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The growing energy demand and target for net zero emission compelling the
world to increase the percentage of clean energy sources which are freely
available and abundant in nature. To fulfil this, a hyperparametric tunedmultilevel
deep learning stacked model assisted grid-connected hybrid renewable energy
system (HRES) has been developed. The proposed system has been subjected
to techno-economic assessment with a novel application of the rime-ice (RIME)
optimization algorithm to determine the lowest possible cost of electricity (COE)
corresponding to the best HRES system components. The analysis has been
carried out for the residents of the eastern part of India. The results show that
the prediction accuracy of the solar irradiance and wind speed are 95.92% and
95.80% respectively which have been used as inputs for the HRES. The proposed
optimization used has shown the lowest COE of Rs. 4.65 per kWh and total net
present cost (TNPC) of 7,247 million INR with a renewable factor of 87.88% as
compared to other optimizations like GWO, MFO and PSO. Further sensitivity
analysis and power flow analysis for three consecutive days carried out have also
been done to check the reliability of the HRES and its future perceptiveness.

KEYWORDS

deep learning, stacking, forecasting, optimization, cost of electricity (COE), total net
present cost (TNPC)

1 Introduction

The dynamic interplay between societal modernity, population growth, and
urbanization presents formidable obstacles for energy providers seeking to balance supply
and demand for electrical energy. The increasing number of electronic gadgets, the rise of
industries, and the general increase in energy-intensive activities are all contributing factors
to the rising need for energy. The difficulty increases when one takes into account the
constraints and quick exhaustion of non-conventional energy sources. Non-conventional
sources, such as fossil fuels, are finite and contribute to environmental challenges including
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air pollution and climate change.This calls for a change to renewable
and sustainable energy sources.

Growth in the world’s power demand is predicted to slow down
in 2023 and then pick up speed in 2024. After growing at a rate of
2.3% in 2022 and an average annual growth rate of 2.4% from2015 to
2019, demand is predicted to expand by slightly less than 2% in 2023.
Declining power consumption and slower economic development in
advanced economies—which are still coping with the fallout from
the global energy crisis—are the main causes of this reduction.
Rebounding to 3.3% in 2024, global power demand growth
is predicted as prospects for the economy improve (Executive
summary–Electricity Market Report–Update 2023–Analysis, 2023)
which correspondingly emphasizes the overall power generation
demand. The increasing energy demand can only be matched
up with the increasing percentage of renewable energy as the
non-conventional sources are limited and exhaustible. India
has also increased the sanctioned capacity of solar power to
2,655.07 MW and Wind Power to 1,341.28 MW like other
countries to fulfil the power scarcity and reduce carbon emission
marking the contribution for the net zero emission target
(NZE) for 2050.

The natural availability of solar irradiance and wind has not only
made it possible for energy supply to remote areas but also provided
the stability of the overall generation and distribution network if
connected to the electrical grid. However, to guarantee a steady
and dependable supply, precise estimation of energy production
from various sources is essential, supporting grid planning and
management. Because of their dynamic behavior, which is impacted
by time, weather conditions, and location, it is particularly difficult
to predict when they will generate electricity. In addition to
the intrinsic complexity of these phenomena, the challenges are
made worse by the scarcity of local real-time data, especially for
projections that are made for the near future. To solve these
types of issues, the application of advanced models and forecasting
methods is crucial (Ladide et al., 2019). As a result, complex
modelling and forecasting approaches are required to attain this
objective (Caroprese et al., 2024).

In this paper, an optimized stacked machine learning model
has been designed for the prediction of the accurate solar
irradiance and wind speed which have been further utilized for
the calculation of the forecasted solar and wind power. The RNN
and LSTM deep learning models have been used as the base
learner model and 1D-CNN as the Meta learner for the stacking
purpose. The parameters of the deep learning models have been
tuned initially with the Bayesian optimization instead of applying
default and fixed parametric values which may affect the accuracy
of the model. The forecasted solar and wind power is used
for the techno-economic analysis of the grid-connected hybrid
system consisting of photovoltaic panels, wind turbine generators,
and battery systems for satisfying the residential load demand
(Al Busaidi et al., 2023).

For power systems to function properly, optimal power flow
is a critical issue. Optimizing power flow is significantly more
important for hybrid energy systems because of the unpredictability
and instability brought on by generation generated from renewable
energy sources (Pandya et al., 2022). In this study, our strategy
maximizes the effectiveness of these many sources by utilizing
optimization approaches. Hence, a novel application of the

RIME ice optimization has been used for the techno-economic
analysis of the proposed HRES system and compared with other
popular optimization algorithms to validate the result where the
objective was to minimize the total electricity cost (TEC) with
the best combination of the system components. We increase the
assessment’s realism by including predictive analytics, which also
helps to clarify the concept of renewable energy integration and
emphasizes the value of making proactive decisions in sustainable
energy planning.

1.1 Status quo of machine learning-based
techno-economic analysis

The application of machine learning models for the assessment
of off and on-grid connected individual or hybrid renewable energy
sources nowadays burning research areas as the need for electrical
supply is increasing day by day (Kamran et al., 2018). Some of the
recent works concerning this issue have been quoted in Table 1.

1.2 Main contributions and paper
organization

The contribution made in this research article can be
summarized as:

• A multilevel-tuned deep learning method has been developed
for the prediction of both solar irradiation and wind speed
forecasting.

• The tuning of the deep learning models has been done with the
Bayesian optimization method.

• The predicted solar irradiance and the wind speed values are
used for the power calculation.

• A novel application of the rime-ice (RIME) optimization
technique has been done for the techno-economic analysis
of the grid-connected HRES and compared with the GWO,
MFO and PSO.

• Optimum sizing of the system components has been
determined with the minimization of the cost of electricity
(COE) and total net present cost (TNPC).

• The sustainability and reliability of the proposed system have
been checked with the sensitivity analysis and power flow
analysis methods.

• Environment and Social Index for improvised policy
making decision.

The paper has been organized as the first section contains
the introduction, literature survey and the contribution made.
The second section has focused about the methodology and data
preprocessing methods.The theory about the deep learning models,
optimization method applied and performance metrics has been
explained in section 3rd, 4th and 5th respectively. The next section
is about HRES modelling followed by the result and discussion
section. Finally, the overall research work has been concluded in the
last section.
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TABLE 1 Recent literature related to ML-dependent techno-economic assessment.

Reference Research contribution Methods or techniques applied

Ying et al. (2023) This study examines top nations, authors, and keywords
in 276 articles on deep learning models for precise
renewable energy forecasts. It draws attention to how well
models can handle uncertainty arising from variable
renewable energy sources. The study highlights how
important deep learning techniques are for the next
studies on energy forecasting.

SAE, DBN, CNN, GAN, and RNN

Tziolis et al. (2024) The findings of this study demonstrate the potential of
machine learning models, especially the Bayesian neural
network, for effective asset control by showing that they
can anticipate short-term net load in renewable
microgrids with an average daily error of 3.58%.

Machine Learning, Net load forecasting

Cakiroglu et al. (2024) This research in Çanakkale, Turkey, estimates wind
power generation based on weather data from 2011 to
2020 using six machine learning algorithms. LightGBM
turns out to be the most computationally efficient,
whereas XGBoost performs better in terms of accuracy.
The SHAP technique indicates that the primary element
affecting turbine power is wind speed.

LightGBM, XGBoost, Random Forest, CatBoost,
AdaBoost, M5-Prime

El Bourakadi et al. (2023) In this study, a staked solar power forecast model based
on layered BiLSTM and ELM is proposed. An enhanced
ELM anticipates production, whereas BiLSTM predicts
weather factors that affect PV power. The model
performs exceptionally well when tested using actual
data, providing a reliable answer for precise PV power
forecasts in the face of sporadic solar energy difficulties.

ELM, BiLSTM

Eren and Küçükdemiral (2024) The significance of deep learning (DL) techniques in
short-term load forecasting (STLF) for energy
dispatching is examined in this paper. Classified
according to technique, dataset details, uncertainty
management techniques, online solutions, and DR
program extensions, the review emphasizes the
significance of DL for precise and predictive load
forecasting.

DL, DR, STLF

Mohammadifar et al. (2023) This work presents a unique method for precisely
estimating the danger and pace of land subsidence (LS)
in southern Iran by integrating feature selection with
ensemble deep learning models. One important aspect
impacting danger levels is aquifer loss. In terms of
mapping susceptibility with uncertainty and measuring
LS rate, the suggested SEDL-AL model performs better
than SEDL.

SEDL

Sheng et al. (2023) In this article, the rock mass quality evaluation with a
deep learning tool with stacked auto encoders has been
done where the model has outperformed ANN and RBF
models with almost perfect accuracy.

ANN, RBF

Kadri et al. (2023) This paper addresses issues related to road safety
worldwide, highlighting the substantial consequences of
more than 1.2 million yearly fatalities and 50 million
injuries. Using smartphone sensor data, it classifies
driving behavior (aggressive, sleepy, and normal). Using a
unique stacked LSTM and RNN architecture, it achieves
a high 97% F1-measure score.

RNN and LSTM

Srilakshmi et al. (2023) The authors has addressed the power quality issues like
total harmonic distortion (THD) and voltage fluctuations
with the novel development of the unique power flow
quality coordinator where they have applied the
enhanced most valuable player algorithm (EMVPA)

EMVPA, THD

(Continued on the following page)

Frontiers in Energy Research 03 frontiersin.org

https://doi.org/10.3389/fenrg.2024.1500190
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Kumar et al. 10.3389/fenrg.2024.1500190

TABLE 1 (Continued) Recent literature related to ML-dependent techno-economic assessment.

Reference Research contribution Methods or techniques applied

Hou et al. (2024) In order to improve the accuracy of oil and natural gas
consumption (ONGC) predictions, the authors have used
stacked machine learning models. With strong R2 scores
(94.44% for oil and 98.33% for natural gas), the stacking
model beats base models, exhibiting cross-validation
consistency.

LASSO, SVR, Ridge, DT

Alam et al. (2024) This research suggests a hybrid PV-wind desalination
plant power management system based on RNNs. The
RNN takes system constraints into account and optimizes
power output from solar and wind sources to fulfill the
desalination plant’s demand using previous data.

RNN

Srilakshmi et al. (2024) A combination of battery storage, solar energy system
and shunt active filter has been utilized where the
membership function of the fuzzy controller has been
optimized with the Global Ball Optimization Algorithm
for reducing harmonics, increasing power factor and
stabilizing the voltage of DC link capacitor.

Global Ball Optimization Algorithm, Fuzzy controller

2 Methodology

The overall methodology has been divided into two main
parts. In the first part, the prediction of GHI and the wind
speed is done with the help of the hyper-tuned stacked
model. The parameters of the three deep learning models
have been initially optimized with the Bayesian Optimization
and a further stacking approach has been applied for the
prediction of both parameters which will be used for the
estimation of the predicted solar and wind power. The
second part is about techno-economic analysis of the hybrid
renewable energy system (HRES) where hybridization of the
photovoltaic system (PVS), wind turbine system (WTS) and
diesel generator system (DGS) has been carried out. The
technical and economic parameters have been analyzed and
optimized with different optimization techniques to minimize
the losses and maximize the benefit of the best HRES
configurations. The overall flow of the work has been described in
Figure 1.

The steps carried out for the predictions of the GHI and wind
speed can be represented in the following steps:

I. Aggregation of Data: The dataset of the year (2016–2023),
which included important environmental factors like wind
speed and sun irradiation, has been gathered from the NASA
website, provides important insights into the interactions
between environmental components over the study period
and is useful for assessing long-term trends and patterns in
solar energy and wind dynamics. The dataset contains the 13
attributes where the target variables are only two i.e., GHI and
wind speed.

II. Cleaning of Data: Refining datasets through error correction,
missing value management, and duplication removal requires
data cleaning as the raw data may contain unwanted
values that can affect the model’s accuracy. Imputation
and outlier elimination are two techniques that improve

data quality and guarantee accurate and trustworthy
analysis.

III. Normalization of Data: Scaling and standardizing numerical
characteristics within a dataset to provide consistent ranges
for useful analysis is known as data normalization. A popular
technique called Min-Max normalization uses Equation 1 to
scale data to a range of 0–1:

vn =
vi − vmin

vmax − vmin
(1)

where, vn and vi are the data after normalization and before
normalization vmax and vmin are the maximum and minimum data
values.

IV. Feature Importance Analysis: By evaluating the relevance
of input variables in machine learning models, feature
importance analysis provides insights into important factors
that influence decision-making when the dataset consists of
a lot of attributes. This analysis facilitates comprehension,
streamlines intricate models, and backs data-driven decision-
making procedures. Here, the correlation method has been
used to show the correlation of attributes among themselves.

V. Training and Testing Division: The whole data has been split
into two parts in the ratio of 7:3. The larger part (70%)
represents the training data used for the training of the stacked
model and the smaller part (30%) is the testing data for the
evaluation of the model with.

3 Deep learning models

Deep learning models are generally the subset of the
machine learning models which mimic the human brain neurons
and have evolved as the most promising model to solve the
issue of overfitting, underfitting, large dataset handling and
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FIGURE 1
Research workflow graphical visualization.

feature extraction. DL consists of large no. hidden layers
which produce the optima data after processing the inputs
multiple times (Krishnan et al., 2023). There are several deep
learning models available, out of which three DL algorithms have
employed in the study.

3.1 Recurrent neural network

An artificial neural network type called a recurrent neural
network (RNN) was introduced in the 1990s by Elman to handle
sequential data by retaining the internal state or history of
the observations. RNNs can display dynamic temporal behavior
because they have connections that loop around on themselves,

in contrast to feed-forward neural networks, which only process
data in a single direction. To put it another way, an RNN
gives neural network a memory function, which helps the
neural network perform well while analyzing time series data
(Miao and Yokota, 2024).

The present state of a hidden layer of an RNN unit can be
determined using the current input state and the prior hidden state
as per the Equation 2:

H(t) = f (wHI × I(t)) +wHH ×H(t − 1) + bH (2)

where H(t) and H(t− 1) are the current and previous hidden state,
f( ) and g( ) show the nonlinear activation function, I(t) and T(t)
are the input and output state at time t, bH and bT are the bias
added to the hidden and output state respectively. wHI, wHH, and
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wHT are the weights of the input state, hidden state and output state
respectively.The corresponding target or output variable state can be
obtained using Equation 3 given below:

T(t) = g(wHT ×H(t) + bT) (3)

3.2 Long short-term memory (LSTM)

The problem of dealing with long-term dependencies in
sequential data has led to the development of LSTM, an upgraded
version of recurrent neural network (RNN) (Xu et al., 2024).
Since its first introduction by (Hochreiter and Schmidhuber,
1997), it has been widely utilized in several domains, such as
time series analysis, natural language processing, and speech
recognition.

The LSTM cell unit structure can be explained with the
following three gate:

I. Forget gate: It decides which data or information needs to be
erased from the memory as in Equation 4.

f g(t) = sigmoid(W f × (H(t − 1) +D(t)) +Bf ) (4)

II. Input gate: It decides which data will be passed through
memory or cell as in Equation 5.

Ig(t) = sigmoid(W i × (H(t − 1) +D(t)) +Bi) (5)

III. Output gate: It selects the data that exits the memory cell unit
as per the Equation 6.

Og(t) = sigmoid(Wo × (H(t − 1) +D(t)) +Bo) (6)

The expression for the other states like temporary cell state,
current cell state and the hidden layer state can be presented using
Equations 7–9.

CS(t) = tanh× (Wc × (H(t − 1) +D(t)) +Bc) (7)

CS(t) = Fg(t) ⊗CS(t − 1) + Ig(t) ⊗CS(t) (8)

H(t) = Og(t) ⊗ tanh(CS(t)) (9)

3.3 One dimensional convolutional neural
network (1D-CNN)

1D-CNN is a type of deep neural network that has become
well-known for its exceptional capacity to identify and evaluate

intricate patterns within huge datasets (Teng et al., 2024). Sequential
data is processed by a one-dimensional CNN by convolving the
input sequence using learnable filters. A feature map is produced by
the convolution process, which calculates the dot product between
the input sequence and the filter at each place (Namdari et al.,
2023). Let’s have an input sequence of one dimension x =
{x1,x2,x3,x4…..xn} and learnable filters ofw = {w1,w2,w3,w4…..wn}
having f length. The feature map associated with filter Wp as Zp,
which is calculated using Equation 10 described below:

Zp(q) =
f −1

∑
r=0

x(q+ r) ×Wp(r) (10)

here Zp(q) indicates that in the input sequence, the filter Wp
has been activated at position q. The output of the filter can
be obtained if we add a sigmoid function and a bias term
as shown in Equation 11 below:

Yp(q) = σ ⋅ (Zp(q) + bp) (11)

The significant features are then usually extracted from the
feature maps Y by down-sampling them using methods like
average or max-pooling, which lower dimensionality. The final
output of the CNN is usually formed by concatenating or
combining the outputs of all filters, which are further processed
through fully connected layers for tasks involving regression or
classification. The basic processing of the 1D-CNN model has
been shown in Figure 2.

3.4 Stacking of tuned deep learning models

In machine learning and deep learning, stacking—also referred
to as stacked generalization or meta-ensembling is an effective
approach that combines numerous models to enhance prediction
performance. Stacking is the process of training many neural
networks and integrating their predictions to generate a better
ensemble model in the context of deep learning (Lazzarini et al.,
2023). The procedure for the stacking of ML or DL modes
can be represented with the pseudo-code of Algorithm 1 which
is as follows:

The stacked model considered in this article consists of
RNN, LSTM and 1DCNN as the base learner and linear
regression as the meta-learner model or final prediction model.
First, the hyperparameters of the base learners are tuned using
Bayesian optimization and the overall stacking structure is
presented in Figure 3.

4 RIME optimization algorithm

This method is motivated by the rime formation, introduced
by Hang Su (Su et al., 2023). The rime form due to the uncondensed
water molecules available the atmosphere and the formation takes
place on the materials like tree branches present in the colder region
or climate. Some of the regions generate an annual distinctive scene
known as rime-ice because of their distinct geographical structure
and climate. The factors like wind speed, temperature, air quality
and humidity affect the formation of the rime ice. The growing
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FIGURE 2
1D-CNN architecture.

Input: X (input variables) and Y (target

variable), Training data d = (Xj,Yj)
n

j=1
, number of

deep learning models (n)

Output: Trained stacked model M

1. Stage 1: Base-level learning

2. for t = 1toT do

3.    learning of mt with d

4.  end for

5. Stage 2: Implementation of new

prediction dataset

6. for j = 1ton do

7.   dm = {X
′
j
,Yj}, here X′

j
= {m1(X1), ....,mT(Xj)}

8. end for

9. Stage 3: Meta-level learning

10. Learning of M based on dm

11. return M

Algorithm 1. Stacking pseudo code.

process of the rime ice come to end when it achieves an stable state
in spite of the continuous variation in the atmospheric conditions.
Normally the growing pattern is split into soft rime and hard
rime pattern.

This method makes use of the different ways that
soft- and hard-rime develop, which are determined by the
direction and speed of the wind. It combines techniques
including a positive greedy selection method, a hard-rime
puncture mechanism, and a soft-rime search. Together, these

components enable the optimization process to be refined
iteratively, giving the RIME algorithm strong global optimization
capabilities.

The algorithm mimics the development patterns of both
hard-rime and soft-rime to construct its hard-rime puncture
and soft-rime search methods. The RIME method consists
of four major steps which can be explained in mathematical
form as follows:

4.1 Initializing cluster of RIME

Like other population-based optimization techniques, RIME
starts by initializing the population. The population is made up of
m rime agents Ru as per Equation 12 and each agent consist of D
rime particles yuv. Thus the population P with the rime particles can
be represented with Equation 13:

P =

[[[[[[[

[

R1

R2

…

Ru

]]]]]]]

]

; Ru = [yu1, ,yu2,…..yuv] (12)

P =(

y11 … p1v
⋮ ⋱ ⋮

yu1 ⋯ puv

) (13)

In this case, u for the rime agent’s ordinal number, and v the
rime particle’s ordinal number. The rate of progress of every agent
is represented by f(Ru), indicates the fitness value.
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FIGURE 3
Stacked deep learning architecture.

4.2 Soft-rime searching method

Soft-rime growth grows slowly in the same direction but is
very unpredictable and may stick to most object surfaces. RIME
may efficiently prevent local stagnation and explore widely in initial
iterations thanks to the soft-rime search technique, which is based
on these growth qualities. The following is the updating procedure
for rime particles:

Pnew
v
u = P

v
best +R1 ⋅ cosθ ⋅ α ⋅ (H ⋅ (ubvu − lbvu) + lbvu),R2 < E (14)

In the above equation, the new position of the vth particle of
the uth agent is Pnew

v
u. P

v
best refers to the best agent position for the

present iteration. The direction of particle movement is determined
by the control parameter R1, which has a random value between the
predefined bounds of [−1, 1] and R2 shows any number between
0 and 1. The degree of adhesion, or H, is a random quantity in
the interval (0, 1) that regulates the separation of two rime-particle
centres.Theparameter cosθ varieswith the number of iterations, and
is obtained using Equation 15:

θ = π ⋅ (i/10 ⋅ I) (15)

where I is the algorithm’s maximum is the number of iterations
and i is the number of iterations that is currently in process.
As seen in Equation 16, α the environmental component, which
comes after the number of iterations to mimic the impact of
the external environment is utilized to guarantee the algorithm’s
convergence.

α = 1− [W ⋅ i
I
]/W (16)

In order to regulate the number of segments of the step function,
the default valueW has been taken as 5. The factor E represents the
probability of condensation which has been shown in Equation 17:

E = √(i/I) (17)

The pseudo code of the above analysis of the soft rime method
has been shown in Algorithm 2.

1. Initialization of Rime population (P)

2. Obtain the present best rime agent and its

fitness value

3. While i ≤ I

4.  Calculate the E = (i/I)0.5

5.   For u = 1:m

6.    For v = 1:D

7.     If R2 = E

8.     Updating the rime

position using the Equation 14

9.     End If

10.    End For

11.   End For

12.  Updation of the best agent position and its

fitness value

13.  i = i+1

14. End While

Algorithm 2. Soft-Rime Searching Pseudo Code.

4.3 Mechanism of hard rime puncture

Like rime puncture, hard rime frequently intersects because it
expands in the same direction. By imitating this technique, rime
agents can share information, improving convergence and avoiding
entrapment in local optima as described in Equation 18 below:

Pnew
v
u = P

v
best ,R3 < f N(Ru) (18)

where the R3 can have any random value between [−1, 1] that
regulates the exchange procedure and the probability that the ith

rime-agent will be chosen is shown by the normalized value of the
agent fitness value, denoted as fN(Ru). The flow of the procedure of
the hard rime has been shown as pseudo code in Algorithm 3.
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1. Initialization of Rime population (P)

2. Obtain the present best rime agent and its

fitness value

3. While i ≤ I

4.   For u = 1:m

5.    For v = 1:D

6.     If R3 = Normalized fitnessofRu
7.     Updating the rime

position using the Equation 18

8.     End If

9.    End For

10.   End For

11.  Updation of the best agent position and its

fitness value

12.  i = i+1

13. End While

Algorithm 3. Hard Rime Puncture Pseudo Code.

4.4 Mechanism for positive greedy
selection

In contrast to traditional greedy selection, RIME takes an
aggressive stance, which improves the algorithm’s exploration
and exploitation. It contrasts the fitness values of updated and
non-updated search agents, swapping out the latter for updated
agents that perform better. By enhancing the search agents’
general quality, this strategy drives the population closer to
optimum with each repetition. The Algorithm 4 has represented
the steps of the positive greedy selection in the form of
pseudo code.

Algorithm 5 provides a concise overview of the RIME
algorithm, including its operational phases and pseudo-
code and also the flow diagram of the algorithm has
been shown in Figure 4.

The optimization is better than the other traditional or state of
art optimization techniques due to following reasons:

1. The soft rime strategy allows the algorithm to simultaneously
consider the breadth and depth when searching for the
optimal solution, alternating between large-scale exploration
and small-scale exploitation.

2. By achieving centralized exploitation through the crossover
between the optimal and current solutions, the hard-rime
puncture mechanism facilitates the RIME algorithm’s rapid
locking of the global approximation optimal solution,
hence enhancing the accuracy and efficiency of the
solution.

3. By preventing low-quality solutions from entering the search
population, the positive greedy selection process allows the
RIME algorithm to actively alter the positions of agents. This
enhances population diversity, guarantees the accuracy of the
whole population after every iteration and drastically lowers
the algorithm’s performance loss.

1. Initialization of Rime population (P)

2. Obtain the present best rime agent and its

fitness value

3. While i ≤ I

4.  For u = 1:m

5.   IF f(Pnew,u) < f(Pu) ; (Fitness value comparison)

6.     f(Pu) = f(Pnew,u) ; (Replacement of fitness

values with new)

7.     Pu = Pnew,u ; (Replacement of present

rime agent)

8.     IF f(Pnew,u) < f(Pbest) ; (Comparison of optimal

value of fitness)

9.     f(Pbest) = f(Pnew,u) ; (Note the optimum value

of fitness)

10.    Pbest = Pnew,u ; (Note the present optimum

rime agent)

11.   End If

12.  End For

13. End For

14. i = i+1

15. End While

Algorithm 4. Positive Greedy Selection Pseudo Code.

5 HRES techno-economic assessment

This study looks into how rural electrification programs
may help achieve techno-economic improvements in the power
system’s functioning through total transformation and a methodical
approach with an emphasis on increasing the amount of
renewable energy at the local level, solar and wind turbines are
regarded as the main renewable energy sources (Rhaman, 2013;
Meghni et al., 2017; 2018;Ammar et al., 2019;Abdelmalek et al., 2018).

When the local wind speed at the hub height is less than the
wind turbine’s cut-in wind speed, neither solar nor wind energy is
accessible at night.This system combineswind and solar energy such
that each onemay compensate for the other’s shortcomings. Both the
price of power and the overall net current cost would drop as a result
of this arrangement. A graphical representation of an integrated
energy system is shown in Figure 5, which highlights the advantages
of smart control and low-carbon technologies for consumers. The
system configuration selected is intended to support the push for a
sustainable energy transition.

5.1 Technical aspects of the HRES system

The system considered for the analysis consists of the
four major resources which are solar array, wind turbine,
battery storage system and diesel generators. The mathematical
design of the individual system components has been discussed
separately.

5.1.1 Modelling of solar photovoltaic (SPV) system
Ideally, the equation used to determine the hourly energy

production of solar modules (PSPV) based on the acquired solar
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FIGURE 4
Flow diagram of the RIME algorithm.

radiation and ambient temperature of any location can be expressed
using Equation 19 given below: (Hermann et al., 2022):

PSPV = (
Ig
Igr
) ⋅Prv × ((Tct −Tcts)K t + 1) (19)

where Ig is the hourlyGHI, Igr is the base value of theGHI considered
to be 1000 W/m2,Tct (°C) andTcts (°C) shows the temperature of the
PV cell at operating and standard conditions. Kt (%/°C) shows the
coefficient of power. The Prpv rated power of the PV module can be
represented using Equation 20 as:

Prpv = ηpv × upv (20)

where ηpv and upv represents the PV module efficiency and
rated capacity of a single PV panel. The Tct of a cell can be
calculated using Equation 21.

Tct = (0.0256) ⋅Ta +Tatm (21)

here, Ta and Tatm are the actual hourly temperature of the location
and ambient temperature.

5.1.2 Modelling of wind turbine (WT) system
A turbine’s main function is to convert mechanical wind energy

into electrical energy. Equation 22 can be used to represent a
wind turbine’s power output PWT(t) at standard pressure and
temperature as (Hermann et al., 2022):

PWT(t) =

{{{{{{
{{{{{{
{

zero, forVWT(t) ≤ VCI andVCO ≤ VWT(t)

PRW[
VWT

3(t) −V3
CI

VR
], forVCI < VWT(t) < VR

PRW , forVR ≤ VWT(t) < VCO
(22)

here the VCI and VCO are the wind turbine’s cut-in and cutout
velocity, VR is the rated velocity of the turbine, VWT(t) is the
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1. Initialization of Rime population

initialization (P)

2. Obtain the present best rime agent and its

fitness value

3. While i ≤ I

4.    Calculate the E = (i/I)0.5

5.    If R2 < E

6.     Updating the rime position using the

soft-rime method

7.    End If

8.    If R3 < fN(Pu)

9.     Cross updating among rime particles using

hard-rime puncture method

10.   End If

11.   If f(Pnew,u) < f(Pu)

12.    Using the positive greedy selection

process, replace the unsatisfactory solution with

the optimum one.

13.   End If

14.   i = i+1

15. End While

Algorithm 5. Rime Pseudo Code.

hourly wind velocity of the turbine and PRW is the rating of the
particular turbine.

5.1.3 Modelling of battery storage system (BSS)
In order to provide a steady supply of electricity due to the

intermittent nature of solar and wind energy, battery storage
systems must be used in wind turbine and photovoltaic power
plants. Distributed generators are supported by batteries, which
electrochemically store direct current (DC) electrical energy
(Kharrich et al., 2021). The battery storage system may enhance
the quality of grid electricity in addition to promoting renewable
resources.The life span of the BSS generally depends on the charging
and discharging phenomenon which is governed as per initial
andminimum state of charge (SoC) of the BSS.The Equations 23, 24
associated with charging and discharging process are
expressed as:

Forcharging: SoC(T+1) = SoCT + (Pchb ⋅ ηcon ⋅ ηb)/(Erb) forSoCT < SoCMax

(23)

For discharging: SoCT+1

= SoCT + (Pdib ⋅ ηcon ⋅ ηb)/(Erb) for SoCT > SoCMin (24)

where SoC(T+1) and SoCT are the next and current status of the
SoC. Pchb, Pdib and Erb represent the charging, discharging and
rated power of the battery. SoCMin and SoCMax are the minimum
and maximum values of the state of charge. ηcon and ηb shows the
converter and battery efficiency respectively.

5.1.4 Modelling of converter
Electric power may be converted using a converter in two

different ways: first, for inversion, from DC to AC, and second,

for rectification, from AC to DC. The converter acts as a link
between the DC and AC buses transforms DC voltage from PV
modules and the battery into AC voltage. It then reverts the AC
voltage to DC voltage to charge the battery using the extra energy
produced by the diesel generator andwind turbine (Oladigbolu et al.,
2023). Equation 25 is used to determine the output power of the
converter.

Pco = ηc ⋅Pci (25)

here Pci and Pco are the input and output power of the converter and
ηc is the conversion efficiency.The overall technical and economical
parameters of the proposed hybrid system for techno-economic
analysis of the HRES have been shown in Table 2.

5.2 HRES energy management system

The energy management system of the suggested
hybrid/integrated renewable energy system handles issues with
robustness, stability, and technological dependability. The duties
covered in this area include managing rural communities, achieving
technological performance, allocating resources optimally, and
operating in a resilient manner. The main goal of energy
management is to govern the flow of energy in the hybrid energy
system for rural communities by making effective decisions that
take into account the technological capabilities and constraints of
each system component. Here the strategies for the energy flow have
been categorized into three scenarios which are as follows:

Scenario 1: When RES power is greater than the load, then
battery charges according to the Equations 26–28.

PSPV
i +PWT

i ≥ Pl
i ∀i ∈Hr (26)

Pch
i = [(PSPV

i +PWT
i) −Pl

i] ∀i ∈Hr (27)

Ei
b = E

i−1
b +P

i
chb × 1Hr ∀i ∈Hr (28)

Scenario 2: When RES power is less than the load power, then
the BSS supplies the deficit load according to Equations 29–31.

Pi
dib = P

i
l − (P

i
SPV +P

i
WT) ∀i ∈Hr (29)

Ei
b = E

i−1
b −P

i
dib ⋅ 1Hr ∀i ∈Hr (30)

Scenario 3: “When RES and BSS are both unable to
supply the load, then power will be supplied by the grid
according to Equation 31.

Pi
grid =
(Pi

l − (P
i
SPV +P

i
WT)) −E

i
b

ηcon
 ∀i ∈Hr (31)

5.3 HRES objective function

Several economic criteria are employed in the literature
to analyze the economic feasibility of localized renewable
energy systems. The life cycle cost, total annualized cost, and
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FIGURE 5
HRES Architecture.

cost of energy are some of these factors. The economical
method, which takes into account the life cycle, initial cost,
operation and maintenance costs, and replacement costs of
each subsystem, is established in this section for system
configurations depending on theTotalNet PresentCost (TNPC) and
Energy Cost (EC).

Theminimization of theCOE for the proposedHRES is themain
concern of this study which can be expressed using Equation 32
expressed below:

min(COE(Rs./kWh)) =(TNPC
8760

∑
Hr=1

Pl

)⋅CRF (32)

where, CRF denotes the capital recovery factor which can be
calculated using Equation 33 expressed below:

CRF = (r(1+ r)p)/((1+ r)p − 1) (33)

where r is the actual rate of interest which is 7 percent here and the
project period is generally considered equal to the PVpanel life span.

To evaluate an investment project’s economic feasibility, one
important financial metric is the TNPC which consists of all system
components’ capital cost, their maintenance and operating cost and
the cost of replacement of any particular component.

Similar to TNPConemore key parameter that has been analyzed
here is the renewable fraction (RF) refers to a limit that establishes
how much energy is imported by the grid concerning a renewable
generator. The perfect system using exclusively renewable resources
is indicated by the renewable factor of 100%. On the other hand, the
renewable factor of 0% indicates that the power imported by the grid
is equal to the power generated by renewable resources. The RF can

be obtained using Equation 34 shown below:

RFMax(%) = (1−
∑Pgrid

∑PSPV +∑PWT
) ⋅ 100 (34)

The constraints taken for each objective function are the
maximum and minimum number of PV panels, wind turbines and
battery systems.

5.4 Socio development and environmental
index

Earmarking the sustainable development, the environment
impact and social development have to be a concern to consider
while designing anyHRES system.The environmental benefits on by
reducing the Carbon emission should be prioritize and employment
of the local for rural community enhancementmust be taken into the
consideration. This paper has introduced the socio-environmental
index while designment HRES system and formulating the objective
functions.

The following Equation 35 computes the total employment
that could be created by deployment of the proposed
HRES system (Kumar et al., 2023):

JCtotal = JCSPV ∗PWT + JCtotal∗PWT + JCBSS ∗EBSS + JCgrid ∗ Pgrid

(35)

where, JCtotal is the total job creation, JCSPV, JCtotal, JCBSS, JCgrid are
perhaps the number of job may offered per KW power generated or
consumed by the Solar, wind, storage system and grid respectively.
Researcher have come up with job creation estimations with
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TABLE 2 Technical and economical parameters of HRES∗.

Description Data

PV

Capital Cost 54,000 Rs/kW

Lifetime 25 years

Operation and maintenance cost (%) 2%

Wind turbine

Rated Power 5.5 kW, 48 V DC

Capital Cost 120,000 Rs

Lifetime 25 years

Operation and maintenance cost (%) 2%

Cut-in speed 2.5 m/s

Rated Speed 9.5 m/s

Cut-out speed 40 m/s

Batteries

Nominal voltage (V) 6 V

Nominal capacity (Ah) 166.67 Ah

Nominal energy capacity of each battery 1 kWh

Capital Cost 4,500 Rs

Lifetime 5 years

Operation and maintenance cost (%) 2%

Converter

Capacity 26 kW

Capital Cost 50,000 Rs

Lifetime 10 years

Operation and maintenance cost (%) 2%

Annual interest rate (%) 7%

∗All the prices of components are as per the quotation received from a different Indian
distributor.

criteria for the renewable based hybrid system so that the study
may simplify.

Table 3 below display the input parameter as employment
variables considered in this paper. Furthermore, this paper also
includes the environmental index which highlights that the
following system have attained reduction in carbon emission in
comparison with the traditional diesel generator or grid.The carbon
emission is calculated by the emission factor mentioned in the
Table 3 and power generated by each component of the system and

the total emission can be determined by the following Equation 36.

CO2 =
8760

∑
i=1

αSPV ∗PSPV + αWT ∗PWT + αgrid ∗Pgrid (36)

where αSPV,αWT,αgrid are the CO2 emission factor per kWh energy
generation.

6 Performance metrics

Comprehending regression model performance issues is crucial
for evaluating accuracy and directing enhancements. Reducing
mistakes improves predictive power, which is essential for practical
uses in engineering, healthcare, and finance. Understanding
the kind and extent of errors is necessary to make informed
decisions and guarantee consistent model performance in this
article, five statistical measures have been calculated which
are: Mean Error (ME), Root Mean Squared Error (RMSE),
Mean Squared Error (MSE), Mean Absolute error (MAE) and
R-Squared score.

7 Results and discussion

The overall analysis has been divided into two sections where
in the first section the prediction of the solar irradiance and
wind speed and the second part explains the techno-economic
analysis of the HRES with the optimization method has been
discussed in brief.

7.1 Prediction analysis of the GHI and wind
speed

The 5 years of data obtained from the NREL have been
taken for the analysis and the five performance parameters have
been calculated to highlight the efficiency of the model. There
are so many parameters associated with each deep learning
model which generally affect the performance of the model
if properly not selected. For this reason, the hyperparameters
of each deep learning model have been optimized with
Bayesian optimization and a further stacking process has been
accomplished.

The hyperparameters range and chosen values for the
optimization have been shown in Table 4 and the Table 5 shows
the output of the Bayesian Optimization. The statistical errors of
the stacked model with the optimized parameters for the GHI
and the wind speed prediction have been represented in Table 6.
The regression analysis has been done between the predicted and
the true values of both targeted variables and has been shown
with the scatter plot in Figure 6A for GHI and in Figure 6B for
wind speed.

7.2 Techno-economic analysis

This paper examines and presents quantitative experiment
results related to resilient planning and evaluation of the integrated
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TABLE 3 Input variables for Environmental factor and Job Creation and.

Reference Components JC (Jobs/MW) CO2 emission (α) (kg/kWh)

Sawle et al. (2018)

SPV 0.41 to 2.48 0.8

WT 0.39 to 0.8 0.111

BSS 0.01 (Jobs/MWh) —

Grid Purchase 0.14 (Jobs/GWh) 0.91

TABLE 4 Hyperparameters range for optimization.

S.No. System layers Parameters Range

1 RNN Layer RNN Units (32–256)

2 LSTM Layer LSTM Units (32–256)

3

1st 1-DCNN Layers

Filters (32–256)

4 Kernel Size (2–7)

5 Activation Function (‘ReLu’, ‘LeakyRelu’,
‘Tanh’)

6 Max pooling Layer Pooling Size (2–4)

7 Dense Layer Dense Units 16–128

8 Optimizer Function (‘SZD’, ‘RMSprop’,
‘Adam’)

9 Dropout Rate (0.1–0.5)

10 Learning Rate (0.0001–0.1)

11 Epoch Number (10–100)

12 Batch Size Size (16–128)

multi-agent hybrid energy system that was created. The solar
radiation and wind speed data utilized in this study is primarily
anticipated using the stacked deep learning method, followed
by the planning and distribution of the hourly rural local
load consumption profile. In order to create a strong and
practical techno-socio-economic architecture RIME optimization
is applied and compared with other prominent optimization
techniques.

The residential load profile for the entire year has been
plotted in Figure 7 where it can be noted that the load is
generally low in the morning and night but at the peak in
the afternoon. Also, if we analyze the entire year the summer
season has maximum demand as compared to the winter.
The monthly profile of the solar irradiance and temperature
has been shown in Figure 8 and the wind speed in Figure 9
respectively.

TABLE 5 Hyperparameters value for optimization.

S.No. System layers Parameters Output

1 RNN Layer RNN Units 256

2 LSTM Layer LSTM Units 128

3

1st 1-DCNN Layers

Filters 128

4 Kernel Size 3

5 Activation Function ReLu

6 Max pooling Layer Pooling Size 2

7 Dense Layer Dense Units 128

8 Optimizer Function Adam

9 Dropout Rate 0.5

10 Learning Rate 0.1

11 Epoch Number 100

12 Batch Size Size 32

TABLE 6 Statistical errors analysis for GHI and wind speed.

Statistical errors GHI Wind speed

MAE 26.3745 27.6007

MSE 3000.5906 3089.8874

RMSE 54.7777 55.5867

ME 600.9639 616.7071

R-Squared 0.95924 0.95802

7.2.1 Optimal sizing impact on TNPC and EP
The sizing of the system components has a significant

impact on the performance of the system. The optimal
results are filtered out after 30 separate runs of the RIME,
GWO, MFO, and PSO with a population size of 100 and a
maximum of 200 iterations. The optimum sizing of the system
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FIGURE 6
Scatter plots of predicted vs. true values for (A) GHI (B) Wind Speed.

FIGURE 7
Residential load profile.

FIGURE 8
Monthly average of GHI and Temperature.
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FIGURE 9
Monthly average of Wind speed.

TABLE 7 Technical and economic details of system components.

Algorithm PV WT Batt COE (in Rs./kWh) RF NPC

Proposed (RIME) 76 16 80 4.65 87.88 7246578600

GWO 56 20 76 5.12 86.66 7979028480

MFO 88 12 80 6.08 84.35 9475096320

PSO 68 16 68 6.47 81.12 1.0083E+10

components which provides the minimum TNPC and EP has
been shown in Table 7.

It can be observed that the RIME method has performed well
as compared to other optimization techniques with the lowest
objective values of 4.65 Rs./kWh for electricity price/cost and
7246578600 for TNPC. The convergence and precision of the
outputs from all four optimizations have been also assessed to
create a stable and ideal configuration for a hybrid energy system
as shown in Figure 10.

The validation of the proposed model has also been carried out
the most popular HOMER software (Kanata et al., 2021) which
is widely used for the techno economic analysis of HRES. The
validation analysis has been represented with the Table 8 where it
can be observed that the proposed optimization has better outcome
as compared to the HOMER which make it more reliable and
applicable.

The convergence characteristics of the four optimization
methods show that the proposed method has the lowest electricity
price or COE as compared to other optimization methods, only
GWO has similar and nearest behavior.

7.2.2 Sensitivity analysis
Sensitivity analysis is very crucial in the field of TEA of any

HRES to have an understanding of the impact on the designed
system performance measures such as NPV and EP due to key
parameter variations. Through the identification of sensitivities,
stakeholdersmay enhance the resilience and economic sustainability

FIGURE 10
Convergence curve assessment.

of HRES installation by optimizing system design, mitigating risks,
and making informed decisions. Hence in this study sensitivity
analysis of the COE/EP has been checked with the variation of
the different converter capacities and also sensitivity analysis of
converter capacity with various sizes DGs is performed as shown in
Figures 11, 12.
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TABLE 8 Validation analysis with HOMER.

Algorithm PV WT Batt COE (in Rs./kWh) RF NPC

Proposed (RIME) 76 16 80 4.65 87.88 7246578600

HOMER 72 18 76 4.93 86.50 7680310280

FIGURE 11
Sensitivity of COE and RF with respect to different converter capacities.

FIGURE 12
Sensitivity of size of PV, wind turbines and battery with respect to converter capacities.

It can be observed that the COE/EP has an inverse relationship
with the converter capacity but is directly proportional to
the RF. The COE is minimum, i.e. 4.65 Rs./kWh for 26 kW
converter capacity and can be minimized by increasing the
capacity of the converter. Figure 12 shows the optimum
number of all the supplying sources corresponding to the least
values of COE.

In addition, the sensitivity of COE/EP and RF of the proposed
HRES has also been analyzed with the variation of the number
of the houses as shown in Figure 13 and the sensitivity of the
corresponding optimal sizes of DGs with respect to the house
number variation has been also depicted graphically in Figure 14.

It can be noticed from the above Figure 13 that the COE/EP is
lowest when the house number is low but increases as the number
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FIGURE 13
Sensitivity of COE and RF with respect to different number of houses.

FIGURE 14
Sensitivity of size of PV, wind turbine and battery size with respect to number.

of houses to be supplied increases. The optimal combination of the
system components provides the lowest electricity cost for the lower
number of houses. The solar and battery sizes are comparatively
proportional and the wind turbine sizing increases only when the
other two sources sizing decreases as shown in Figure 14.

7.2.3 Power flow analysis for three consecutive
days

Power flow analysis ensures the system stability, optimizing
performance and maximization of RES penetration. In
this study, the power flow analysis of the proposed
system for three consecutive days has been carried
out also to check the sustainability of the HRES in
future. The graphical representation of the analysis has
been shown in Figure 15.

From the above analysis, it can be observed that the grid
power comes into the picture when the battery storage system is
completely discharged and solar power is also not available for

the fulfilment of the load demand. The RES is well satisfying
the electrical demand during maximum hours of the day and
importing power from the grid only for fewer hours which
confirms the sustainability and reliability of the proposed analysis
of the HRES.

Energy demand fulfillment with a social environment factor
is considered as wise able alternative for rural electrification.
HRES components produce the carbon pollutants, but the optimal
system configuration reduces the emission. Socio development in
terms of employment for local is statistically shown in Table 9.
Furthermore, based on the power generated from the optimal
system configuration CO2 emission has been assessed. This
paper findings based on the environmental index and parameter,
CO2 emitted by solar PV system is (7.66 kg/kWh), from wind
turbine is (23.232 kg/kWh) and carbon emission due to the
power purchase from the grid is (46 kg/kWh). A total of
(76.892 kg/kWh) of carbon is emitted in the form of CO2 while
operating the HRES system to fulfil the energy demand. Thus,
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FIGURE 15
Power flow analysis for three consecutive days.

TABLE 9 Employment created yearly.

Components Job creation factor Jobs/MWh/year

SPV 0.42 279.6

WT 0.45 68.68

BSS 0.000001 7

Grid Purchase 0.000000014 6.132

in comparison with the traditional use of electrical energy, if
renewable is opted into the system the carbon emission can
be reduced.

8 Conclusion

The main concern of this work is to establish a machine
learning or AI-assisted HRES to cater for the local residential
load for the locations which are blessed with an abundant
supply of RES like solar and wind. So the overall analysis
has been categorized into two sections. In the first section of
the analysis, the hyperparametric tuned deep learning stacked
model has been developed for the forecasting and prediction of
the solar irradiance and wind speed using the 5 years of the
recent dataset from the NREL. The proposed ML model has
shown a prediction accuracy of 95.92% for GHI and 95.80 for
the wind speed which shows that the predicted value can be
utilized further for the calculation of the solar and wind power
in advance.

Theprecise andaccurate forecastingcanhelppolicymakerpersons
to invest in RES integrated infrastructure due to which the stability

of the grid could be enhanced while balancing the demand and
supply effectively. The government body can be assisted with these
forecasting data to achieve the energy targets and have an idea
of implementation of the renewable energy based projects. The
policy structure can be supported with the incorporation of the
forecasting models in designing of the energy strategies as per the
region and available RES which will ensure a sustainable energy
in future.

The second part incorporated these predicted values of the
GHI and wind speed for the techno-economic analysis of the
grid-connected HRES system which consists of PV, wind turbine
and BSS. For this TEC analysis, a novel application of the
RIME optimization has been incorporated whose objective is
to minimize the COE w.r.t to the optimal size of the system
components. The proposed optimization for TEC analysis shows
that the COE comes to 4.65 Rs./kWh and TNPC 72.46 crore
INR with an RF value of 87.88% as compared to the other
three optimization methods GWO, MFO and PSO. THE optimal
configuration of system components corresponding to the lowest
COE are PV (76), WT (16) and BSS (80). The validation of
the TEA has also been done with the HOMER. Further, the
sensitivity analysis has been done to check the performance of
the system where the initial impact of converter capacity on the
COE and NPC has been analyzed and then the impact of different
house numbers on the COE and the corresponding sizing of the
system components checked. In addition to this, the power flow
analysis for three consecutive days has been carried out for the
daily operation performance of the system. These above efforts
confirm that the proposed grid-connected HRES is efficient and
can be implemented in areas or locations where grid power is
unreliable.

The proposed HRES system can be reconfigured and optimized
based on geographical conditions. A similar system has been
adopted by Kumar et al. (2023), which includes hydro, solar, and
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extensive green land coverage such as forests and agricultural
areas. Therefore, the proposed system may be suitable for various
geographical locations and resource availabilities. Fundamentally,
the potential for HRESs to be adapted to different geographical
locations with varying renewable energy resources is significant.
Ideally, a few key factors need to be considered for accelerated
adaptation, including the availability of primary renewable
resources, climatic and seasonal variations, energy storage, cost-
effectiveness, and environmental and social impact.
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