Iij,t = I
2
ij,t ∀t,∀(i, j) ∈ΩL

(20)

CDloss = CD

T

∑
t=1
[ ∑
j∈ΩPV

(PPV,max
j,t − PPVj,t ) + ∑

j∈ΩWI

(PWI,max
j,t − PWI

j,t )]

(21)

Cgrid =
T

∑
t=1

CZ
t ∑
j∈Ωsub

Psubj,t (22)

CCO2 = cCO2
T

∑
t=1
(ksub ∑

j∈Ωsub

Psubj,t + kGT ∑
j∈ΩGT

PGTj,t ) (23)

where: ΩL denotes the aggregation of all system branches; ΩWI
and ΩPV represent the node sets of wind and PV units, respectively;
Ωsub indicates the node set of substation locations; aj

GT and bj
GT are

the coefficients for the linear and quadratic terms of the operating
cost of the generating unit, respectively; g jdge signifies the aging
cost per unit of energy charge and discharge at node j; Cj

E denotes
the replacement cost of energy storage at node j; Bj

E (·) is the
logarithmic function of the number of cycles of energy storage at
node j with respect to the depth of discharge; Qj

E represents the
depth of discharge of the energy storage at node j; CL stands for
the unit cost of grid loss; rij represents the resistance value of the
branch (i, j); I ij,t indicates the current value flowing through the
branch (i, j) during time period t, with the direction from node i
to node j being considered as the positive direction for the flow of
the branch (i, j); CD denotes the unit penalty cost for abandoned
wind and solar energy; Pj,t

WI,max and Pj,t
PV,max are the predicted

outputs of the wind and solar units at node j during time period t,
respectively; Pj,t

W and Pj,t
S are the actual outputs of the wind and

solar units at node j during time period t, respectively; Ct
Z is the

cost of purchasing electricity per unit of energy from the main grid
during time period t; Pj,t

sub represents the power input to the grid at
substation j during time period t; cCO2 signifies the unit cost of CO2
emission penalties imposed by the principal body of the distribution
network onusers post-response; ksub and kGT respectively denote the
unit CO2 emission intensity of the grid and the GT.

3.2.2 Phase 2 constraints

(a) Power flow constraint:

Pj,t = ∑
r∈φ(j)

Pjr,t − (Pij,t − rij ̃Iij,t) ∀t,∀j ∈ΩN (24)

Qj,t = ∑
r∈φ(j)

Qjr,t − ∑
i∈ϕ(j)
(Qij,t − xij ̃Iij,t) ∀t,∀j ∈ΩN (25)

{
{
{

Ṽj,t = Ṽi,t − 2(Pij,trij +Qij,txij) + ̃Iij,t(r2ij + x
2
ij) ∀t,∀(i, j) ∈ΩL

Ṽj,t = V
2
j,t ∀t,∀j ∈ΩL

(26)

‖‖‖‖

‖

2Pij,t
2Qij,t

̃Iij,t − Ṽi,t

‖‖‖‖

‖

≤ ̃Iij,t + Ṽi,t ∀t,∀(i, j) ∈ΩL (27)

Pj,t = P
PV
j,t + P

WI
j,t + P

GT
j,t + P

E,ch
j,t + P

E,dis
j,t − P

R
j,t (28)

Qj,t = Q
WI
j,t +Q

GT
j,t +Q

C
j,t +Q

sub
j,t −Q

R
j,t (29)

where: ΩN represents the collection of all nodes; Pj,t and Qj,t are
the active and reactive power injections at node j during period t,
respectively; φ(j) denotes the set of all terminal nodes of branches
with j as the starting node; ϕ(j) indicates the set of all initial nodes
of branches with j as the terminal node; xij is the reactance value of
branch (i, j); Pjr,t ,Qjr,t , and Pij,t ,Qij,t are the active and reactive power
flows across branches (j, r) and (i, j) during period t, respectively;
V j,t is the voltage value at node j during period t; Qj,t

WI, Qj,t
GT,

andQj,t
C are the reactive power injections from wind turbines, GTs,

and reactive power compensation devices at node j during period t,
respectively; Qj,t

sub is the reactive power injection at the substation
located at node j during period t; Pj,t

R and Qj,t
R are the active and

reactive load values at node j during period t, respectively.

(b) Security constraint:

V2
i,j ≤ Ṽ

2
i,j ≤ V

2
i,j ∀t,∀j ∈ΩN (30)

I2ij,t ≤ ̃I
2
ij,t ≤ I

2
i,j ∀t,∀(i, j) ∈ΩL (31)

where, Vj,t and Vj,t represent the upper and lower voltage limits at
node j during period t, respectively; Iij,t and Iij,t denote the upper
and lower current limits flowing through branch (i, j) during period
t, respectively.

The substation should satisfy its constraints on active and
reactive power capacities, i.e.,

Psubj.t ≤ P
sub
j.t  ∀t,∀j ∈Ωsub (32)
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Qsub
j.t ≤ Q

sub
j.t  ∀t,∀j ∈Ωsub (33)

(c) DG unit operation constraint:

0 ≤ PPVj.t ≤ P
PV,max
j.t   ∀t,∀j ∈ΩPV (34)

0 ≤ PWI
j.t ≤ P

WI,max
j.t   ∀t,∀j ∈ΩWI (35)

QWI
j,t = P

WI
j,t tan ς  ∀t,∀j ∈ΩWI (36)

where ς denotes the power factor angle of the wind power generator.

(d) GT unit operation constraint:

PGTj.t ≤ P
GT
j.t ≤ P

GT
j.t  ∀t,∀j ∈ΩGT (37)

QGT
j.t
≤ QGT

j.t ≤ Q
GT
j.t   ∀t,∀j ∈ΩGT (38)

where: QGT
j,t and QGT

j,t
respectively represent the upper and lower

limits of the reactive power output from the GT at node j during
period t.

(e) Energy storage operation constraint:

PE,chj.t ≤ P
E,ch
j.t ≤ P

E,ch
j.t  ∀t,∀j ∈ΩE (39)

PE,disj.t ≤ P
E,dis
j.t ≤ P

E,dis
j.t  ∀t,∀j ∈ΩE (40)

(f) Reactive power compensation device constraint:

QC
j.t
≤ QC

j.t ≤ Q
C
j.t ∀t,∀j ∈ΩC (41)

where, ΩC denotes the set of nodes that contain reactive power
compensation devices; QC

j,t and QC
j,t
respectively represent the upper

and lower limits of the output power of the reactive power
compensation device at node j during period t.

3.3 Dynamic reconstruction model

The enhanced hierarchical agglomeration method based on
temporal constraints is derived from the traditional agglomerative
hierarchical clustering approach, incorporating constraints on time
and the number of regional distribution network reconfigurations,
with a stipulation that only two consecutive periods can be
agglomerated; its specific model is as follows:

min F(H,G) =
H

∑
e=1

G

∑
g=1

davige Hmin ≤H ≤Hmax,G ≥ Gmin (42)

davige = √
n

∑
k=1
(xge,k,x

avi
e,k)

2 (43)

xavie,k =mean(Xe) (44)

where: F is the middle distance of the class; H is the number of
divided periods; G is the number of total time points in the e time
segment; dgeavi is the Euclidean distance from the g time point in
the e time segment to the cluster center in that period; n is the total
number of features for each data point; xge,k is the clustering center
of node k in the e time segment; xeavi is the cluster center of the e time
segment; Xe is the set of all time points in the e time segment; mean
(·) means average. Considering that the dynamic reconstruction of
the regional distribution network cannot be performed frequently,
theminimum timeof each period is set toGmin, that is, theminimum
time interval of each reconstruction must not be less than Gmin.
At the same time, the maximum number of reconstruction times
should be set to Emax, and the minimum value should be Emin; that
is, themaximumnumber of Emax periods and theminimumnumber
of Emin periods should be divided.

The static reconstruction model of the regional distribution
network is given below. Firstly, the objective function of dynamic
network reconstruction is:

M2 = CPloss +Cgrid (45)

Dynamic reconstruction must meet the following constraints:

(a) Power balance constraint:

{{{{{
{{{{{
{

Pj,t = PLj,t +Vj,t

N

∑
p=1

Vp,t(Gjp cos θjp,t +Bjp sin θjp,t)

Qj,t = Q
L
j,t +Vj,t

N

∑
p=1

Vp,t(Gjp cos θjp,t −Bjp sin θjp,t)

(46)

(b) Nodal voltage constraint:

Vj,t ≤ Vj,t ≤ Vj,t (47)

(c) Branch power flow constraint:

Sl ≤ S
max
l (48)

(d) Distribution network radial structure constraints:

e ≤ E (49)

where: Pj,t
L and Qj,t

L are respectively the load active and reactive
power consumption of j node during t period; Sl and Slmax represent
the actual power flow and capacity of branch l respectively; e is the
network topology after network reconstruction; and E is the set of
connected radiative topologies.
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3.4 Distributed robust optimization model

The optimization model, comprising (Equations 1–49) under
multiple scenarios, is represented in matrix form as follows:

min
y,zs∈Zs
[aTy +

Ns

∑
s=1

ps(z
T
s Λz + bTzs)] (50)

Cy ≤ f (51)

Xy +Hzs = q (52)

‖Qy + o‖2 ≤ c
Ty + d (53)

Dzs ≤ x (54)

where: y is the variable in Phase 1; a is the corresponding cost
factor;Λ and b are the quadratic and primary cost coefficients of the
objective function, respectively; zs is the Phase 2 variable of scenario
s; Zs is the set of variables in the second stage of scenario s; N s
is the cluster number of scenarios; ps is the occurrence probability
of scenario s; C, X, H , f , q, Q, o, c, d, D, x are the matrices
or vectors corresponding to the variables in the constraints of the
optimization model.

The (Equation 51) articulates all constraints about Phase 1
variables; (Equation 52) delineates the interrelated constraints
between the Phase 1 and Phase 2 variables, such as power flow
constraints; (Equations 53) posits the second-order cone relaxation
constraints; (Equation 54) enumerates the constraints associated
with the Phase 2 variables.

Given the uncertainty of DGs’ output and the limitations of
historical data, the probability distribution obtained from scenario
clustering may contain certain inaccuracies. Consequently, a RO
approach is employed to bound the probability distribution of
scenarios. Initially, N original scenarios are obtained using LHS,
followed by the application of the clustering algorithm from
Section 2.2 to deriveN s representative scenarios and the probability
distribution ps0 for scenario s. In adherence to the principles of RO,
a DRO model is constructed based on the 1-norm and∞-norm to
confine the fluctuation range of the probability distribution. The
constraints are as delineated in (Equations 50–54), with the objective
function formulated as follows:

min
y

max
{ps}∈ψ

min
zs∈Zs
[aTy +

Ns

∑
s=1

ps(z
T
s Λzs + bTzs)] (55)

where, ψ denotes the collection of interval probability distributions
for scenarios, representing the confidence set constrained by the 1-
norm and∞-norm.

The confidence of the probability distribution p can be
expressed as:

Pr(‖p− p0‖1 ≤ θ1) ≥ 1− 2Ns exp(
−2Nθ1
Ns
) (56)

Pr(‖p− p0‖∞ ≤ θ∞) ≥ 1− 2Ns exp(−2Nθ∞) (57)

where: Pr (·) denotes the probability function; p0 represents the
predicted value of the probability distribution; θ1 and θ∞ are the
permissible deviation values for the probability distribution.

Set the right side 1−2N sexp (−2Nθ1/N s) and 1−2N sexp (−2Nθ∞)
of the inequalities in (Equation 56) and (Equation 57) as α1 and
α∞, then α1 and α∞ represent the confidence of the probability
distribution p based on the 1-norm and ∞-nor, respectively, then
θ1 and θ∞ can be expressed as:

θ1 =
N
2N

ln
2Ns

1− α1
(58)

θ∞ =
N
2N

ln
2Ns

1− α∞
(59)

ψ =

{{{{{{{{{
{{{{{{{{{
{

{ps} ∈ R
Ns
+

|||||||||

|

Ns

∑
s=1

ps = 1

Ns

∑
s=1
|ps − ps0| ≤ θ1

max
1≤s≤Ns
|ps − ps0| ≤ θ∞

(60)

By integrating (Equation 58) and (Equation 59), it is
feasible to derive the confidence set for the probability
distribution as (Equation 60). where, R+

Ns denotes the set of positive
real numbers representing the probability distribution for scenario s.

4 Model solving

This paper resolves the model into two distinct components
for solution. The dynamic reconstruction model is addressed
through the application of the PSO algorithm. The model
represented by (Equation 55) constitutes a multi-stage, multi-layer
optimization problem, which commercial solvers cannot directly
solve. Consequently, the model is decomposed into a main problem
and subproblems, and the C&CG algorithm is employed for iterative
solutions in successive stages.

4.1 The main problem

Themain problem is to solve the optimal solution satisfying the
system economy under the premise of known scenario probability
distribution p, which can be expressed as:

L = min
y,λ,zs∈Zs
(aTy + λ) (61)

λ ≥
Ns

∑
s=1

p(w)∗s [(z
(w)
s )

T
Λz(w)s + bTz

(w)
s ] w = 1,2,⋯,W (62)

where: superscript “∗” represents the optimal solution of the
corresponding variable; λ is the given threshold; W is the total
number of model iterations.

The lower bound LM between variable y∗and the model is
obtained by solving the main problem.

4.2 The sub-problems

The sub-problem is a two-layer structure ofmax-min, which can
be expressed as:

max
{ps}∈ψ

min
zs∈Zs

Ns

∑
s=1

ps(z
T
s Λzs + bTzs) (63)
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FIGURE 3
Flow chart of model solving.
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FIGURE 4
Variation of boundary value of main problem model.

The meaning of (Equation 63) is that under the condition that
variable zs can be adjusted flexibly with the change of scenario,
when the result of solving the main problem is y∗, the probability
distribution of the worst scenario within the confidence interval is
found, and the lower bound of the model (Equation 55) is obtained.
Since the constraint range of the outer layer is not related to the inner
layer problem, (Equation 63) can be decomposed into two steps for
solving, that is, the inner layer optimization problem is solved first,
and then the outer layer max is solved, as shown in (Equations 64,
65), respectively:

hs =min
zs∈Zs
(zTs Λzs + b

Tzs) (64)

U = max
{ps}∈ψ

Ns

∑
s=1

pshs (65)

where, hs is obtained from the solution of the main
problem. Since the absolute value constraint in Equation 60
is a nonlinear constraint, it is necessary to perform linear
equivalent decomposition and equivalent transformation of
the absolute value constraint to obtained Equation 66
as follows:

{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{
{

Ns

∑
s=1
(p+s + p

−
s ) ≤ θ1

p+s + p
−
s ≤ θ∞ ∀s

σ+s + σ
−
s ≤ 1 ∀s

0 ≤ p+s ≤ σ
+
s θ1 ∀s

0 ≤ p−s ≤ σ
−
s θ1 ∀s

ps = ps0 + p
+
s + p
−
s  ∀s

(66)

where, ps+ and ps
− are respectively the positive and negative offsets

of the probability distribution ps of scenario s relative to ps0; σ s+ and
σ s
− are 0–1 flag quantities with positive and negative shifts to ps,

respectively.
After the above steps, model (55) is transformed into a mixed

linear programming problem, which a commercial solver can
quickly solve to obtain ps

∗
, and then the upper limit UM of the

model is obtained by the next iteration optimization on the part of
the main problem.

4.3 Model solving procedure

To sum up, the model can be solved by combining C&CG
algorithm and particle swarm optimization algorithm, and its flow
chart is shown in Figure 3.

Step 1: Set scenario probability R = 1, ps = ps0 in (Equation 60), and
initialize the network topology e = es

(0) in (Equation 42);
Step 2: Set the upper limit LM of the main problem model in (61),

the lower limit UM of the model in (Equation 65), and the
initial valueW = 1 for the number of iterations of the model;

Step 3: Solve the main problemmodel in (Equations 61, 62), and get
themaximum value of variable y

∗
andmodel lower limit LM ;

Step 4: Then solve the sub-problem in (Equations 64–65), and get
the minimum value of variable ps

∗
and the upper limit UM

of the model;
Step 5: Determine whether the difference between LM and UM is

within the ideal range ε1: if yes, variables ps
∗
and y

∗
are

obtained, and a joint solution LU (R) of network loss costCPloss
and main network power purchase cost Cgrid is established;
if the range of ε1 is not satisfied, add variable zs(W+1) to the
main problemmodel in (Equations 61, 62) and constraints in
(Equation 52) and (Equation 54), and increase the number
of iterations W to return to Step 3; (In Figure 4 below,
the curves of the upper LM and lower UM values with
the number of iterations in the actual simulation analysis
are given);

Step 6: Then determine whether the actual number R of the
scenario distribution is 1: if yes, the period is divided,
and the segmentation results and clustering center of each
segment are recorded; if the number of iterations R is
not 1, it is judged whether the failure range of LU

(R)

before and after is within ε1: if yes, the model solution is
completed; if not, the period division process is directly
carried out.

Step 7: After the clustering center of each segment is obtained, the
PSO algorithm is used to solve the static reconstruction of
each period, and the topology e(R) and the objective function
GO
(R) are obtained;

Step 8: Further determine whether the error of GO
(R) and LU

(R) or
the error of GO

(R) before and after two times is within the
ideal range ε1: if yes, the model is solved; If no, increase the
number of iterations and return to Step 3.

5 Example analysis

5.1 Example introduction

The efficacy of the model and algorithm presented in this
treatise was validated utilizing the IEEE 33-node system (Ahmed
and Salama, 2019), as depicted in Figure 5.

The IEEE 33-node system, characterized by a nominal voltage
of 12.66 kV and a rated power capacity of 10 MW for each node,
was configured with a particle swarm population size of 60 and
subjected to 200 iterations. Relevant data pertaining to the wind
turbines, PV power stations, reactive power compensation devices,
and turbines are presented in Table 1, while the data concerning the
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FIGURE 5
IEEE33-node AC-DC regional distribution network.

TABLE 1 Some parameters for IEEE33-node of DGs.

Unit class Active power limit/MW Reactive power limit/MW Install node Climbing limit/MW

PV units [0, 0.1] - 6/12 -

Wind turbines [0, 0.2] [−0.2, 0.1] 17/20 -

Reactive power compensation devices - [−0.1, 0.2] 33 -

GT 1 group [0.05, 0.2] [−0.05, 0.15] 25 0.03

GT 1 group [0.1, 0.3] [−0.1, 0.2] 30 0.05

TABLE 2 ESS parameters of IEEE33-node.

Unit class Initial value of
energy storage/MW

Upper limit of
energy storage/MW

Lower limit of
energy storage/MW

Upper limit of
charge and

discharge/MW

ESS

0.12 1.2 0.24 0.3

Charging efficiency/% Discharge efficiency/% Self-discharge rate/% Install node

93.81% 95% 0.5% 10

TABLE 3 GT cost parameters of IEEE 33-node.

Group name αg/k$ βg/k$ τg cg/k$/MW bg/k$/MW ag/k$/M
2 cCO2/k$/t ksub/kg/MW kGT/kg/MW

1 group 0.3 0.3 6 0.0028547 2.139 9.26 0.0195 820 490

2 group 0.4 0.4 8 0.0051826 4.601 5.18 0.0196 810 450

ESS are detailed in Table 2. The network loss and the cost associated
with curtailed wind and solar power were set at $50 per (MW·h)
(Zhou et al., 2019). The cost of purchasing electricity from the main
grid was referenced from (Wang et al., 2017).The aging cost per unit

of charge-discharge energy for energy storage was determined to be
$0.3 per (MW·h) (Shi et al., 2019).The start-up and operational costs
for the GTs were derived from (Wang et al., 1995), with the specifics
provided in Table 3.
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FIGURE 6
Error scatter of all branches.

5.2 Model error analysis

Firstly, the prediction error of the two-phase RCO model
proposed in this paper is investigated. And the following error
indexes Δj,t

diff are defined as Equation 67 as follows:

Δdi f fj,t = |P
2
j,t +Q

2
j,t − ̃Iij,tṼi,t| (67)

Aiming to maximize regional distribution network entity
profits, the computation incorporated demand response and branch
reconfiguration strategies. The error indices for all branches were
calculated, with the error distribution illustrated in Figure 6. It
is readily apparent that the error-index of the two-phase RCO
model is at the magnitude of 10–2, demonstrating a precision level
that adequately meets the practical requirements of engineering
applications.

Then the clustering error of EM combinedwithK-means with in
the two-phase RCO mode proposed in this paper. Here, the mean-
shift (MS) algorithm (Wang et al., 2015), the fuzzy C-means (FCM)
clustering algorithm (Kim et al., 2018), and the EM algorithm, were
each combined with the fixed K-means algorithm for comparative
analysis. 80 data points were randomly given for the clustering test,
and the results are presented in Figure 7 and Table 4.

The data obtained from the LHS was subjected to scenario
clustering, and a comparative analysis was conducted among three
algorithms to ascertain the optimal number of clusters. The results
indicate that the number of clusters determined by the EM is most
favorable. Application of the EM to verify the number of clusters
for the IEEE 33-node system revealed a graphical representation of
clustering error concerning the number of clusters, as depicted in
Figure 7. It can be observed from Figure 7 that when the number of
clusters is less than 10, the decline in clustering error is significant,
whereas the rate of decrease markedly slows when the number
of clusters exceeds 10. Adhering to the principles of the EM, the
optimal number of clusters for the sample data is determined to
be 10, which concurs with the referenced number of clusters. In
contrast, the MS and FCM algorithms yielded cluster counts of 8

and 2 under the same sample data, deviating considerably from the
referenced cluster count.

The sophisticated heuristic employed in this paper, which
amalgamates the EM with K-means clustering, manifests a
heightened precision in the computational aggregation of the
sampled data points. As illustrated in Figure 8, an intricate
analysis matrix, contingent upon the stochastic sampling data
depicted in Figure 7, is orchestrating through the modification of
load parameters, thereby yielding the comprehensive synthesis of
period-scenario-power as proposed by the current model. This
further attests to the efficacy of the two-phase RCO mode in
processing integrated energy data, as well as its versatility in scenario
generation.

The overall trend of energy in Figure 8A shows a flat peak
between 8 h and 13h, reaching 1.3 kW, then decreasing to 0.7 kW
between 15 h and 17 h, then rising to a flat peak after 18:00, and then
decreasing at 21 h.The appearance of two energy peaks corresponds
to the intensive activity time of people in the local distribution
network.The longitudinal observation of the 10 scenarios shows that
the EM-K-means has a strong precision error control performance.

In Figure 8B, the overall trend of energy fluctuates strongly,
rising alternately at 8 h, 15 h, 30 h, 35 h and 42 h, and the peak
energy continues to range from 70 kW to 80 kW. At this time,
the robustness of EM-K-means can be reflected, and the energy
difference between different scenarios is small, which proves that
the proposed model forms a stable energy value in the initial
optimization stage.

The energy optimization curve in Figure 8C has undergone
a changing process of rising, falling, and rising again. The
designed model fine-tuned the energy curve when considering the
influencing factors of different scenarios, and it can be seen that
the energy curve under different scenarios has a slight difference
in peak point and bottom point, but the overall trend of change
has maintained a good consistency.The superiority of EM-K-means
method is proved.

The energy optimization curve in Figure 8D gradually rose
after 5 h, reached a peak at 13 h, 55 kW, and then began to
decline until the energy dropped to the lowest value after 18 h.
In this process, with the change of the number of scenarios,
the consistency of the energy curve is good, and the energy
optimization at the peak point gradually flattens with the increase
of the number of model iterations, and the optimal value
is obtained.

5.3 Model robust optimization analysis and
comparison

The deterministic model is compared with the two-phase RCO
mode proposed in this paper. And the individual facility outputs
and system network topology are determined under the premise of
forecasted loads and renewable energy outputs. Subsequently, the
resultant data are input into the ten scenarios obtained through
clustering in Figure 8A, calculating the total system cost for each
scenario. With the initial probability distribution as the starting
point, optimization is conducted. The objective function is the sum
of the cost probability distributions, yielding the facility outputs
and scenario-specific costs as delineated in Table 5. An illustrative
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FIGURE 7
Comparison of clustering errors.

voltage curve for node 17 in Figure 5 under any given scenario is
provided in Figure 9.

It can be observed from Table 5 and Figure 9 that the two-
phase RCO model proposed in this paper optimizes the system
output across diverse scenarios, resulting in minimal network losses
while ensuring safe operation under all conditions. This model
adeptly adapts to the uncertainties within the system. Conversely,
the optimization scheme derived from the deterministic model is
susceptible to fluctuations in renewable energy and load, potentially
leading to an increase in the total system cost and even causing node
voltage to exceed limits, thus posing a threat to the system’s security
and demonstrating inferior applicability.

Given the scenario analysis-derived costs for each scenario as
known conditions, RO is performed under the considerations of the

comprehensive norm, solely the 1-norm, and solely the ∞-norm.
The costs under these three scenarios are presented in Tables 6, 7, 8.
When considering only the 1-norm, it is assumed that α1 = 0.5,
0.5≤α∞≤0.99.When considering only the∞-norm,α∞ is set at 0.99,
with 0.2≤α1 ≤ 0.99.

The data presented in Table 6 reveal that as the values of α1
and α∞ increase, the confidence interval expands, encompassing
a broader range of uncertainty probability distributions, which
in turn leads to a higher total system cost. Additionally, when
the value of α1 is significant, the total system cost does not
increase proportionally with the increase in α1, indicating
that the optimization outcome is predominantly influenced by
the ∞-norm. As evidenced by Table 7, when optimization is
performed considering only the 1-norm or solely the ∞-norm,
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TABLE 4 Clustering error of different algorithms.

Algorithms Number of clustering calculations

1 2 3 4 5 6 7 8 9 10

MS-K-means 7458.9 7457.2 7455.3 7454.8 7453.7 7455.6 7456.2 7456.8 7457.9 7456.1

FCM-K-means 7439.5 7458.7 7462.1 7431.8 7443.6 7447.9 7450.3 7449.2 7449.6 7451.1

EM-K-means 7431.3 7424.5 7431.3 7418.1 7428.3 7424.3 7422.6 7423.5 7421.3 7422.7

FIGURE 8
Time-scenario-power comprehensive analysis diagram: (A) Scenario
analysis 1; (B) Scenario analysis 2; (C) Scenario analysis 3; (D) Scenario
analysis 4.

the system adopts a more conservative approach, resulting in higher
total costs.

5.4 Model solving speed analysis

To ascertain the computational speed performance of the two-
phase RCO model proposed in this paper, the MS algorithm,
the FCM clustering algorithm are also addressed here to be
compared with the EM algorithm. The objective functions 1 to
4 are, respectively: minimizing network loss (OF1); minimizing
electricity purchase from the main grid (OF2); minimizing the sum
of network loss and electricity purchase from the main grid (OF3);
and maximizing the main grid’s profit considering curtailed wind
and solar power, the cost of GTs, andCO2 emissions cost (OF4). And
the results are presented in Table 8.

The data in Table 5 reveal that as the objective function’s scope
expands, the EMmodel’s computational time increases accordingly.
Nonetheless, the calculation speed remains acceptable, with the
maximum solving time reaching 57.18 s. In comparison to the MS
and FCM models, the EM model’s solving time is reduced by an
average of 30.1% and 36.84%, respectively, thereby enhancing the
efficiency of the solution process.

5.5 Scenario generation analysis

The forecasted output curves for the load, PV, and wind power
devices are as depicted in Figure 10, wherein the time-series curves
for all load nodes correspond to the curve shown in Figure 10. The
predictive error conforms with a normal distribution, with a mean
of zero and a variance equivalent to 21% of the predicted value.

The correlation coefficients between the forecasted outputs of
the load, PV, and wind power devices, as well as among different
PV and wind power devices, are presented in Table 9. In the table,
the device numbers 1 and 2 denote PV generation, numbers 3 and 4
representwindpower generation,while numbers 5 and 6 correspond
to the active and reactive loads of the system, respectively. For clarity
of observation, the outputs of PV and wind power have been scaled
down to 0.1, and the active and reactive loads to 0.001.

Utilizing LHS, a total of 80 scenarios with distinct correlations
and 80 without correlations among the devices were generated, as
illustrated in Figure 11. By comparing the correlation coefficient
matrix, it is evident from Figure 11 that when considering
correlations, the positive inter-device correlations result in
approximately parallel lines; conversely, without considering
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TABLE 5 Cost comparison of different models in different scenarios.

Model Different scenarios cost/k$

Scenario
1

Scenario
2

Scenario
3

Scenario
4

Scenario
5

Scenario
6

Scenario
7

Scenario
8

Scenario
9

Scenario
10

Deterministic
model

189.622 191.977 194.684 194.251 193.404 192.353 194.649 189.095 193.094 192.366

Two-phase
RCO
model

187.674 190.311 193.733 192.302 191.941 191.398 190.693 188.154 191.345 190.257

FIGURE 9
Voltage of node 17 under the deterministic model.

TABLE 6 Comparison of total costs at different confidence levels.

α∞ α1

0.2 0.5 0.99

0.5 183.019 183.169 183.169

0.8 183.174 183.376 183.477

0.99 183.493 183.089 183.201

correlations, the device outputs are unconstrained, leading to more
chaotic and disordered lines.

K-means clustering algorithm is used for scenario clustering.
This paper selects four typical scenarios for comprehensive energy
system optimization analysis, as shown in Figures 12–15.

5.5.1 Scenarios 1
As shown in Figure 12A, from 0:00, wind power as the main

power supply began to rise gradually, peaked at around 8:00, and
then began to decline. In this period of time, the electric boiler is the
main object of electricity, and this stage is also the rising moment of
charging data. After 8:00, PV as an auxiliary energy source for power
generation began to gradually rise at about 13:00 to reach a peak,
and in the process, wind power was still stable. After reaching 15:00,

TABLE 7 Cost comparison of comprehensive norm and
1-norm and∞-norm.

Test
value

Comprehensive norm 1/∞- norm

0.5
α1 183.493 183.201

α∞ 183.169 183.463

0.8
α1 183.089 183.201

α∞ 183.376 183.463

0.99
α1 183.201 183.201

α∞ 183.089 183.463

due to the apparent decline in PV and wind power, the amount of
electricity purchased began to rise briefly. At this time, theGT power
generation begins to start, and phased power purchase behavior
appears in this transition stage. In the whole scenario, the electric
load peaks at around 10:00, peaks in phases when the GT generates
power, and then begins to decline slowly.

In the thermal energy variation diagram of the scene in
Figure 12B, corresponding to the changes in Figure 12A, the energy
variation of the electric boiler shows an upward trend from 0:00 to
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TABLE 8 Solving time comparison.

The model name Solution time of the
OF1/s

Solution time of the
OF2/s

Solution time of the
OF3/s

Solution time of the
OF4/s

MS 26.56 27.17 36.74 58.13

FCM 39.91 42.83 53.61 71.71

EM 46.12 51.23 57.51 74.43

FIGURE 10
Predicted power of wind turbine, PV and load.

8:00, and the heat storage gradually accumulates in the process. After
that, the heat energy of the electric boiler began to decline with the
decline of wind power energy. At around 16:00, due to the start-
up of GT power generation, GT heat supply gradually increases. In
order to maintain the stability of heat energy, there is intermittent
heat release from 15:00 to 24:00. The heat load of the whole process
system reaches a branch at around 7:00, and then gradually declines
until theGT starts at around 16:00, driving the heat load to rise again.

The influence curve of the point heat load in Figure 12C aligns
with the trends observed in Figures 12B,C, reflecting the dynamic
nature of energy consumption patterns. Our designedmodel adeptly
captures and adjusts to these fluctuations, as evidenced by the overall
increase in the demand response electrical load after 8:00, which
peaks in two distinct stages around 10:00 and 16:00. In contrast,
the thermal load displays an inverse pattern, showcasing the model’s
capability to handle the divergent trends of electrical and thermal
loads. This responsiveness is a direct outcome of the model’s RO
strategy, which is tailored tomanage andmitigate the impacts of data
fluctuation, ensuring that energy distribution remains efficient and
balanced even as consumption patterns evolve throughout the day.

5.5.2 Scenarios 2
As shown in Figure 13A, from 00:00 onwards, with the increase

of wind power, the purchased electricity also increased significantly,
and the electric boiler also began to work, and the charging amount
also began to increase. Until 8:00, when PV occupies themain power
generation, the use of electric boilers drops sharply, and GT power
generation also starts at this time, resulting in a significant decline
in purchased electricity. However, although wind power decreases
at this stage, it still maintains a stable level of 400 kW. By 16:00,
wind power, purchased power, PV power generation surge, and

then PV power generation gradually decline, wind power stabilized
near 600 kW, supporting the overall system power generation; After
20:00, the decrease in temperature leads to an upward trend in the
use of electric boilers.

The heat load data presented in Figure 13B exhibits a distinct
pattern throughout the day. The period from 0:00 to 8:00 shows
an increasing trend in heat load, coinciding with a time of lower
ambient temperatures. As depicted in Figure 13A, the noticeable
surge inGTheating that begins around 9:00 alignswith the initiation
of GT power generation, indicating a direct correlation between
power production and heating requirements. By 16:00, the system
heat load reaches its nadir before starting a gradual ascent. This
dip and subsequent rise are characteristic of the system’s thermal
response, with a significant heat release occurring in stages after
20:00, possibly due to the decreased demand for heating as the day
progresses.

In Figure 13C, the point load response curve not only illustrates
the peak electricity consumption occurring around 10:00 and 18:00,
which corresponds to higher energy use during morning and
evening activities, but it also showcases our model’s proficiency
in managing data fluctuation. The model adeptly captures the
variation in energy demand, as the heat load response peaks
around 8:00, mirroring the start of the day when the demand for
heat is highest. Subsequently, the model’s optimization strategies
enable the heat load to decrease until it resumes an upward
trend after 16:00, in synergy with the increased utilization of
GT heating.

This pattern suggests that the designed model is not only
effectively managing the thermal load but is also capable of
anticipating and responding to the changing energy demands.
The peak in heat load occurring before the peak in electricity
consumption is a testament to the system’s ability to adapt to the
temporal dependencies and fluctuations in energy use. The model’s
robust design ensures that it can dynamically adjust to these shifts,
maintaining optimal energy distribution and utilization across both
electrical and thermal loads.

5.5.3 Scenarios 3
The characteristics of the scene shown in Figure 14A are similar

to those in Figure 13A. From 0:00 to 8:00 in the initial stage,
both wind power and purchased electricity show an upward trend.
Due to the low temperature, the usage of electric heating furnace
also increases significantly. However, the difference is that in this
scenario, starting at 8:00, PV power generation starts to rise sharply,
reaches a peak at around 13:00, and then begins to decline slowly
until around 20:00, PV power generation is still maintained near
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TABLE 9 The correlation coefficient between each unit.

Title 1 PV 1 PV 2 Wind power 1 Wind power 2 Active load Reactive load

PV 1 1.000 0.800 −0.163 −0.163 −0.198 −0.198

PV 2 0.800 1.000 −0.163 −0.163 −0.198 −0.198

Wind Power 1 −0.163 −0.163 1.000 0.600 0.234 0.234

Wind Power 2 −0.163 −0.163 0.600 1.000 0.234 0.234

Active load −0.198 −0.198 0.234 0.234 1.000 0.750

Reactive load −0.198 −0.198 0.234 0.234 0.750 1.000

FIGURE 11
Sampling scenario correlation analysis.

500 kW; The surge of PV power generation replaces the output of
wind power, which is relatively low in this stage, and the two form a
good complementary relationship. After 20:00, with the weakening
of PV power generation, wind power gradually increased, and the
process was accompanied by heat release; And the electric furnace
is put into use after 23:00.

Compared with Figure 13B, the change of thermal
energy shown in Figure 14B is significantly different from
that shown in Figure 13B: GT heating starts to rise from 8:00, and
although it shows a downward trend after 11:00, it still replaces
electric boiler heating as the main body of thermal energy and
remains there until 23:00.

The transferable electrical load (−) in Figure 14C exhibits amore
evenly distributed demand pattern, with notable peaks from 8:00
to 11:00 and again from 16:00 to 24:00, as opposed to the more
concentrated load observed in the earlier hours of Figure 13C. This
change in load distribution reflects the diurnal rhythm of energy
usage and the complementary role of renewable energy sources
like wind and PV, as illustrated in Figure 14A. Our model adeptly
captures these dynamics, adjusting to the ebb and flow of energy
supply and demand, ensuring a balanced and responsive energy

management approach that aligns with the natural fluctuations of
renewable energy generation.

5.5.4 Scenarios 4
As can be seen from Figure 15A, the characteristics of scenario

4 are that wind power plays the leading role in the whole power
generation process, and the electric boiler continues to work in the
whole process. At about 6:00, the PV access and began to continue to
generate electricity, and reached a peak at around 13:00, after which
it began to slowly decline until 20:00. The purchased electricity
only occurs from 0:00 to 6:00, and is less than 200 kW; GT power
generation began to be put into use after 17:00; And from 9:00, the
sale of electricity began to maintain around 200 kW, and continued
until 23:00.

Figure 15B clearly illustrates the dominant role of the
electric heating furnace in the overall heating demand, a
trend directly influenced by the operational pattern of the
furnace shown in Figure 15A. The prominence of the electric
heating furnace suggests that it is a primary source of heat
during the observed period. Additionally, the GT heating depicted
in the same figure aligns with the gas turbine power supply
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FIGURE 12
Scenario 1 comprehensive energy analysis results: (A) Electrical energy variation diagram; (B) Thermal energy variation diagram; (C) Electric-heat load
response curve.

periods from 8:00 to 10:00 and 16:00 to 24:00, indicating a
coordinated effort to manage both heating and power generation.
The intermittent heat release process that initiates after 20:00 is a

notable feature, possibly reflecting a reduced demand for immediate
heating or a strategic shift in energy management to balance
the system.
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FIGURE 13
Scenario 2 comprehensive energy analysis results: (A) Electrical energy
variation diagram; (B) Thermal energy variation diagram; (C)
Electric-heat load response curve.

In Figure 15C, the electrical load reaches its zenith around 10:00
and 17:00, which aligns with peak usage times such as morning
routines and evening activities. Concurrently, the transferable
electrical load (−) remains relatively stable at approximately 100 kW
from 14:00 onwards, indicating a period of consistent energy
transfer or a balanced state within the system. This stability is a
testament to our model’s ability to effectively manage and mitigate
data fluctuation, maintaining a steady energy flow even during
periods of high demand.

The energy component processing and optimization analysis
across the four typical scenarios further confirm the efficacy of the
proposed two-phase RCOmodel. It not only handles the complexities

FIGURE 14
Scenario 3 comprehensive energy analysis results: (A) Electrical energy
variation diagram; (B) Thermal energy variation diagram; (C)
Electric-heat load response curve.

of energy distribution but also showcases its robustness in conducting
detailed energy composition analysis and planning optimal goals
within varying scenarios. This demonstrates the model’s systematic
and efficient approach to energy management, which is particularly
critical in dealing with the fluctuations and uncertainties inherent in
renewable energy integration and shifting load demands.

Based on the relevant data in the above four scenarios,
the traditional randomized optimization (Liao et al., 2014) and
traditional RO (Hosseini et al., 2014) method are introduced
to compared with the two-phase RCO model. The results
are shown in Table 10 below.

As can be seen from Table 10, the traditional RO planning
corresponding to the clean energy consumption rate and the
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FIGURE 15
Scenario 4 comprehensive energy analysis results: (A) Electrical energy variation diagram; (B) Thermal energy variation diagram; (C) Electric-heat load
response curve.

distribution network main profit is the smallest. The optimization
results corresponding to stochastic programming have the best
economy and clean energy consumption rate, but the conservatism
cannot be guaranteed. Compared with RO and stochastic

programming, the two-stage RCO method proposed in this paper
can achieve a better balance between economy and conservatism,
maximize the profit of distribution network, and improve the
absorption rate of clean energy, which has more advantages in
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TABLE 10 The correlation coefficient between each unit.

Parameter Proposed RCO Traditional RO Traditional randomized
optimization

Various costs and profits/(103$)

Total network loss 0.1007 0.1031 0.1011

Power purchase on the main network 0.2451 0.2677 0.2445

Wind discard 0.1184 0.1195 0.1184

Light discard 0.2462 0.3021 0.2467

GTs power generation 0.6553 0.6554 0.6559

CO2 emission cost 0.1055 0.1079 0.1056

Daily receipts 3.5027 3.5169 3.5029

Daily profit 2.0329 1.9877 2.0319

Wind discard rate/% 27.69 27.74 27.83

Light discard rate/% 12.17 15.22 12.54

Total power discard rate/% 38.94 43.06 39.72

Input energy fluctuation sensitivity/% ±6.32% ±12.59% ±19.47%

dealingwith uncertain planning. And the proposedRCO significantly
contributes to the field by advancing a robust optimization framework
for regional distribution networks, enhancing the integration of
renewable energy, and improving system reliability. Moreover, the
two-stage RCO model has a strong sensitivity to input energy
fluctuation, reaching ±6.32%, which is ±6.27% and ±13.15%
higher than that of traditional RO and traditional randomized
optimization respectively. These advancements offer substantial
benefits to power utility companies and distribution systemoperators,
including cost savings, efficiency gains, reduced energy curtailment,
and support for grid modernization, ultimately bolstering their
competitiveness and service quality.

6 Conclusion

In the wake of contemplating the unpredictability of wind, solar,
and load generation outputs, this study has developed a RCOmodel
anchored in energy storage, GTs, reactive power compensation
devices, and network topological structures. Through the solution
and analysis of the IEEE 33-node system, the following conclusions
have been elucidated:

1) The scenario generation approach is pivotal in influencing
the optimization outcomes. Utilizing LHS, which considers
the correlation coefficient matrix, adeptly captures the
interdependencies among various devices. An enhanced
scenario clustering algorithm, capable of adaptively
determining the number of clusters based on sample data,
exhibits higher practicality,minimal clustering error, improved
robustness, and superior representativeness of the scenarios.

2) Integrating energy storage and GTs into the system,
or alterations to the network structure, augments

the system’s flexibility and significantly enhances its
operational economy.

3) The distributed robust optimization model, building upon
the stochastic optimization framework, incorporates the
confidence intervals of probability distributions, effectively
balancing the economic considerations of the system.

In a future extension of our work, we indeed plan to incorporate
optimal control strategies to enhance the dynamic management
of distributed energy resources within the distribution network.
Further making the lightweight design of the optimization model
and aiming to enhance scenario generation and multi-objective
optimization for comprehensive economic, environmental, and
reliability analysis. The application of smart grids and the extension
of optimizationmodels to more complex energy systems will also be
further considered.
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