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Introduction: Machine learning-based power transformer fault diagnosis
methods often grapple with the challenge of imbalanced fault case
distributions across different categories, potentially degrading diagnostic
accuracy. To address this issue and enhance the accuracy and operational
efficiency of power transformer fault diagnosis models, this paper presents a
novel fault diagnosis model that integrates Neighborhood Component Analysis
(NCA) and k-Nearest Neighbor (KNN) learning, with the incorporation of
correction factors.

Methods: The methodology begins by introducing a correction factor into the
objective function of the NCA algorithm to reduce the impact of sample
imbalance on model training. We derive a sample parameter correlation
quantization matrix from oil chromatography fault data using association
rules, which serves as the initial value for the NCA algorithm’s training metric
matrix. The metric matrix obtained from training is then applied to perform a
mapping transformation on the input data for the KNN classifier, thereby reducing
the distance between similar samples and enhancing KNN classification
performance. Hyperparameter tuning is achieved through the Bayesian
optimization algorithm to identify the model parameter set that maximizes
test set accuracy.

Results: Analysis of the transformer fault case library reveals that the model
proposed in this paper reduces diagnostic time by nearly half compared to
traditional machine learning diagnosis models. Additionally, the accuracy for
minority sample classes is improved by at least 15% compared to other models.

Discussion: The integration of NCA and KNN with correction factors not only
mitigates the effects of sample imbalance but also significantly enhances the
operational efficiency and diagnostic accuracy of power transformer fault
diagnosis. The proposed model’s performance improvements highlight the
potential of this approach for practical applications in the field of power
transformer maintenance and diagnostics.
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1 Introduction

Transformers are among the most important equipment in
power systems, playing a key role in ensuring the safe, reliable,
economical and high-quality operation of the power system (Ling
et al., 2012). Natural aging of insulating materials, harsh
environmental conditions and excessive operating load can all
induce power trans-former faults, leading to serious social and
economic losses (Lu et al., 2024). Research on fault diagnosis
based on the characteristic parameters of existing transformer
fault cases is instrumental in accurately identifying fault types by
leveraging the differentiated performance of different fault types in
indicator attributes (Wu et al., 2022). This research holds important
guiding significance for the maintenance of operating transformers
and the formulation of appropriate maintenance strategies.

Oil chromatography data analysis is a crucial technique for fault
diagnosis in oil-immersed transformers, which are vital components
in power systems. This method involves analyzing the dissolved
gases in the transformer oil to detect and diagnose potential faults.
Oil chromatography data can detect initial signs of faults such as
partial discharge, low energy discharge, high energy discharge, and
various levels of overheating. Early detection helps in scheduling
maintenance before a catastrophic failure occurs. Condition
monitoring analysis of oil chromatography data allows for
continuous monitoring of the transformer’s health, providing
insights into the operational status and predicting potential
failures. Asset management: oil chromatography data aids in
making informed decisions about asset replacement or upgrades,
ensuring optimal use of resources and extending the life of
transformers. Meanwhile, there are many limitations, such as,
data imbalance, complexity in data interpretation, cost and
accessibility, and dependency on historical data.

In practice, the transformer status analysis method based on oil
chromatography has several advantages, including live detection
capability, immunity to electrical and magnetic signal fields, and
simple operation. As a result, this method has been widely applied in
production practice (Wang et al., 2016). As one of the most effective
and reliable means of health status assessment and fault diagnosis of
oil-immersed transformers, this method is still a research hotspot.
Researchers initially established a basic method system with simple
processes such as IEC three ratios (International Electro-technical
Commission, IEC), Rogers ratio (Rogers, 1978), and Da-vid triangle
(Duval, 1989). However, due to the limitations of missing codes and
absolute thresholds, these traditional methods are now only used as
auxiliary means for transformer fault diagnosis. With the
development of machine learning theory and deep learning
framework hardware, transformer fault diagnosis methods based
on artificial intelligence (AI) have become a hot research topic in
academia due to their high classification accuracy, such as support
vector machine (SVM) (Li and Shu, 2016), neural networks,
Bayesian networks (Bai et al., 2013), decision trees (Gu and Guo,
2014), deep belief network, etc., (Dai et al., 2018). However, the
above AI-based methods also have their inherent disadvantages:
Firstly, each round of supervised training of the model takes a long
time (Li et al., 2019); secondly, it takes a lot of time to adjust the
hyperparameters to train an excellent model; thirdly, in the process
of maximizing the overall classification accuracy, these methods are
prone to favor the parameter update of the majority-class samples

and ignore the correct classification of the minority-class samples
(He and Garcia, 2008).

The k-nearest neighbors (KNN) model proposed by Cover and
Hart (1967) is a lazy learning model with no training process. It
judges the class of sample points based on the type of neighboring
points and does not require a lot of time to train the model. The
KNN principle is simple, easy to understand and implement, and
has stable classification performance. However, the algorithm has
poor classification effect and operation efficiency when the samples
are imbalanced and the number of sample dimensions is too large
(Tejaswini and Riad Al-Fatlawy, 2024). To address this challenge,
many researchers have improved their algorithms or data (Fan,
2023). For example, Wang et al. (2012) proposed a new weight
allocation system model based on GAK-KNN by combining
K-means with the genetic algorithm. This approach overcomes
the defect of imbalanced data distribution to a certain extent, but
it suffers from difficulties in determining the number of clusters and
increasing the data preprocessing time; Zhang et al. (2010) used the
Bagging algorithm to extract multiple sub-classification sets from
the training set, then classified each sub-classification set using the
KNN algorithm and obtained the final classification result by voting.
This can improve the operating efficiency of KNN to a certain
extent, but it does not consider the distribution of imbalanced data,
and the classification accuracy is relatively low; Li and Hu (2004)
proposed a density-based KNN classifier training sample clipping
method, which clips the majority-class training samples near the test
sample and retains the minority-class training samples. The method
can increase the calculation speed of KNN and reduce the imbalance
of samples, but it may affect the classification accuracy. In general,
these methods mainly focus on a single aspect of optimizing the
KNN algorithm, lacking a comprehensive analysis of the algorithm’s
operating efficiency, performance optimization, and imbalanced
data set training problems. Additionally, the evaluation methods
used are relatively simple.

To solve the above problems, this paper proposed an improved
and optimized transformer fault diagnosis model based on KNN by
introducing the neighbor-hood component analysis (NCA)
algorithm (Goldberger et al., 2005) and the Bayesian
hyperparameter optimization algorithm (Deng, 2019). NCA is a
distance metric learning algorithm that can be used to solve the
model selection problem. First, a correction factor was introduced to
correct the objective function of the NCA algorithm and reduce the
influence of sample imbalance on model training. According to the
support metric evaluation parameter in the association rule, the
correlation between the various parameters of the oil
chromatography sample was constructed. The quantified results
were used as the initial value of the distance metric matrix training.
The improved NCA algorithm was used to learn the KNN distance
metric method and reduce the sample dimension, thereby
improving the computational performance of the classification
model and the generalization of minority class samples. Then,
the Bayesian optimization algorithm was used to tune the
hyperparameters of the classification model, further improving
the prediction accuracy of the classification model. Comparative
analysis of examples shows that the algorithm proposed in this paper
can save nearly half the time compared with traditional ma-chine
learning diagnosis models, and the diagnostic accuracy of minority-
class samples was improved by at least 15%, enhancing the
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classification accuracy of the model while ensuring the operation
efficiency of the model.

2 Neighborhood component analysis
(NCA) algorithm and its improvement

2.1 NCA algorithm

The expression of the square of the Mahalanobis distance
between two samples xi and xj is:

dist2mah xi, xj( ) � xi − xj( )TM xi − xj( )
� ‖xi − xj

∣∣∣∣∣∣∣∣2M
Where, M is called the “metric matrix”. To ensure that the

distance is non-negative and symmetric, M, a (semi-) positive
definite symmetric matrix, can be decomposed into M = AAT.
Different distance measurement methods correspond to different
choices of metric matrices. The NCA algorithm is to learn the
transformation matrix A, which is a metric learning algorithm
(Goldberger et al., 2005).

The NCA algorithm searches for the transformation matrix A,
with the goal of maximizing the leave-one-out accuracy, which is
equivalent to minimizing the distance between classes:

f A( ) � ∑m
i�1
pi � ∑m

i�1
∑
j∈Ωi

pij

where, pi denotes the leave-one-out accuracy of xi, namely, the
probability that xi is correctly classified by all samples other than
itself, with a total of m samples; Ωt denotes the subscript set of
samples belonging to the same class as xi; pij is the probability that
any sample xj affects the classification result of xi. The nearest
neighbor classifier usually uses majority voting, where 1 vote is given
to each of the samples in the domain and 0 votes are given to the
samples outside the domain. Here, it is replaced by the probability
voting, that is,

pij �
exp −����xi − xj

∣∣∣∣∣∣∣∣2M( )
∑
l
exp −����xi − xl

∣∣∣∣∣∣∣∣2M( )
It can be seen that the influence of xj on xi decreases as the

distance between them increases.
This unconstrained optimization problem can be solved by

updating the transformation matrix A with the conjugate
gradient method or the stochastic gradient method. Differentiate A:

∂f A( )
∂A

� −2A∑m
i

∑
j∈Ωi

pij xijxij
T −∑

k

pikxikxik
T⎛⎝ ⎞⎠

where, xij = xi−xj. WhenM is a low-rank matrix, a set of orthogonal
bases can be found by performing eigenvalue decomposition on M.
The number of orthogonal bases is the rank of the matrix (M), which
is less than the number of original attributes d. Thus, a
transformation matrix A ∈ Rd×rank(M) can be derived, which can
be used to reduce the sample to the rank (M) dimension space (Zhou
et al., 2016).

2.2 Existing problems and improvements

The objective function of NCA can be rewritten into:

f A( ) � ∑m
i

∑
j∈Ωi

pij � ∑
i∈Y1

∑
j∈Y1
j≠i

pij +/ + ∑
i∈YN

∑
j∈YN
j≠i

pij

� ∑N
n�0

⎛⎝ ∑
i∈Yn

∑
j∈Yn
j≠i

pij⎞⎠ � ∑N
n�0

Pn

where, Yn denotes the set of samples of the nth class among N
classes; Pn denotes the sum of the accuracy of the leave-one-out
method for the nth class samples. For the convenience of subsequent
discussion, this paper defined it as the inter-class influence factor.
Generally speaking, the larger the value is, the smaller the inter-class
distance will be, and the greater the possibility that the test samples
of this class are correctly classified in kNN. Generally, during the
NCA training process, the inter-class influence factor of each class of
samples will increase as the objective function f(A) gradually
increases. However, if the samples to be classified are imbalanced
data, for example, the majority class samples are dozens or even
hundreds of times the minority class samples, then NCAmay ignore
the minority class during the training process, that is, there is a
problem that the objective function optimization is biased towards
majority-class data, which will result in poor classification accuracy
of small sample data.

In order to reduce the influence of sample imbalance on
NCA model training, this paper introduced a correction factor c,
which allocated a lower weight to the fault class with a large
number of samples to suppress its importance and gave a higher
weight to the class with a small number of samples. Based on this
idea, this paper corrected the objective function of the
NCA algorithm.

ψwas defined as a function to calculate the number of samples of
each class. Then, the correction factor can be summarized as:

cn � max ψ( )2
ψ n( )2 , n � 1,/,N

The objective function of NCA was corrected as:

f A( ) � ∑m
i�1

∑
j∈Ωi

cΩipij

This can alleviate the problem that the objective function
optimization is biased towards majority-class data during the
NCA training process when the number of samples is
imbalanced.

2.2.1 Derivation of the correction factor
Step 1: Define the Decision Function

The decision function f (A) can be any scoring function, such as
the output of a logistic regression model, a support vector machine,
or a neural network. For simplicity, we assume: f (A) � wTf (A) + b
where ww is the weight vector, xx is the feature vector, and bb is the
bias term.
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Step 2: Introduce the Correction Factor

To adjust the decision boundary in favor of the minority class,
we introduce a correction factor αα that modifies the decision
function: f ′(A) � αf (A) where α is a function of the class label Yn.

Step 3: Determine the Value of α

The value of αα should be larger for the minority class to
increase the sensitivity of the classifier to this class. A common
approach is to set α(yn) based on the inverse of the class prior
probabilities:

α yn( ) � 1 − pn
pn

Step 4: Apply the Correction Factor

The corrected decision function f (A) is applied to each sample:
f ′(A) � αf (A) This means:

For the minority classes, f ′(A) is amplified by 1−pn
pn

Common techniques for handling class Imbalance include: a)
Oversampling, this technique increases the number of instances in
the minority class. The simplest form is random oversampling,
which duplicates existing minority class instances. A more
sophisticated method is SMOTE (Synthetic Minority Over-
sampling Technique), which generates synthetic samples by
interpolating between existing minority class instances. b)
Undersampling: This involves reducing the number of instances
in the majority class. Random undersampling is a basic approach,
but it can lead to the loss of important information. More advanced
techniques include cluster-based undersampling and using Tomek
Links to remove instances that are likely to be noise. c) Cost-
sensitive Learning: This method adjusts the cost of
misclassification for each class. By assigning a higher cost to
misclassifications of the minority class, the model is encouraged
to pay more attention to it. d) Ensemble Methods: Techniques like
Random Forests or boosting can be adapted to focus more on the
minority class. For example,. e) EasyEnsemble combines multiple
AdaBoost learners trained on different subsets of the majority class.

Experimental comparisons across different balancing methods
have shown varying impacts on classification results: 1) Impact on
model behavior, which is a study analyzed the impact of balancing
methods on model behavior using Explainable AI tools. This
suggests that the choice of balancing method can significantly
affect not just the performance metrics but also the
interpretability and reliability of the model. 2) Performance
metrics: Comparisons using accuracy, F1 score, and AUC-ROC
have shown that while oversampling and undersampling can
improve the performance on minority classes, they might also
lead to overfitting or loss of information. 3) Cost-sensitive
learning and ensemble methods often provide a better balance by
adjusting the learning process rather than the data distribution
directly. 4) Necessity and Superiority of Correction Factor: The
correction factor, when used in conjunction with these techniques,
can further refine the model’s ability to distinguish between classes.
5) Algorithmic Adjustments: Some algorithms can be adjusted to

handle imbalance internally, such as by modifying the decision
threshold or using different loss functions.

3 k-nearest neighbor classification and
hyperparameter tuning

3.1 k-nearest neighbor classification

k-nearest neighbor learning is a widely used supervised learning
method. The working mechanism of fault classification using kNN is
very simple: Give a test fault sample, the method identifies the k
training fault samples closest to the test fault sample based on a
specific distance metric and thenmake predictions based on the fault
type information of these k “neighbors”.

Figure 1 shows a diagram of a k-nearest neighbors classifier, with
the dotted lines as the equidistant lines. Obviously, when k is taken
different values, the classification results will be significantly
different; on the other hand, if different distance measurement
methods are used, the “nearest neighbors” found for a given test
sample will also be different, which can result in substantially
different classification results (Goldberger et al., 2005). This
paper optimized the kNN classification model starting from the
above two aspects to improve its accuracy and prediction ability. The
main means was to introduce the modified nearest NCA algorithm
and Bayesian hyperparameter tuning.

3.2 Iterative paramete updating strategy and
convergence analysis of bayesian
optimization process

Bayesian optimization is an effective method for
hyperparameter tuning, involving an iterative process of
parameter updating and convergence analysis to find the optimal
solution. Here’s a detailed description of the iterative parameter
updating strategy and convergence analysis in the Bayesian
optimization process:

FIGURE 1
Diagram of k-Nearest Neighbors Classifier.
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3.2.1 Iterative parameter updating strategy
The iterative parameter updating in Bayesian optimization

follows these steps:

Step 1. Initialization:

Select an initial set of hyperparameters and evaluate them using
the objective function (e.g., cross-validation score of a model).

Step 2. Build a Surrogate Model:

Use a probabilistic model like Gaussian Processes (GP) to
approximate the objective function. This surrogate model learns
the distribution of the objective function based on the evaluations
made so far.

Step 3. Choose an Acquisition Function:

The acquisition function determines the next hyperparameter
point to evaluate. Common acquisition functions include Expected
Improvement (EI), Upper Confidence Bound (UCB), and
Entropy Search.

Step 4. Optimize the Acquisition Function:

Find the hyperparameter point that maximizes the acquisition
function. This point is chosen based on a trade-off between high
predicted performance and high uncertainty.

Step 5. Evaluate New Hyperparameters:

Assess the objective function using the selected hyperparameter
point and add the result to the existing dataset.

Step 6. Update the Surrogate Model:

Incorporate the new evaluation result into the surrogate model,
then repeat steps 3 to 5 until a stopping criterion is met (such as
reaching a maximum number of iterations or when improvements
are no longer significant).

3.2.2 Convergence analysis
The convergence analysis of Bayesian optimization focuses on

whether the algorithm can converge to the global optimum or its
vicinity. The theoretical convergence of Bayesian optimization
depends on several factors:

1. Accuracy of the Surrogate Model: If the surrogate model can
accurately approximate the objective function, the algorithm is
more likely to find the optimal solution.

2. Choice of Acquisition Function: Different acquisition functions
lead to different search strategies. For example, Expected
Improvement (EI) tends to look for improvements near regions
that are already known to be good, while Upper Confidence Bound
(UCB) places more emphasis on exploring unknown regions.

3. Balance Between Exploration and Exploitation: Bayesian
optimization balances exploration (searching in areas with high
uncertainty) and exploitation (searching in areas predicted to have

high performance) through the acquisition function. A good
balance can improve the speed and quality of convergence.

4. Stopping Criteria: Appropriate stopping criteria prevent
overfitting and unnecessary computation. Common stopping
criteria include reaching a maximum number of iterations,
improvements falling below a certain threshold, or limitations
on computational resources.

In practice, Bayesian optimization typically requires fewer
iterations than grid search and random search to find a near-
optimal set of hyperparameters, especially in high-dimensional
search spaces. However, the convergence rate and final
performance of Bayesian optimization are also influenced by the
choice of surrogate model, acquisition function design, and initial
point selection.

Overall, Bayesian optimization iteratively updates parameters
and carefully designed acquisition functions to balance exploration
and exploitation, effectively addressing hyperparameter tuning
problems. Although its theoretical convergence may be difficult
to guarantee in some cases, Bayesian optimization has proven to be a
powerful and effective tool in practice.

3.3 Hyperparameter tuning

The process of identifying the best set of model parameters,
including the nearest neighbor k, is called hyperparameter tuning.
Two common parameter tuning methods are grid search and
Bayesian optimization. Although grid search can thoroughly
traverse a limited set of parameter value combinations to
evaluate the objective function value and find the best model, it
takes too long and is prone to the disaster of dimensionality. The
Bayesian optimization algorithm (BOA) is based on Bayes’ theorem
(Deng, 2019), the basic idea of which is to use all available
information in previous evaluations to learn the form of the
objective function, so as to find the minimum value of the
complex non-convex function through few evaluations. This
process is divided into two steps:

1) Use the probability model to represent the unknown objective
function of the original model to be evaluated, continuously
increase the volume of information and modify the prior
through iteration. The probabilistic model established in
this paper adopted the Gaussian process, which is highly
flexible and scalable (Cui and Yang, 2018).

If X refers to the training set {x1,x2, . . . ,xt}, f refers to the set of
function values {f (x1),f (x2),. . .,f (xt)} for an unknown function, θ
refers to the hyperparameter. When there is observed noise and if
the noise ε satisfies the independent and equally distributed
Gaussian distribution p(ε) = (0, σ2), the marginal likelihood
distribution can be obtained as follows:

p y
∣∣∣∣X, θ( ) � ∫ p y

∣∣∣∣f( )p y
∣∣∣∣X, θ( )df

By maximizing the marginal likelihood distribution through
maximum likelihood estimation, θbest is obtained, which is the
optimal solution based on the observed values so far.
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2) Choose an acquisition function to construct a utility function
from the posterior model, and determine the next sampling
point. In this paper, the common expectation improvement

function was used to accomplish this goal by finding the
maximum expected increment under the current
best situation:

α θ
∣∣∣∣μ, σ( ) � E max 0, f θ( ) − f θbest( )( )[ ]

where, μ is the predicted mean function of the prior model, and σ is
the predicted variance function of the prior model.

In each iteration, the Bayesian hyperparameter tuning algorithm
first selects the next most promising evaluation point xt according to
the maximum acquisition function, then evaluates the objective
function value f (xt) based on the selected evaluation point, and
finally adds the newly obtained observation value to the historical
observation set and updates the probability proxy model to prepare
for the next iteration.

The NCA-KNN model reduces computational complexity by
dimensionality reduction, Feature Extraction, efficient distance
calculation, adaptive K values, clustering-based search, .and
utilizing of KD trees. Achieving a balance between computational
efficiency and classification accuracy involves several strategies,
including parameter tuning, hybrid approaches, intelligent data
sampling, regular model validation.

4 Transformer fault diagnosis based on
NCA and kNN

4.1 Diagnosis process

The transformer fault diagnosis process based on kNN is shown
in Figure 2.

NCA transformation refers to the mapping of the transformer
fault samples using the output results (metric matrix) of the NCA
model. The training process of NCA is shown in Figure 3, and the
improved NCA algorithm proposed in this paper was used in
the process.

In addition, the performance of the model is highly dependent
on the selection of hyperparameters (number of NCA trainings and
kNN nearest neighbor parameter k). In this paper, the Bayesian
Optimization Algorithm (BOA) (Deng, 2019) was used to optimize
them to enhance the diagnostic performance of the model. Since the
goal of BOA is to find the minimum value of a complex non-convex
function, this paper sets its objective function as the negative value of
the fault classification accuracy of the test set.

4.2 Selection of initial value of metric matrix

In the NCA algorithm, the metric matrixM is usually initialized
by random assignment. In order to reduce the number of NCA
training times and improve the training efficiency, this paper
quantified the correlation of each parameter of transformer fault
samples into a multidimensional array through the support
calculation method of the association rule (Li et al., 2013),
thereby forming the initial metric matrix M0 of NCA as a whole.

The association rule is to find the correlation between different
items appearing in the same event. It is supposed that I = {i1,i2,i3, . . .,
iB} is a finite item set consisting of B items to be studied and a

FIGURE 2
Flowchart of the fault diagnosis based on KNN.

FIGURE 3
Flowchart of the NCA training.
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transaction database T = {T1,T2,T3, . . . ,TD} is given. If, for a subset P
of I, a transaction T ⊃ P exists, then the transaction is said to contain
P. There are two basic metrics for measuring the association rule:
support and confidence. Since the metric matrix is symmetric, this
paper used support to measure the correlation between parameters.

Support S is defined as the probability that P and Q appear in a
transaction at the same time, and is estimated by the proportion of
the number of transactions in which P and Q appear in the sample
data set I in the total number of transactions:

S P → Q( ) � S Q → P( ) � T(P ∨Q) ||
T| |

In the above formula, |T(P˅Q)| indicates the number of
transactions that contain both P and Q; |T| indicates the total
number of transactions.

In this paper, the total number of transactions T is the total
number of all oil chromatography sample databases, and the item set
ib = {the value of the bth gas parameter is greater than the average of
the parameters in the database}. In this way, the support of each gas
parameter of the oil chromatography was calculated respectively,
and finally, the initial metric matrix M0 was obtained.

5 Case analysis

5.1 Oil chromatography data

The method proposed in this paper was discussed by using a
data set of 662 samples, which consisted of the fault case library of a
certain power grid company and the oil chromatography data in the
published literature in the related field as an example (Li and Tao,
2024). Each sample in the library contains eight characteristic
parameters: H2, CH4, C2H2, C2H4, C2H6, CO, CO2 and total
hydrocarbon content. The faults were divided into eight types:
low energy discharge (LD), high energy discharge (HD), low
energy discharge and overheating (LDT), partial discharge (PD),
medium temperature overheating (MT) (300°C < T < 700°C), low
temperature overheating LT (T < 300°C), high energy discharge and
overheating (HDT) and high temperature overheating (HT) (T >

700°C). Among the 662 samples, 468 sets of data were taken as
training sets and the remaining 194 sets of data were taken as test
sets for parameter training and generalization test of the model. The
number distribution of data set samples is shown in Table 1.

5.2 Data preprocessing

In actual oil chromatography fault samples, the values of some
characteristic gases grow exponentially, which makes the distance
between fault samples of the same type larger, and has a greater
influence on the kNN algorithm based on metric distance
classification. Besides, in order to reduce the influence of the absolute
value fluctuation of each characteristic gas concentration in different
cases, the normalizationmethod of the following formulawas adopted in
this paper to perform numerical scaling with a target interval of (0,1]:

x′ � log max x+1( ) 1 + x( )

The logarithmic transformation in the formula can stretch the data
distribution within the lower amplitude range and compress the data
distribution within the higher amplitude range, making the distribution
of fault data as uniform as possible and reducing the influence of
extreme values on the classification results to a certain extent. The
normalized sample data were stacked row by row, generating a training
set matrix of 467 × 8 and a test set matrix of 195 × 8, respectively.

5.3 Initial value of metric matrix

The initial value M0 of the metric matrix in this example was
obtained by calculating the support of each gas parameter in the oil
chromatography using the method proposed in this paper, based on
the oil chromatography data of 1,104 fault samples from a certain
network company over the years. With H2 and CH4 as
examples, there are 37 samples whose values of the two
parameters are simultaneously greater than the corresponding
average. The calculation process is as follows: S(CH4→H2) =
S(CH4←H2) = 37/1,104 = 0.0335,145. Similarly, each parameter
was calculated and an item of 8-dimensional data was finally
obtained, as shown in Table 2.

5.4 Optimization of sample imbalance

From the data volume distribution in Table 1, it can be seen that
the ratio of high-energy discharge with the largest number of
samples and the high-energy discharge and overheating with the
smallest number of samples in the training samples was 19.6:1,
indicating a serious imbalance. Figure 4 shows the change of the
inter-class influence factors of high-energy discharge samples and
high-energy discharge overheating samples with the number of
training times during the training of the traditional NCA model.
For the convenience of comparison, the inter-class influence factors
were scaled according to the maximum and minimum values in the
target interval [0,1]. The actual ratio of the two is about 400:1.

As can be seen from Figure 4, with the training of NCA, the
inter-class influence factor of high-energy discharge samples

TABLE 1 Sample distribution in training and testing dataset.

Status
Type

Total
Number of
Samples

Number of
Trained
Samples

Number of
Test

Samples

LD 80 56 24

HD 279 196 83

LDT 90 63 27

MT 48 34 14

PD 31 22 9

HT 96 68 28

LT 24 18 6

HDT 14 10 4

Total 662 467 195
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gradually increased, while the opposite is true for high-energy
discharge and overheating, and the optimization of the objective
function tended to favor large-class data.

The improved NCA model proposed in this paper was used to
train the fault samples, and the inter-class influence factors of high-
energy discharge samples as well as high-energy discharge and
overheating samples change with the number of training times as
shown in Figure 5.

It can be seen that with the method proposed in this paper,
the inter-class influence factors of the two gradually increased
with training, and the problem of small samples being ignored
due to sample imbalance in Figure 4 was controlled to a
certain extent.

5.5 Hyperparameter tuning

The hyperparameter tuning results of this case obtained
according to the hyperparameter tuning method in this paper,
are shown in Figure 6.

Figure 6A shows the objective function distribution model
obtained based on the historical observation set, where the

slightly smaller dots indicate the sampled observation points,
and the slightly larger dots are the best-estimated feasible points,
that is, the sampling points with the lowest function values
estimated by the latest model. Figure 6B shows a curve
indicating the change of the minimum value of the historical
observation set of the objective function with the number of
iterations during the training process. It can be seen that the
model trained with the optimized hyperparameters saw increased
fault classification accuracy on the test set and enhanced model
diagnostic performance.

If the traditional grid search method is used, that is, a finite set
of parameter value combinations is thoroughly traversed to
evaluate the objective function value, the performance
comparison is shown in Table 3. The results show that the fault
classification accuracy of the test set of the model trained with
hyperparameters optimized by the Bayesian optimization
algorithm is slightly lower than the result of the grid search,
but significantly higher than the accuracy before optimization.
This indicates that the BOA algorithm can effectively optimize the
hyperparameters of the model proposed in this paper, and the
effect is as expected. Also, the computational time cost of the
Bayesian optimization algorithm was reduced by about 19.32s
compared with the grid search, which indicates a significant effect.

TABLE 2 Quantitative Correlation matrix of oil chromatography sample parameters (%).

H2 CH4 C2H2 C2H4 C2H6 CO CO2 Total Hydrocarbon

H2 3.351 4.076 5.616 3.623 2.627 2.899 2.264 4.62

CH4 2.808 5.435 3.623 6.069 1.812 2.264 2.536 5.163

C2H2 1.721 2.083 2.627 1.812 3.351 1.359 1.268 2.355

C2H4 3.351 6.341 4.076 5.435 2.083 2.808 2.174 5.344

C2H6 3.533 3.351 3.351 2.808 1.721 2.627 1.449 3.08

CO 2.627 2.808 2.899 2.264 1.359 5.254 2.627 2.627

CO2 1.449 2.174 2.264 2.536 1.268 2.627 32.428 2.355

Total Hy-drocarbon 3.08 5.344 4.62 5.163 2.355 2.627 2.355 6.703

FIGURE 4
The curves of HD and HDT’s inter-class influence factor.

FIGURE 5
The curve of HD and HDT’s inter-class influence factor.
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5.6 Fault diagnosis analysis and comparison

The transformer faults were diagnosed with the method
proposed in this paper. For comparison, other traditional
methods (three-layer BP-based neural network, support vector
machine (SVM) with radial basis kernel function (RBF), kNN

and uncorrected NCA-kNN) were also used in this paper. In
addition, for a fair comparison, the same Bayesian optimization
algorithm was used to optimize the hyperparameters of each model,
with the learning rate set to 0.001 and the accuracy set to 1e-5. At the
same time, SVM used inter-class imbalanced weight adjustment
during training.

FIGURE 6
Hyper Parameter Tuning Process and Results. (A) Objective function fitting the distribution model; (B) Minimum change curve of the
objective function.

TABLE 3 Performance comparison of hyper parameter optimization methods.

Hyperparameter Optimization Method Grid Search Bayesian Optimization Not Optimized (Default)

Accuracy 0.91795 0.91282 0.80513

Calculation Time/s 33.24 13.92 0

TABLE 4 Comparison of diagnostic accuracy of each model on testing dataset.

Classification Method BPNN SVM KNN NCA-KNN without Correction
Factor Introduced

NCA-KNN with Correction
Factor Introduced

PD 55.6 66.7 77.8 77.8 88.9

LT 50.0 66.7 16.7 33.3 66.7

HDT 25.0 50.0 75.0 75.0 75.0

Accuracy of Minority-class
Samples

47.4 63.2 57.9 63.2 78.9

LD 79.2 58.3 87.5 87.5 87.5

HD 90.4 94.0 89.2 100.0 92.8

LDT 100.0 100.0 88.9 96.3 96.3

MT 92.9 85.7 92.9 100.0 92.9

HT 89.3 50.0 89.3 89.3 92.9

Overall accuracy of general-class
samples

87.7 84.1 86.2 92.8 91.3

Operation Time/s 31.14 22.96 2.95 12.94 14.81
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The diagnostic accuracy and running time were compared.
According to the number of fault samples, partial discharge
(PD), low temperature overheating (LT) and high energy
discharge and overheating (HDT) were classified as minority
samples. The diagnostic results are shown in Table 4.

By analyzing the data in the table, it is known that the traditional
NCA-kNN had the best performance among the five methods from
the perspective of overall diagnostic accuracy, reaching 92.8%, and
the improved NCA-kNNmodel in this paper was secondary, with an
accuracy of 91.3%.

From the perspective of the operation time of each model,
the two NCA-kNN models achieved performance superior to
that of BPNN and SVM algorithms in only about 1/2 to 1/
3 of the time.

From the perspective of the classification accuracy of
minority samples, that is, the recall rate, the NCA-kNN model
with the correction factor proposed in this paper had the best
performance, reaching 78.9%. Besides, it was not less than 60%
for any fault type, more stable than that of other models. The
BPNN model did not adopt any method for training imbalanced
data, the accuracy of minority-class samples was only 47.4%,
which was the worst performance among all models. SVM
adopted the weight adjustment of inter-class imbalance and
slightly reduced the performance difference between minority-
class samples and majority-class samples, but its effect was still
not ideal.

In the k-nearest neighbor (k-NN) algorithm, by adjusting the
distance metric or using a weighted voting mechanism to
introduce a correction factor, and SVM by introducing
weights in the loss function as a correction factor, the model
can pay more attention to minority class samples during training,
thereby improving the classification performance of
minority classes.

It can be seen that the improved NCA-kNN model with the
correction factor proposed in this paper had an overall accuracy rate
of only 1.5% lower than the best value among all the models. Also, its
minority-class sample accuracy was improved by 15%–31%
compared with other models. This indicates that the model had a
good recognition and diagnosis capability for minority-class
samples while ensuring the overall classification performance and
operating efficiency.

6 Conclusion

In this paper, an NCA-kNN fault diagnosis model with a
correction factor was constructed and its application in power
transformer fault diagnosis was analyzed and introduced. Finally,
the following conclusions were drawn through
comparative analysis:

(1) By introducing a correction factor into the objective
function of the NCA algorithm, the issue of small
samples being ignored when optimizing the objective
function due to sample imbalance was controlled to a
certain extent;

(2) The correlation between the parameters of the oil
chromatography samples was discovered by using the

association rule, and the quantified results were used
as the initial values for NCA algorithm training.
Compared with random initialization, the number of
NCA training times was smaller, and the training
efficiency of NCA was improved. After NCA training,
the number of dimensions of the sample decreased, which
reduced the distance calculation time of the KNN
classification network;

(3) The Bayesian optimization algorithm was used to tune the
hyperparameters of the diagnostic model proposed in this
paper. The diagnostic accuracy was improved by 11%
compared with the unoptimized model, and the time cost
was reduced by 19.32s compared with the common grid
search. The operation efficiency optimization effect is obvious;

(4) Through comparison with other machine learning diagnosis
methods, the transformer diagnosis model proposed in this
paper can improve the accuracy of minority class samples by at
least 15%. It only takes about half the processing time for the
model to achieve an overall accuracy that is better than that of
traditional machine learning algorithms. Besides, themodel has
good performance in overall classification, operation efficiency
and classification of minority class samples.
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