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Introduction: The key nodes of an intelligent distribution network significantly
impact the reliability and stability of the distribution network’s operation. The
failure of these key nodes can severely affect the safe operation of the distribution
network. Therefore, vulnerability analysis of key nodes is particularly important.

Methods: This article proposes a comprehensive weighting method for
evaluating indicators,combining the analytic hierarchy process (AHP) and
entropy weighting method, while considering the structure and operational
status of the power system grid. Key node structural evaluation indicators,
such as node degree, node shrinkage centrality, and electric mediator, are
established considering “significance” and “destructiveness.” State indicators
are established based on the degree of impact of current, voltage, and load
changes on the grid, as well as the uniformity of their distribution, including the
improved current distribution entropy, voltage terre entropy, and three-phase
state indicators of lost load. Subsequently, based on the AHP and entropy
weighting method, a comprehensive weighting method is proposed to assign
subjective and objective weights to the comprehensive evaluation indicators,
obtaining the comprehensive weights of the indicators. Finally, the gray
correlation degree is introduced to improve the ideal solution of the multi-
objective decision making method, obtaining the criticality of the grid nodes and
then identifying the critical nodes.

Results and Discussion: The example analysis presented in this article shows that
the identified critical nodes of the power grid have a high degree of overlap with
the identification results of differentmethods, can better identify edge nodes, and
validate the effectiveness of the proposed evaluation indicators and key node
identification methods.
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1 Introduction

In recent years, frequent major power outages have had a negative impact on many
aspects of society. Studies have shown that major blackouts are mostly chain reactions
triggered by the failure of critical components. Therefore, accurately identifying critical
links in the power grid can effectively ensure the safe operation of the power grid.
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Since Petroianu et al. proposed grid vulnerability analysis in
1974 (Chen, 2004), research in this direction has been deepening
and developing. At present, research on power system vulnerability
mainly includes two aspects: vulnerability mechanism research and
vulnerability assessment index research, in which the vulnerability
mechanism research includes research on state vulnerability and
structural vulnerability. This category of research provides the
theoretical basis for the identification of key nodes of the power grid.

Chen et al. (2022a) establish node vulnerability assessment
indexes through a Jacobi matrix, which is better adapted to the
voltage stability calculation of large power grids to achieve the
ranking of vulnerable nodes. Huang et al. (2012) establish a static
energy function model for power supply branches by using a static
energy function and constructing energy information vulnerability
indexes to assess the vulnerability of power grid branches. The above
studies are based on security analysis and assessment methods and
construct different vulnerability indicators to identify the key links
in the network from two research perspectives: steady state
and transient.

Wang et al. (2010) use the accident chain model generated
online, consider the operational risk of the intermediate links in the
accident chain, establish the accident chain risk indicators and the
risk indicator severity assessment function, identify the key links
through the standard arithmetic system simulation, and verify the
effectiveness of the proposed method. Wu (2017) define line
importance based on network cohesion metrics using the change
in network cohesion before and after line disconnection, which
identifies critical lines in the power grid. Sun et al. (2024) use deep
reinforcement learning to identify critical nodes in the power grid.
However, the definition of critical nodes is based solely on a single
structural indicator as the evaluation criterion. As a result, despite
using a sophisticated algorithm, the identification of critical nodes
remains somewhat vague and inaccurate. Chen et al. (2021a) do not
use complex network theory; instead, they adopt a vulnerability
assessment of power grid nodes based on electrical centrality
indicators. This approach has certain limitations.

Xia et al. (2014) define the power system as a vulnerable system
based on risk theory, integrating the effects of various uncertain
factors. They also combine a static energy function to establish a
static energy function model for the power supply branches and
construct an energy information vulnerability index to assess the
vulnerability of the grid branches. Chen et al. (2021b) suggest that
using centrality indicators of general complex networks for power grid
vulnerability assessmentmay result in a “shovel effect.” Therefore, this
article redefines the centrality indicators based on electrical
parameters to better assess vulnerability. Sun et al. (2020) propose
selecting important evaluation indicators for key nodes in the power
grid and establish a directed weighted network model for the power
system. They then use PSNodeRank values to assess the vulnerability
of nodes and specifically describe the importance of each node. Fu
et al. (2017) combine several indicators, such as degree, betweenness,
cohesion, and closeness, and apply the entropy method and analytic
hierarchy process (AHP) to assign weights for describing the
vulnerability of nodes. Tan et al. (2006) propose the node
contraction method to assess network node importance based on
network cohesion, which has the advantage of fast computing speed.

Because any single assessment index has a certain degree of
inadequacy, most researchers have chosen multiple indexes to assess

the critical links of the network. Wu et al. (2016) select the structural
centrality assessment index, cohesion assessment index, and the
method based on D-S evidence theory to comprehensively assess the
node importance in the network. Wu et al. (2017) select four
indicators of degree, median, cohesion, and tightness; verify the
validity of the indicators; and rank the distribution network node
fragility based on the multi-objective decision-making method. In
order to characterize the electrical characteristics of the network to a
certain extent on the basis of topology, Xie et al. (2009) characterize
the importance of grid nodes using the cohesion degree of the
network with weights based on the right network model and verify
the model validity through transient simulation. Shi et al. (2018)
propose an evaluation system for the vulnerability of distribution
networks based on complex network theory and risk theory. The
weights of the system were obtained through the analytic hierarchy
process (AHP) and were then used to derive comprehensive
evaluation indicators for the nodes and lines. The method
proposed by Xu et al. (2016) evaluates key components by
improving complex network theory and incorporating factors
from the operation of power systems, such as the actual
transmitted power and transmission capacity of lines. This
approach enhances the ability to identify vulnerable critical
components to some extent.

In summary, the study of grid vulnerability based on complex
network theory initially identifies the vulnerable links from the
structural point of view. The consideration of the electrical
characteristics of the grid in the assessment of grid structural
vulnerability is the focus of the study. However, grid vulnerability
is not only related to the topology of the grid but also to the
operating state of the grid. Identifying key links in the grid,
taking into account the network structure and the operating
state, is the trend of the current study. The establishment of
scientific and comprehensive assessment indexes and reasonable
assignment of multiple indicators, as well as the establishment of a
reasonable and accurate identification model of key links in the grid,
are also the focus of the study.

Table 1 shows the advantages and disadvantages of using
complex network theory for node vulnerability research. Clearly,
with the powerful computational capabilities of modern computers,
using complex network theory that considers multiple factors for
key node analysis is superior. The establishment of scientific
comprehensive assessment indicators, the reasonable assignment
of multiple indicators, and the establishment of a reasonable and
accurate identification model of critical links in the power grid are
also the focus of the research. Comprehensive assessment indexes
taking into account the topology and operation state are established
based on the consideration of the grid structure and further
considering the operation state of the grid. Then, the
hierarchical-entropy weighting method is adopted to reasonably
assign weights to the comprehensive assessment indexes to obtain
the comprehensive weights. Finally, the proposed assessment
indexes, the proposed assessment indexes, and the proposed
assessment indicators based on the improved multi-objective
decision-making technique for order preference by similarity to
ideal solution (TOPSIS) method to identify the key nodes of the grid
are analyzed and verified using the simulation results of the standard
example. The analysis verifies the effectiveness of the proposed
assessment indexes and methods.

Frontiers in Energy Research frontiersin.org02

Yang et al. 10.3389/fenrg.2024.1498678

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1498678


2 Indicators for the assessment of
critical nodes of the grid

Many assessment indicators have been proposed for the
identification of critical nodes in power grids, which are mainly
divided into two main categories: one is the structural indicators
based on the theory of complex networks, and the other is the node
state indicators based on the analysis of traditional methods. It is not
sufficiently scientific to use a single indicator to identify the key
nodes of the power grid, so a comprehensive assessment indicator
system is established by taking into account the topology and
operation status of the network.

For the structural indicators, in order to make the selected
indicators both reasonably represent the power grid and not too
redundant, three assessment indicators, namely, node degree,
contraction centrality, and electrical mediator, are selected. The
three indicators take into account the two core ideas of assessing key
nodes in complex networks: “importance equals significance” and
“importance equals destructiveness” (Chen CY. et al., 2022). In
addition, the network structure based on the electrical characteristics
is considered. Three assessment indicators, namely, the entropy of
improved current distribution, the voltage terre entropy, and the
amount of lost load, are selected as indicators of grid operation
status by considering the change of system current, the change of
voltage, and the load-shedding phenomenon that may be caused by
the nodes after they are out of operation.

In summary, to consider the comprehensiveness and
reasonableness of the assessment indexes, this article selects six
indexes, namely, node degree, contraction centrality, electrical
dielectric number, improved tidal current distribution entropy,
voltage terre entropy, and loss of load, to assess the key nodes of
the power grid.

2.1 Indicators for assessing the structure of
key nodes

2.1.1 Nodal degree
The nodes in a power grid maintain a certain level of correlation,

and the degree expresses the ability of a node to establish an intuitive
connection with its set of neighboring nodes. The greater the degree,
the stronger the correlation between nodes and themore critical they
are in the system. Its expression is shown in Equation 1:

Cd i( ) � ki, (1)
where ki is the number of nodes connected to node i.

2.1.2 Node contraction centrality
The node contraction centrality metric measures the criticality

of a node by comparing the network cohesion obtained after the
contraction of different nodes. The node shrinkage diagram is
shown in Figure 1.

Network cohesion is defined in Equation 2:

ϕ G( ) � N − 1( )
2 ∑
1≤ i< j≤N

dij
, (2)

where dij is the minimum value of the distance between nodes i and
j, and N is the total number of nodes. When N � 1, ϕ(G) � 1 and
ϕ(G) satisfies 0< ϕ(G)≤ 1.

Node contraction centrality takes into account the impact of the
number of neighboring nodes and its own position on the node’s
criticality. The larger the node contraction centrality, the more
important the node is, indicating that the node is in a
“stronghold position” and the better the network connectivity.
The contraction centrality is defined in Equation 3:

TABLE 1 Literature comparison table.

Literature classification References Advantages Disadvantages

Node state indicators based on
traditional methods analysis

Huang et al. (2012), Wang et al. (2010), WU et al.
(2017), Sun et al. (2024), Chen et al. (2021a)

Comprehensively consider network topology and
operation; adapt to complex network environments;
capable of identifying potentially vulnerable nodes

Large computational
workload

Research on power grid vulnerability
based on complex network theory

Xia et al. (2014), Chen et al. (2021b), Sun et al.
(2020), Fu et al. (2017), Tan et al. (2006), Wu et al.
(2016), Wu et al. (2017), Xie et al. (2009), Shi et al.

(2018), Xu et al. (2016)

Consider the model as simple while overlooking the
topological complexity; unable to handle complex
networks; reliance on a single reference index

Small computational
workload

FIGURE 1
Node shrinkage diagram.
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CIM i( ) � 1 − ϕ G( )
ϕ G*i( ), (3)

where ϕ(G * i) is the cohesion of node i after shrinkage.

2.1.3 Electrical permittivity
In the power grid, there is power transmission between nodes, and

the node’s mediator reflects the node’s impact on information flow and
dynamic transmission. The larger the value, the stronger the node’s
“pivotal position” in the entire network and the more critical the node.
Based on the concept of node dielectric number, to a certain extent,
taking into account the electrical characteristics of the network, the
electrical dielectric number expression is determined by Equation 4:

B n( ) � 1
2
∑

i∈G,j∈l

������
WiWj

√ ∑
k∈f n( ) I

ij k, l( )∣∣∣∣ ∣∣∣∣
B g( ) � ∑i∈G,j∈l

������
WiWj

√ ∑k∈f g( ) Iij k, l( )∣∣∣∣ ∣∣∣∣
B d( ) � ∑i∈G,j∈l

������
WiWj

√ ∑k∈f d( ) I
ij k, l( )∣∣∣∣ ∣∣∣∣

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩ , (4)

where B(n), B(g), and B(d) are the electrical dielectrics of the
intermediate nodes, generation nodes, and load nodes, respectively;
G is the set of generator nodes; L is the set of load nodes; Wi is the
real power of the generator; Wj is the real load of the load; and
Iij(k, l) denotes the current that passes through the line (k, l)when a
unit current source is added between the node pair (i, j).

2.2 Critical node status assessment
indicators

2.2.1 Improvement of entropy of tidal current
distribution

The withdrawal of nodes from operation results in uneven
distribution of line currents, which can easily lead to chain
failures. The traditional current distribution entropy index only
evaluates the unevenness of current redistribution but does not
consider the heterogeneity of each line’s ability to carry current
impact and cannot reflect the risk of line overload. For this reason,
this article adopts the improved current distribution entropy index.

Assume that the true current of line l is P0
l (m) after node m is

out of operation due to a fault, and define the load factor of line l as
Equation 5:

βl m( ) � P0
l m( )

Pl
max m( )

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣, (5)

where Pl
max(m) is the maximum tidal current limit of the line.

The line load factor is divided into n reasonable zones, and a
constant sequence X � [0, e, 2e,/, ne] is set to satisfy ne � 1.
Placing each line in the appropriate load factor interval
[ke, (k + 1)e) and the overloaded line in interval [1,∞), the
improved expression for this metric is system of Equation 6:

H m( ) � −∑n
k�0

δβk
−

m( )φk m( ) lnφk m( )

φk m( ) � lk∑n
k�0

lk

βk
−

m( ) � 1
lk

∑lk
l�1
βkl m( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (6)

where φk(m) is the chance that the line is within the zone
[ke, (k + 1)e); lk is the number of line strips whose load factor is
within the zone [ke, (k + 1)e); βk

− (m) is the average value of the load
factor of the line within the zone [ke, (k + 1)e); and δ is the
overloading coefficient, which is δ > 1 when the line is
overloaded, and δ � 1 when it is not overloaded.

The greater the entropy of the improved current distribution, the
more uneven the redistribution of line currents, the lower the level of
grid security, and the more vulnerable the network nodes become.

2.2.2 Voltage terre entropy
Terre entropy is an indicator proposed by Tel to reflect income

differences between regions. The Tel entropy Tm within the region is
determined by Equation 7:

Tm � ∑Nm

k

Yk k∈m( )
Ym

( ) ln
Yk k∈m( )/Ym

1/Nm
( ), (7)

where k is the number of classified objects in the system; N is the
total number of classified objects; Nm is the total number of objects
in the m-region; Yk(k∈m) denotes the amount of change in an
indicator for an object in the m-region; and Ym denotes the sum
of changes in indicators for all objects k in the m-region.

Considering the global variation, the improved Terrell entropy
metric is Equation 8

Tx→y � Tl + Tb( )Ym � ∑M
m

Ym

Yx
Tm + ∑M

m

Ym

Yx
( ) ln

Ym/Yx

Nm/N( )⎛⎝ ⎞⎠Ym,

(8)
where Tx→y is the amount of change in indicator y caused by
changes in indicator xwithin a region;Tl is the inhomogeneity of the
amount of change in y within each region; Tb is the inhomogeneity
of the amount of change in y between regions; and Yx is the sum of
the amount of change in indicator y.

Based on the definition of terre entropy, the power network
containing N nodes is partitioned according to the type of nodes,
with PQ nodes as zone 1 and PV nodes and balancing nodes
as zone 2.

Node i increases the unit load to get the amount of voltage
change that triggers node j, which in turn gives the amount of node
voltage change in the global network as Equation 9:

Ui � ∑N
j�1

Ui→j − U′
j

∣∣∣∣∣ ∣∣∣∣∣, (9)

where Ui→j is the value of the amount of voltage change caused at
node j; U′

j is the initial voltage value at node j.
Combining Equations 7–9 gives the voltage terre entropy Ti→u

as Equation 10:

Yk k∈m( ) � Ui i∈m( )
Ym � Um

Yx � Ui

Tx→y � Ti→u

⎧⎪⎪⎪⎨⎪⎪⎪⎩ . (10)

2.2.3 Node loss of load
Based on the differences in the degree of reliability required,

power system loads are divided into three categories: primary,
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secondary, and tertiary loads. A social impact factor is introduced
to account for load differences. The magnitude of the load impact
factor is aligned with the degree of impact on society. Based on
this, the amount of nodal load loss is defined as shown in
Equation 11:

Ploss i( ) � ∑3
j�1
kjPj, (11)

where kj denotes the social impact factor of losing class j load; Pj is
the loss of class j load size.

This article defines the social impact quotients of primary,
secondary, and tertiary loads as 2, 1.5, and 1.2, respectively, and
divides the load classes according to the amount of loads, with
P< 150MW being tertiary loads, 150MW<P< 300MW containing
secondary and tertiary loads in accordance with 2:3, and
P> 300MW containing all classes of loads in accordance with 3:
3:4.

After a system failure, the general self-adjustment capability
of the system will restore the system operation to a safe state. If
the adjustment is still not satisfied, the safe operation state of the
system is generally ensured by load cutting. The amount of load
cutting is solved based on the DC model according to
Equation 12.

minf � ∑WiPci

s.t. C � AF−PP∑Pgi + ∑Pci − ∑Pdi � 0
−Clmax ≤Cl ≤Clmax

Pgi
min ≤Pgi ≤Pgi

max

0≤Pci ≤Pdi

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ , (12)

where Pci is the amount of nodal cut load; Wi is the nodal
load social influence factor; C is the line current; Pdi is the initial
active load of the node; AF−P is the correlation conductance
matrix; P is the node-injected power vector; Clmax is the
maximum critical value of the line for normal operation; Pgi

is the active output of the node generator; Pgi
min and Pgi

max are the
upper limit and the lower limit of the generating node’s active
output, respectively.

3 Methods for identifying critical nodes
of the grid taking into account structure
and state

3.1 Hierarchical analysis

The hierarchical analysis method (AHP) is used to obtain the
subjective weights of the experts, and the multilevel structural model is
established to calculate the importance of each decision object by taking
into account the representational attributes of the decision object as well
as the affiliation relationship. The specific process is as follows:

(a) Establish a progressive hierarchy of networks. As shown in
Figure 2.

(b) Construct a two-by-two comparison matrix of decision
objects based on a nine-level scale, as shown in Table 2.
The decision matrix A is obtained as shown in Equation 13:

A �
a11 a12 / a1n
a21 a22 / a2n
..
. ..

.
aij

..

.

an1 an2 / ann

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (13)

where aij is the relative scale value between indicator i and indicator
j, with an own importance ratio of 1.

FIGURE 2
Hierarchy chart.

TABLE 2 Nine-level scale.

Scale value Connotation

1 Equal in importance

3 One indicator is slightly more important

5 One indicator is clearly important

7 One indicator is strongly important

9 One indicator is extremely important

2, 4, 6, 8 Median importance of two neighborhoods

1/2, . . . ,1/9 Ratio of importance between indicators
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(c) Calculate the weights of the indicators βi by setting up the
following system of Equation 14:

Ti � ∏n
i�1

aij

β̃i �
��
Ti

n
√

βi �
β̃i∑n

i�1
β̃i

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (14)

where n is the number of assessment indicators selected.
(d) Consistency calibration and adjustment of the decision

matrix based on the calibration results. The above matrix
is shown in Equation 15:

CI � λmax − n

n − 1

CR � CI

RI

⎧⎪⎪⎪⎨⎪⎪⎪⎩ , (15)

where CI is the general consistency index of the decisionmatrix; λmax

is the maximum eigenvalue of the decision matrix; CR is the
consistency ratio; and the value of RI is shown in Table 3.

If CR< 0.1, the inconsistency of the matrix is considered
tolerable. If CR< 0.1 is not satisfied, the inconsistency of this
matrix is not tolerable, and the value of the scale of the
judgment matrix needs to be re-established.

The hierarchical analysis method (AHP) is a subjective
assessment method that evaluates weights based primarily on
expert experience. Its advantage is that it reduces computational
complexity and the need for data information; its disadvantage is
that it relies on subjective choices and is prone to biased results due
to errors in subjective judgment, which has certain limitations.

3.2 Entropy weight method

The entropy weight method for solving objective weights relies
mainly on the information in the indicator data itself. Its principle is
that the smaller the degree of variability of the data, the smaller the
information content presented and the lower the corresponding
weight of the indicator. The specific calculation steps are as follows:

(a) Create an initial evaluation data matrix as shown in
Equation 16:

X �
x11 x12 / x1n

x21 x22 / x2n

..

. ..
. ..

.

xm1 xm2 / xmn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (16)

where m is the number of grid nodes, n is the number of evaluation
metrics, and xij is the value of the jth metric for the ith node.

(b) As shown in Equation 17. The indicators are normalized to
give a normalization matrix Y � [yij]m×n.

xij
′ � xij − xj

min

xj
max − xj

min
Effectiveness indicators( )

xij
″ � xj

max − xij

xj
max − xj

min
Cost − based indicators( )

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ , (17)

where xj
min and xj

max are the minimum andmaximum values of
all the objects under the indicator j, respectively, and 0≤xij

′、xij
″ ≤ 1.

(c) The system of equations shown as Equation 18 was used to
calculate the weights of the indicators.

pij � yij∑m
i�1
yij

ej �
∑m
i�1
pij ln pij( )
lnm

dj � 1 − ej

wj � dj∑n
j�1
dj

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
, (18)

where ej is the information entropy of the jth indicator, and dj is
the information utility value.

The entropy weighting method is an objective assessment method
with the advantage of being weighted based on objective data and free
from the interference of subjective factors. However, if the deviation of
the initial sample data is large, the weights may not match the actual
significance, thus affecting the effectiveness of the evaluation.

3.3 Integrated empowerment

The assessment should respect the subjective opinion of the
experts and take into account the objective data information.
Therefore, this article adopts the combination of subjective
weights and objective weights to obtain the comprehensive
weight αe as shown in Equation 19:

αe � weβe∑e
t�1
weβe

, (19)

wherewe and βe represent the subjective and objective weights of the
evaluation indicators, respectively; e is the number of indicators. The
comprehensive weights obtained will be used in the construction of
the weighted indicator evaluation matrix of the TOPSIS method.

The TOPSIS method, also known as the ideal point method or
the superior–inferior solution distance method, is a ranking method
for multi-objective decision making. This method constructs the
optimal solution and the worst solution of the evaluation object, and
by calculating the distance measure of the set of decision solutions
close to the optimal solution and the worst solution, the set of
decision solutions is ranked, and then the optimal decision solution
is obtained. Although the method is based on the evaluation data
itself, the power network information data is still a “small sample,”
so the introduction of a gray correlation index is an effective
complement. Therefore, the ideal solution method is adopted to

TABLE 3 RI take value.

Scale value 1 2 3 4 5 6 7

RI 0 0 0.52 0.89 1.12 1.26 1.36
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determine the multi-objective decision ranking of the criticality of
the nodes in the power grid by introducing the gray correlation and
combining it with the comprehensive weighting value obtained. The
specific steps are as follows:

(a) The initial decision matrix X is constructed from m grid
nodes and n evaluation indicators. As shown in
Equations 20–22.

X � xin[ ]m×n �
x11 x12 / x1n

x21 x22 / x2n

..

. ..
. ..

.

xm1 xm2 / xmn

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, (20)

Z+ � z+1 , z
+
2 ,/, z+m[ ], (21)

Z− � z−1 , z
−
2 ,/, z−m[ ], (22)

where z+j � max
i

zij, z−j � min
i

zij, i � 1, 2,/, m, j � 1, 2,/, n.
(b) Calculate the Euclidean distance from the set of decision

options to Z+ and Z−. The Euclidean distance is shown in
Equation 23.

S+i �
�����������∑n
j�1

zij − z+j( )2√√
S+i �

�����������∑n
j�1

zij − z+j( )2√√
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

. (23)

(c) Calculation of the gray correlation coefficient between the set
of decision options and the ideal option. The calculation is
shown in Equation 24.

u+
im � min i min m z+j − z+

∣∣∣∣∣ ∣∣∣∣∣ + εmax i max m z+j − z+
∣∣∣∣∣ ∣∣∣∣∣

z+j − z+
∣∣∣∣∣ ∣∣∣∣∣ + εmax i max m z+j − z+

∣∣∣∣∣ ∣∣∣∣∣ .

u−
im � min i min m z−j − z−

∣∣∣∣∣ ∣∣∣∣∣ + εmax i max m z−j − z−
∣∣∣∣∣ ∣∣∣∣∣

z−j − z−
∣∣∣∣∣ ∣∣∣∣∣ + εmax i max m z+j − z+

∣∣∣∣∣ ∣∣∣∣∣
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩ (24)

where ε denotes the resolution factor, ε ∈ (0, 1).
(d) Calculation of the set of decision options with positive and

negative scenarios in shades of gray. The calculation is shown
in Equation 25.

n+i �
∑n
j�1
u+
im

n

n−i ��
∑n
j�1
u−
im

n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
. (25)

(e) Joint Euclidean distance and gray scale to get the closeness
distance. The closeness distance is shown in Equation 26.

L+
i � α

s−i
max i s−i

+ β
n+i

max i n+i

L−
i � α

s+i
max i s+i

+ β
n−i

max i n−i

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ , (26)

where α, β denote the degree of preference, satisfying α + β � 1,
α, β ∈ [0, 1]. In this article α, β are taken as 0.5.

(f) Calculate the relative closeness of the programs is shown in
Equation 27.

Ci � L+
i

L+
i + L−

i

. (27)

The largerCi is, the closer it is to the optimal solution. Indicating
that the node’s criticality value is higher based on the value of Ci

allows identifying the key nodes of the power grid. In summary, the
specific calculation process of identifying the key nodes of the power
grid is shown in Figure 3:

The proposed comprehensive empowerment method effectively
combines the advantages of two approaches, enhancing the
comprehensiveness and accuracy of the method. The key node
analysis based on the complex theory presented in this article not
only improves the objectivity and rationality of the decision-making
results but also strengthens the simplification of the complex
problem, making the decision-making process more transparent
and interpretable.

4 Example analysis

A standard IEEE39 node system is used as an example of the
arithmetic, and the topology of this node system is shown in
Figure 4. The system contains 39 nodes (21 load nodes of
different degrees), 46 branches, and a total load of 6254.23 MW.

4.1 Determination of indicator weights

4.1.1 AHP determines subjective weights
When determining subjective weights in the hierarchical

analysis method, a hierarchical structure is established, as shown
in Figure 5.

The main aspects to be considered are

a) Topology indicators and operational state indicators identify
the key nodes of the grid from two perspectives. Based on the
model in Chapter 2, the structure indicators take into account
the structure of the network and, to some extent, the electrical
characteristics, and the state indicators take into account the
changes in tidal currents, voltages, and loads after the nodes
have been taken out of operation. These two indicators
complement each other and are considered to be of equal
importance.

b) Among the topology indicators, node degree only
characterizes the local characteristics of the node; node
contraction centrality can characterize the global
information characteristics of the network, reflecting the
connectivity change of the network topology after the node
is out of operation. The electrical median reflects the influence
of the node on the flow of information and the dynamic
transmission of the node, reflecting the pivotal role of the node
and taking into account some of the electrical characteristics.
Therefore, the electrical median is the most important, the
contraction centrality is the next most important, and the
degree of importance is the smallest.
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c) Among the operation state indicators, the improved trend
distribution entropy and voltage Terrell entropy are two
indicators that comprehensively consider the change of

power trend and voltage change after the node is out of
operation. They both have the same degree of importance;
the loss of load indicator reflects the load cutting caused by

FIGURE 3
Grid-critical node identification process.
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FIGURE 4
IEEE39 node system diagram.

FIGURE 5
Hierarchy chart.
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topology and trend change after the node is out of operation,
and its degree of importance is greater than that of the first two
indicators.

Based on the above considerations, the judgment matrix of each
indicator is derived as shown in Table 4.

Based on the judgment matrix in the above table, the weighting
coefficients for each indicator layer were obtained as shown
in Table 5:

According to the obtained weight coefficients of the indicator
layers and then determining the scale value of each indicator, further
calculations can be obtained from the weight of each indicator layer
as shown in Table 6:

4.1.2 Entropy weighting method to determine
objective weights

The assessment indicators were normalized, and the results are
shown in Figure 6.

The weights of degree, contraction centrality, nodal electrical
dielectrics, entropy of improved tidal current distribution, voltage
terre entropy, and loss of load are obtained according to the entropy
weight method, as shown in Table 7.

4.1.3 Combined weights
Finally, the combinedweights of the indicators are assigned according

to Equation 19, and the combined weights of degree, contraction
centrality, electrical dielectric number, entropy of the improved tidal
current distribution, voltage terre entropy, and loss of load are found to be
0.0650, 0.1470, 0.2260, 0.1608, 0.0849, and 0.3163, respectively.

4.2 Key node identification results

After determining the weights of each indicator, the key nodes of
the standard IEEE39 node system are identified and obtained according
to the improved TOPSIS method model, as shown in Figure 7.

As can be seen from Figure 7, the degree value of high criticality
grid nodes is significantly higher than that of other nodes, and there is
a good differentiation between the nodes, which demonstrates that the
proposed method can effectively identify the critical nodes of the grid.

The effectiveness of the method is further analyzed by
comparing the top 10 nodes identified by a single metric with a
comprehensive metric, as shown in Table 8.

The top 10 grid-critical nodes identified using the method of this
article are compared with each of the three methods to further

TABLE 4 Nine-level scaling method judgment matrix.

Structural indicators Strength Systolic centrality Nodal electrical permittivity

Strength 1 1/3 1/6

Systolic centrality 3 1 1/3

Nodal electrical permittivity 6 3 1

Status indicators Improvement of entropy Voltage Terre Entropy lost load

Improvement of entropy 1 1 1/4

Voltage terre entropy 1 1 1/4

Lost load 4 4 1

TABLE 5 Weighting coefficients for each indicator layer.

Normative level indicators Guideline layer
weights

Indicator level
indicators

Indicator layer
weights

Grid-critical node
identification

Indicators for the assessment of nodal
structures

0.5 Strength 0.0953

Systolic centrality 0.2499

Nodal electrical permittivity 0.6548

Node state assessment metrics 0.5 Improvement of entropy 0.1667

Voltage terre entropy 0.1667

Lost load 0.6667

TABLE 6 Indicator weights.

Indicator Strength Systolic
centrality

Nodal electrical
permittivity

Improvement of
entropy

Voltage terre
entropy

Lost
load

Weight 0.0435 0.1279 0.3690 0.0862 0.0862 0.2872
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FIGURE 6
Indicator normalized data. (A) strength. (B) Systolic centrality. (C)Nodal electrical permittivity. (D) Improvement of entropy. (E) Voltage terre entropy.
(F) lost load.

TABLE 7 Indicator weights.

Indicator Strength Systolic
centrality

Nodal electrical
permittivity

Improvement of
entropy

Voltage terre
entropy

Lost
load

Information
entropy

0.9043 0.9263 0.9608 0.8805 0.9369 0.9294

Weight 0.2072 0.1595 0.0850 0.2588 0.1367 0.1528
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demonstrate the effectiveness of the method proposed in this article.
The comparison results are shown in Table 8:

Method 1: Identification of grid-critical nodes using the AHP-
gray correlation method (Xu et al., 2010).

Method 2: Establishing an importance evaluation matrix to
assess node importance (Sun et al., 2021).

Method 3: Considering the change of current after grid faults
and constructing a current entropy index to identify critical nodes
(Wang et al., 2016).

As can be seen from Table 9:

(1) The top 10 key nodes of the power grid identified by using this
article’s method are the same as six of Methods 1 and 2, which
have good consistency and illustrate the effectiveness of this
article’s method.

(2) There is also dissimilarity between different methods because the
identification indexes and models selected by various methods are
not the same, and the focus on the grid is not exactly the same. The
key nodes of the grid identified by Methods 1 and 2 are

FIGURE 7
Distribution of the identification results of critical nodes in the
power grid.

TABLE 8 Indicator weights.

Order Strength Systolic
centrality

Nodal electrical
permittivity

Improvement of
entropy

Voltage terre
entropy

Lost
load

Integrated
assessment

1 16 16 16 6 16 39 6

2 6 4 17 5 26 6 16

3 2 14 3 7 15 19 19

4 26 3 15 8 2 38 4

5 3 17 18 4 17 29 15

6 4 2 14 10 19 36 39

7 5 8 24 13 20 20 2

8 8 5 13 14 12 34 17

9 10 6 2 31 32 16 3

10 11 15 21 11 37 8 26

TABLE 9 Comparison of method results.

Order Method 1 Method 2 Method 3 Methodology of this article

1 16 16 6 6

2 6 4 8 16

3 2 12 7 19

4 8 26 5 4

5 5 3 9 15

6 3 11 4 39

7 17 15 11 2

8 4 5 13 17

9 14 19 29 3

10 11 14 14 26
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concentrated in the range of the interval of 3–15, which are mostly
located in themiddle of the connectivity region and cannot identify
the edge nodes of the grid well. For example, node 39 is connected
to generators with great generating capacity, making it an
extremely important active power source. If this node were
removed due to a fault, it would cause a great loss of important
loads to the system, which would seriously affect the safe operation
of the system. Therefore, the node has a high degree of criticality.

(3) There are only two identical nodes between this article’s
method and Method 3. The reason is that Method 3 only
assesses the criticality of nodes from the perspective of the
network state, completely ignoring the inherent structural
attributes of the grid and selecting a single assessment index.
For example, Method 3 fails to identify key nodes occupying an
important position. This outcome also indicates that not taking
the complementarity of the indexes into accountmay result in a
large discrepancy in the identification results.

In summary, themethod in this article comprehensively considers
structural static indicators, dynamic indicators, and multi-angle grid
operation state indicators to better measure the criticality of each
node, and the identified key nodes of the grid are more reasonable.

5 Conclusion

In this article, the structure and operation state of the power grid are
considered comprehensively. Comprehensive assessment indexes of key
nodes in the power grid are established, taking into account the topology
and operation state of the power grid and avoiding the one-sidedness of a
single assessment index. Then, the hierarchical-entropy weight method
is used to jointly assignweights to the comprehensive assessment indexes
so as to make the weight distribution more reasonable and then obtain
the comprehensive weights. Finally, gray correlation is introduced to
improve the TOPSIS method to identify key nodes in the power grid,
and simulation analysis and comparison are carried out. The TOPSIS
method is used to identify the key nodes in the power grid and carry out
simulation analysis and comparison. The main conclusions are
as follows:

(1) The grid structure index combines the local and global attributes of
the nodes and takes into account the “significance,”
“destructiveness,” and some degree of electrical characteristics of
the nodes; the state index takes into account the current and voltage
redistribution and the degree of equilibrium after the fault. At the
same time, the self-regulation ability of the grid is considered,
which makes the assessment index more scientific and reasonable.

(2) There is a difference between the key nodes identified by a
single assessment index and those identified by comprehensive
indexes. For example, some nodes have a large value of
structural indexes but a small value of state indexes, so a
comprehensive index evaluation system should be
established when identifying the key links of the power grid.

(3) The simulation results show that the identified key nodes of
the power grid have a high degree of overlap with the
identification results of different methods and can better
identify the edge nodes, which verifies the reasonableness
and effectiveness of the proposed indicators and methods.

In summary, the key node identification method based on the
complex theory proposed demonstrates excellent applicability. It
takes into account both the structural and operational influences in
the key node identification indicators and employs a more
reasonable comprehensive assignment method, which not only
enhances the rationality of the decision-making results but also
achieves an optimal simplification of the entire complex problem.
Future research directions could pursue a more comprehensive
establishment of the key node identification indicator system
derived from both structure and operation. Additionally, more
advanced solution methods should be proposed for solving the
complex problem of key node identification, making the
indicator and method systems more robust and refined, thereby
enabling the identification of key nodes to be more rational
and efficient.
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