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Analysis of primary side
turn-to-turn short circuit fault in
PT at the generator outlet and
diagnosis using CSSA-GMM

Yang Wei*, Chen Li, Yuangao Ai, Hongwan Shen, Shai Zeng and
Yue Sun

Three Gorges Hydropower Plant, China Yangtze Power Co., Ltd., Yichang, China

In power systems, potential transformers (PTs) are responsible for stepping down
high voltage to low voltage. However, a short circuit between turns on the
primary side of a generator outlet PT can significantly reduce the secondary
phase voltage, leading to voltage imbalances and generating fundamental zero-
sequence voltage. This situation is analogous to a stator winding ground fault,
often resulting in incorrect protective operations. To prevent such malfunctions,
this paper analyzes the causes of false tripping through simulation and proposes
a fault diagnosis model based on the Circular Sparrow Search Algorithm
(CSSA)-optimized Gaussian Mixture Model (GMM), referred to as the CSSA-
GMM model. A fault simulation model was established using Simulink to verify
the differences between turn-to-turn short circuits and stator ground faults,
and their electrical characteristics were studied. The results indicate that under
different fault types, parameters such as the three-phase primary current and
three-phase secondary voltage exhibit varying relationships and fault variations.
By optimizing the GMM parameters using CSSA and comprehensively analyzing
the voltage and current characteristics, this model can effectively diagnose
turn-to-turn short circuit faults at various short-turn ratios, achieving an
accuracy rate of up to 98%. This approach clearly distinguishes PT turn-to-
turn short circuits from generator outlet stator ground faults, providing new
insights for fault recognition and supporting the intelligent development of relay
protection systems.

KEYWORDS

power transformer, inter-turn short circuit fault, stator ground fault, Gaussian mixture
model, circular sparrow search algorithmpotential transformer, circular sparrow search
algorithm

1 Introduction

Potential transformers (PTs) are critical components in power systems, responsible
for converting high transmission voltages into the lower voltages required by relays
and measuring equipment (Mejia-Barron et al., 2017). Due to the direct connection of
the PT’s primary side to high-voltage systems, they must adhere to stringent insulation
performance standards. Factors such as uneven voltage distribution across the windings,
inadequate maintenance, and environmental influences like lightning and humidity can
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significantly increase the risk of PT failure. These conditions may
subject the transformer tomechanical, electrical, or thermal stress,
potentially leading to insulation breakdown (Sun et al., 2019).
This concern is particularly acute at the generator output, where
such failures could result in severe power outages (Lei et al.,
2014). Currently, traditional methods for addressing inter-
turn short circuits in PT windings, such as lightning impulse
testing and partial discharge techniques, have limitations. These
include complex modulation setups and poor resistance to
electromagnetic interference(Portuguesetal.,2008).Additionally,
for transformers with high turn ratios, issues like transformer
ratiomeasurements andwindingDC resistancemeasurements are
not immediately apparent. The application of frequency response
analysis is also challenging due to its limited scope and difficulty
in implementation (Sun et al., 2021).

When a ground fault occurs in the stator winding of a generator,
the fundamental zero-sequence stator protection, established
using voltage data measured through the PT at the generator
outlet, can effectively safeguard against significant accidents
(Jaafari et al., 2017). However, if an inter-turn short circuit fault
occurs on the primary side of the PT at the outlet, the equivalent
impedance of that phase relative to ground decreases, while the
impedances of the other two phases remain unchanged. This
imbalance in the stator’s three-phase ground impedance can
result in specific zero-sequence voltages at the machine terminal
and the neutral point, potentially triggering the fundamental
zero-sequence voltage ground protection (Davarpanah et al.,
2016). Therefore, it is crucial to analyze the mechanism by
which inter-turn short circuits in the PT’s primary winding
lead to the activation of stator ground protection in order to
develop a universal diagnostic method that prevents erroneous
protection activations.

Since the structure of PT is similar to that of conventional
transformers, diagnostic methods developed for inter-turn short
circuit faults in transformers can be adapted for PT. González
et al. analyzed the effects of load, fault location, fault severity,
and load power factor on transformer performance. Their results
indicated that, under unbalanced conditions, comparisons of
phase currents can effectively identify the presence of internal
transformer faults (González et al., 2004). Meira et al. proposed
a strategy for detecting inter-turn short circuits in transformers
by monitoring electrical variables and utilizing differential
admittance to derive diagnostic indicators (Meira et al., 2024).
Additionally, Ballal et al. demonstrated that continuous monitoring
of the primary side voltage, current, and load patterns enables
early detection of inter-turn faults (Ballal et al., 2015). By
analyzing electrical quantities during both faulted and normal
operating conditions, effective diagnostics for inter-turn faults
can be achieved.

In recent years, there has been an increasing emphasis on
inter-turn short circuit faults in PTs, with numerous researchers
exploring detection methods specifically tailored for these faults.
Nie et al. were the first to identify the characteristic parameters
of the high-voltage winding in dry-type voltage transformers,
investigating how these parameters vary with frequency under
both fault andnon-fault conditions.Basedon these characteristics,
they utilized a pulse voltage method to detect inter-turn short

circuit faults in dry-type voltage transformers (Nie et al.,
2023). Li et al. introduced two innovative sensitivity methods
for identifying inter-turn faults in voltage transformers during
operation, concentrating on the excitation current and the phase
difference between the primary voltage and excitation current.
Their findings revealed that the severity of inter-turn faults
is positively correlated with excitation current and negatively
correlated with phase difference (Li and Guo, 2022). Their
research emphasizes the importance of waveform characteristics
following inter-turn short circuits during PT operation for
effective fault diagnosis. Zhang et al. proposed a knowledge-
assisted online detection method that significantly improves the
fault detection efficiency of capacitive PTs (Zhang et al., 2024). Liu
et al. combined traditional approaches with modern technology,
employing hybrid algorithms to diagnose inter-turn short circuit
faults in PTs (Liu et al., 2021). Therefore, for inter-turn short
circuit faults in PTs at the generator outlet and stator ground
faults in the generator, it is essential to combine traditional
fault analysis methods with modern intelligent technologies for
effective fault diagnosis.

Artificial intelligence techniques, such as neural networks
(Sun et al., 2021; Yang et al., 2023) and deep learning (Wang et al.,
2019), have demonstrated significant potential in the field of fault
diagnosis due to their robust data analysis capabilities, which
are particularly well-suited to the complexities of power system
faults (Liang et al., 2023). Zhang et al. combinedVariationalMode
Decomposition (VMD) with Convolutional Neural Networks
(CNN) to accurately identify fault locations and types in a small
current grounding source system model for relay protection
dynamic simulation (Zhang et al., 2022). Hu et al. proposed a
novel fault diagnosis framework based on deep learning that
incorporates anti-interference capabilities, enabling the online
extraction of key fault features from the complex operational
data of power systems and the assessment of fault conditions
and types (Xu et al., 2023). The Gaussian Mixture Model (GMM)
has emerged as a promising method for fault classification,
with numerous studies employing GMM techniques for fault
diagnosis and identification (Yan et al., 2017). Ribeiro Junior et al.
utilized a combination of GMM and Mahalanobis distance to
achieve high accuracy in identifying motor faults (Ribeiro et al.,
2023). Maliuk et al. enhanced classification performance for
bearing fault diagnosis using GMM (Maliuk et al., 2021).
The GMM holds considerable promise in the fields of fault
diagnosis and classification.

This paper first analyzes the fault characteristics of inter-
turn short circuits on the primary side of PT at the generator
outlet, conducting an equivalent circuit analysis to understand
the causes of stator ground protection activation. Building upon
this analysis, a model for inter-turn short circuits and stator
ground faults is developed using MATLAB and Simulink to obtain
relevant electrical quantities.The voltage and current characteristics
obtained from the simulations serve as training parameters to
construct a PT fault diagnosis model based on GMM, which is
further optimized using the Sparrow Search Algorithm (SSA) to
achieve high diagnostic accuracy. This method relies solely on the
electrical parameters of the circuit and can operate under live
conditions. It can be applied for the detection of PT inter-turn
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FIGURE 1
Equivalent Circuit of PT at the generator outlet.

short circuits, thereby preventing erroneous activations of stator
ground protection.

2 Analysis of inter-turn short circuit in
primary winding of generator outlet
PT

Currently, the stator ground protection system for large
generator units is typically set up using both fundamental zero-
sequence voltage protection and third harmonic protection. This
combination ensures comprehensive 100% coverage for stator
ground faults.The fundamental zero-sequence voltage stator ground
protection effectively addresses approximately 90% of single-phase
ground faults occurring in the stator windings, from the machine
terminal to within the machine itself (Zielichowski and Fulczyk,
2003). In contrast, the third harmonic stator ground protection
accounts for about 20% of single-phase ground faults in the
stator windings, extending from the generator’s neutral point into
the machine (Friedemann et al., 2020; Zhu Y et al., 2018). This
configuration compensates for the protection of the dead zone
associated with the fundamental zero-sequence voltage near the
neutral point (Safari-Shad and Franklin, 2015).

From the perspective of the fundamental zero-sequence voltage
stator ground protection system, its coverage includes the generator
stator windings and the busbar area. This area extends from the
generator terminal to both the main transformer and the plant
transformer. Any ground faults occurring within this area will
activate the stator ground protection (Barkas et al., 2024). This
section presents a fault characteristic analysis based on an event
in which the stator ground protection was triggered, resulting
in the tripping of a generator due to an insulation fault in the
voltage transformer at the generator terminal. The equivalent
circuit of the voltage transformer at the generator terminal is
illustrated in Figure 1.

In Figure 1, CA, CB and CC represent the equivalent capacitance
of each phase of the generator voltage system to ground, and RN
represents the low-resistance value of the generator neutral point.
ĖA, ĖB, and ĖC denote the electromotive forces (EMF) of the
generator’s stator A, B, and C phases, respectively. ZA, ZB and ZC are
the impedances of the primary side of the PT to ground for phases A,
B, and C, respectively. According to Kirchhoff ’s current law (KCL),

the neutral point to ground zero-sequence voltage of the generator
can be solved, as shown in Equation 1:

U̇NN′ = −
ĖAYA + ĖBYB + ĖCYC

YA +YB +YC +
1
RN

(1)

where YA, YB, and YC represent the admittance of phases A, B, and
C to ground at the generator terminal, respectively. Under normal
operating conditions, the admittances of the three phases to ground
are approximately equal, at which point the neutral point voltage
U̇NN′ is approximately zero.

Assuming under normal conditions that the equivalent
capacitance to ground for all three phases is equal, denoted as
C, and the secondary load impedance of the PT is equal for all
phases, denoted as z, with the PT’s voltage transformation ratio
beingNT. When an inter-turn short circuit occurs on phase A of the
PT primary side, let the short-circuit turn ratio be α (0 < α ≤ 100%).
In this case, the voltage transformation ratio for phase A becomes
(1− α)NT. Based on the turns ratio, the phase-to-ground impedance
on the primary side of phase A during an inter-turn short circuit
can be calculated, as shown in Equation 2:

{{{{
{{{{
{

ZA = (1− α)2N2
Tz

ZB = ZC = N2
Tz

Y = jωC+ 1
Z

(2)

By substituting Equation 2 into Equation 1, the following can
be obtained:

U̇NN′ = −
[1− (1− α)2]

N2
Tz(j3ωC+

1
RN
) + [1− 2(1− α)2]

(3)

According to the national guidelines for PT selection and
calculation, let the rated output capacity of the generator outlet PT
be Sn, with a rated phase voltage of 57.74 V on the secondary side.
The secondary load is calculated as k (25%–100%) times the rated
output capacity, with a power factor of 0.8 lagging. The secondary
load impedance of the PT is then:

z = 57.74
2

Sn
k(0.8+ j0.6) (4)

In order to limit the dynamic overvoltage to no
more than 2.6 times the rated phase voltage, it is
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required that RN ≤ 1/3ωC. Therefore, it is set as
Equation 5:

RN ≈
1

3ωC
(5)

By substituting Equations 4, 5 into Equation 3, it becomes
possible to solve for U̇NN′ . To facilitate the analysis, the coefficients
of the variables can be simplified, resulting in Equation 6, which uses
the ĖA as the reference point.

{{{{{{{{{{{{{{
{{{{{{{{{{{{{{
{

U̇NN′ = ĖA(−A+ jB)

A =
[1− (1− α)2][1+ 2(1− α)2 + 0.2ρ]

[1+ 2(1− α)2 + 0.2ρ]2 + (1.4ρ)2]

B =
[1− (1− α)2]1.4ρ

[1+ 2(1− α)2 + 0.2ρ]2 + (1.4ρ)2]

ρ =
[57.74NT(1− α)]2k

RN·Sn

(6)

where, A, B, and ρ are all greater than zero. At this point,
the phase-to-ground voltages for all three phases can be solved,
as shown in Equation 7:

{{{{{{
{{{{{{
{

U̇A = ĖA + U̇NN′ = [(1−A) + jB]ĖA

U̇B = ĖB + U̇NN′ = e
−j120°ĖA + U̇NN′ = [−(A+

1
2
)+ j(B−

√3
2
)]ĖA

U̇C = ĖC + U̇NN′ = e
j120°ĖA + U̇NN′ = [−(A+

1
2
)+ j(B+

√3
2
)]ĖA

(7)

Based on Equation 7, the modulus of the phase-to-ground
voltages for all three phases can be solved. It can be observed that
when an inter-turn short circuit occurs on phase A, the phase-to-
ground voltage of phase C is the highest. Additionally, |U̇C|

2 > |ĖA|
2,

showing that the voltage of phase C increases during a short circuit
in phase A. The voltage magnitude relationship between the other
two phases depends on the short-circuit turn ratio.

Similarly, thephase-to-groundvoltageexpressions forashortcircuit
in phases B and C can be derived. By solving and comparing their
modulus values, it is determined that when a short circuit occurs in
phaseB, thevoltageofphaseAincreases, andwhenashort circuitoccurs
in phase C, the voltage of phase B increases. Based on this analysis, the
following pattern can be observed: when an inter-turn short circuit
occurs in the primary winding of the generator outlet PT, the phase
immediately following the one with the highest voltage is the faulted
phase. This behavior is analogous to the fault characteristics observed
when the stator is grounded through a transition resistor. Additionally,
due to the voltage imbalance among the threephases, the zero-sequence
voltage obtained from the PT’s secondary-side voltage data collection
will exceed the threshold set for fundamental zero-sequence voltage
stator protection, resulting in a false trip.

3 Simulation modeling analysis of PT
inter-turn short circuit and stator
grounding

The analysis of the equivalent model for the PT inter-turn short
circuit at generator outlets has identified the causes of erroneous stator

grounding protection. However, it is still unclear how to effectively
distinguish between the two types of faults. This highlights the need
for further investigation into their characteristics. Creating simulation
models toanalyze these fault characteristicsatdifferent stages is essential
for improving fault diagnosis methods. Numerous researchers have
explored the causes of electrical equipment faults through modeling
(Noda et al., 2016; Maliuk et al., 2021). In this study, we employed
widely used electrical simulation software, MATLAB and Simulink, to
create circuit models for both fault types.We captured the variations in
electrical parameters at the moment of fault occurrence, validated this
numerical analysis, and obtained additional fault characteristics. This
work lays the groundwork for future fault diagnosis efforts.

As shown in Figure 2, a circuit model was developed to analyze
a stator winding single-phase ground fault and an inter-turn short
circuit fault at the primary side of the PT at the outlet, all within the
same generator structure.The single-phase PT fault is represented as
a three-winding transformer with a short circuit occurring in one of
the phases. Following the design in Figure 2, the simulation model
was finalized, as depicted in Figure 3.The three-phase generator was
simulated by configuring three single-phase voltage sources with
different phases, each having a voltage level of 6060 V. The stator
winding impedance Z was set to (100 + j0.001) Ω, and the three-
phase capacitance to ground was set at 0.5 × 10−6 F to facilitate
numerical simulation design.

In Figure 3A, three three-winding transformers are utilized to
illustrate the internal structure of the PT at the generator outlet.The PT
is classified as a capacitive voltage transformer with a transformation
ratio of 100:1. When a fault occurs, a controllable switch is used to
short-circuit the selected winding proportion, enabling us to capture
the changes in electrical parameters at the moment of the fault. The
short-circuit turn ratio is configured through the transformer module.
The parameter design process for the stator grounding fault simulation
model is analogous, with a denoting the proportion of the single-phase
grounding fault in the stator winding.

The simulation calculation is set to 0.5 s, with the fault occurring
at the 0.1-s mark. By collecting and comparing the characteristics
of the electrical parameters, we validate that PT faults may lead to
erroneous stator grounding protection and investigate the variations
in other electrical parameters.

When a 1% inter-turn short circuit occurs in the C-phase
winding of the primary side of the PT, the resulting three-phase
secondary voltages and the zero-sequence voltage are illustrated in
Figures 4, 5. It can be observed that during the fault in the C phase,
the B-phase voltage reaches its peak value of 72.59 V, exceeding the
normal voltage magnitude of 57.82 V. In contrast, the voltage in the
faulted C phase drops to a minimum of 42.25 V, while the A-phase
voltage measures 46.78 V, which is slightly higher than that of the C
phase but still below the normal voltage level.

As a result of this voltage imbalance, the zero-sequence voltage
significantly increases after the fault, reaching 26 V.This observation
confirms that when an inter-turn short circuit fault occurs in one
phase of the PT’s primary side, the phase with the highest voltage
corresponds to the adjacent faulted phase.

When a fault occurs in the generator stator winding,
existing methods typically utilize a combination of zero-sequence
fundamental frequency voltage protection and third harmonic
voltage protection to detect and diagnose stator winding faults.
The operational principle of the fundamental zero-sequence
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FIGURE 2
Model schematic for generator stator winding and outlet PT fault. (A) Inter-Turn Short Circuit on the Primary Side of the generator outlet PT. (B) Stator
Grounding Fault in a Generator.

voltage stator grounding protection is based on the idea that even
with a high-resistance grounding transition, the resulting voltage
imbalance will still generate a fundamental zero-sequence voltage
when a grounding fault occurs in the generator winding (Tai and
Juergen, 2006). As illustrated in Figures 6, 7, when a grounding fault
with high transition resistance occurs near the generator neutral
point, the three-phase voltage and fundamental zero-sequence
voltage waveforms on the secondary side of the PT can be observed.
In this scenario, when the C phase experiences a fault, the B phase
voltage rises to a peak of 82.85 V, exceeding the normal voltage
magnitude of 58.76 V. Conversely, the voltage in the faulted C phase
drops to a minimum of 44.24 V, while the A phase voltage measures
49.48 V, slightly higher than that of the C phase and close to the
normal voltage level.

Due to this voltage imbalance, the zero-sequence voltage
significantly increases after the fault occurs, reaching a level of
23 V. This observation indicates that the electrical characteristics
during an inter-turn short circuit fault in the primary winding of
the PT at the generator outlet are similar to those observed during
a fault in the generator stator winding. Specifically, when a fault
occurs in one phase, the voltage magnitude of the preceding phase
on the secondary side of the PT increases noticeably, while the
voltage of the faulted phase decreases significantly. This results in a
marked increase in the zero-sequence voltage on the secondary side,
ultimately triggering the fundamental zero-sequence voltage stator
grounding protection.

Measurements of voltage indicate that when a fault occurs, the
characteristics observed on the secondary side of the PT during a
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FIGURE 3
Establishment of the simulation model for generator stator winding and outlet PT fault. (A) Inter-Turn Short Circuit on the Primary Side of the generator
outlet PT. (B) Stator Grounding Fault in a Generator.

primary winding inter-turn short circuit are similar to those seen
during a generator stator ground fault. Therefore, it is crucial to
introduce new fault characteristics to differentiate between these
two types of faults. Using a simulation model, we obtained the
three-phase current waveforms on the primary side of the PT under
various fault conditions, as illustrated in Figures 8, 9. In the case of
an inter-turn short circuit in the PT, when the C phase experiences
a short circuit, the impedance of that phase decreases. As a result,
with equal voltage across the generator’s three phases, the primary
current of the C phase significantly increases to 0.631 A, the highest
among the three phases, surpassing the normal operating current.
Conversely, during a stator ground fault, the relationships among

the three-phase currents reflect those of the secondary side voltages.
When a single-phase ground fault occurs in the C phase winding,
the current value remains lower than the normal operating current,
despite the high impedance of the transition resistance.

This analysis indicates that variations in primary current occur
during different types of faults. However, the factors influencing
primary current are numerous, and fluctuations may arise during
actual diagnostics due to changes in system load and the generator’s
power factor. Therefore, identifying the generator outlet PT inter-
turn faults and stator ground faults requires a comprehensive
consideration of their electrical characteristics, which prompts the
development of new fault diagnosis methods.
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FIGURE 4
Three-phase voltage on the secondary side during inter-turn short circuit on the primary side of PT.

FIGURE 5
Zero-sequence voltage on the secondary side during inter-turn short circuit on the primary side of PT.

FIGURE 6
Three-phase voltage on the secondary side of PT during stator ground faults.

4 Diagnosis of generator outlet PT
primary side inter-turn short circuit
fault using CSSA-GMM model

To address the erroneous activation of stator ground protection
resulting from inter-turn short circuit faults on the primary

side of the PT at the generator outlet, this study conducts a
numerical analysis of the underlying mechanisms using equivalent
circuit calculations. Additionally, it replicates similar fault scenarios
through simulation modeling. This approach allows for the
investigation of the overall fault characteristics of both fault
types and the reasons for misjudgment. In recent years, artificial
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FIGURE 7
Zero-sequence voltage on the secondary side of PT during stator ground faults.

FIGURE 8
Three-phase current on the primary side of PT during inter-turn short circuit faults.

FIGURE 9
Three-phase current on the primary side of PT during stator grounding faults.

intelligence algorithms, such as neural networks and machine
learning, have been widely employed in the fault diagnosis and
analysis of electrical equipment (Qiu et al., 2023; Wang et al., 2023).
Thesemethods offer new insights and ways to improve the efficiency
and accuracy of fault detection. Researchers have utilized various
artificial intelligence techniques, including CNN, Long Short-Term

Memory (LSTM) models, and Deep Belief Networks, to diagnose
faults in power equipment, such as transformers and generators
(Xu et al., 2023; Ning and Pei, 2024). GMM is widely utilized for
describing mixed density distributions, representing a combination
of multiple Gaussian distributions (Etienam et al., 2024). In
the context of machine learning classification problems, GMM
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effectively captures the distribution characteristics of data within
classes in the feature space. This capability highlights its significant
potential in the field of fault classification and diagnosis. Therefore,
this study develops a GMM-based fault diagnosis model for the
generator outlet, utilizing the fault mechanisms and characteristics
identified in the previous sections. The diagnosis logic aligns with
real-world conditions.

GMM is statistical models used to describe multiple Gaussian
distributions within a dataset. They assume that data points are
generated from a combination of different Gaussian components,
which together form a complex probability distribution (Guan et al.,
2024). Each Gaussian component is defined by its mean, covariance,
and mixing weight, with the weight indicating the significance of
that component within the overall model. The probability density
function of a GMM can be expressed as follows:

P(x) =
K

∑
K=1

πk ·N(x|μk,∑
k
) (8)

where K represents the number of components, and N(x|μk,∑k )
denotes the probability density function of the kth Gaussian
distribution.

Training a GMM typically employs the Expectation-
Maximization (EM) algorithm, which consists of two key steps:
In the Expectation step, the posterior probability that each data
point belongs to each component is calculated, as follows:

P(zn = k|xn ) =
πk ·N(x|μk,∑

k
)

K

∑
j=1

πj ·N(x|μj,∑
j
)

(9)

In theMaximization step, based on these posterior probabilities,
the model parameters are updated.The newmixing weights, means,
and covariances are updated as follows:

{{{{{{{{{
{{{{{{{{{
{

πk =
Nk

N

μk =
1
Nk

N

∑
n=1

P(zn = k|xn )xn

∑
k
= 1
Nk

N

∑
n=1

P(zn = k|xn )(xn − μk)(xn − μk)
T

(10)

where Nk represents the total weight of the kth component. This
iterative process continues until the model parameters converge.

In diagnosing inter-turn short-circuit faults in generator outlet
PTs using the GMM method, a comprehensive analysis of voltage
and current characteristics is conducted.After initializing the feature
quantities, the GMM is constructed, and the probability density
function ismodeled.This study focuses on seven primary fault types:
inter-turn short-circuit faults on the primary side of three-phase PTs
at generator outlet, ground faults in three-phase generator stator
windings, and normal operating conditions. The fault diagnosis
system is designed to accommodate various voltage levels and
accurately diagnose different degrees of fault severity.

To facilitate the accurate identification of faults across multiple
voltage levels and varying short-circuit ratios, a simulation model
generated a total of 411 datasets corresponding to different fault
categories.These datasets comprise nine features: the effective values

of three-phase voltage on the secondary side of the PT, effective
values of three-phase current on the primary side of the PT, the
effective values of the fundamental zero-sequence voltage on the
secondary side of the PT, the transformation ratio of the PT, and
the voltage level. After shuffling the data, the datasets were divided
into training, validation, and test sets in an 8:1:1 ratio for model
training. To enhance the accuracy of the model, two hidden layers
were established, each containing 32 neurons. Figure 10 illustrates
the training process and results of the model utilizing only the
GMM approach.

As illustrated in Figure 10, the GMM model demonstrates a
high degree of fit during both the training and validation phases;
however, there remains potential for improvement in diagnostic
accuracy during testing. This limitation can be attributed to factors
such as the relatively small size of the training dataset and the high
dimensionality of the features. Figure 10D indicates that the model’s
accuracy is 83.055%.Therefore, it is essential to optimize the model.
After establishing the GMM, appropriate optimization algorithms
should be employed to address the unknown parameters within the
model, thereby enhancing its accuracy.

Swarm Intelligence Optimization is a stochastic optimization
algorithm that shows the behavior of natural populations
(Demirdelen et al., 2022). This approach is less sensitive to initial
conditions and demonstrates strong adaptability, making it widely
applicable in various parameter optimization scenarios. The SSA
is an emerging swarm intelligence optimization technique that
mimics the cooperative and competitive behaviors of sparrows
during foraging (Li and Jia, 2022). The core concept of the SSA
is to facilitate cooperation and exploration within the search space
through two distinct roles: scouts and followers. Key steps in the
algorithm include initializing the positions and velocities of the
sparrows, followed by evaluating their fitness based on the objective
function. Scouts update their positions during the search process
using the following formula:

Xnew
i = Xi + r1 · (Xb −Xi) + r2 · (Xj −Xi) (11)

where Xi represents the position of the ith sparrow, Xb denotes the
position of the currently optimal sparrow, X j refers to the positions
of surrounding sparrows, and r1 and r2 are random numbers.

In each iteration, scouts search for better solutions by updating
their positions, while followers replicate the actions of the scouts.
Through continuous iterations, the sparrow population gradually
converges toward the optimal solution, ultimately achieving global
optimization.This algorithm has demonstrated strong performance
in function optimization, engineering design, and other complex
problems. Compared to the Grey Wolf Optimization (GWO)
algorithm (Guan et al., 2024) and the Particle Swarm Optimization
(PSO) algorithm (Wang et al., 2023), the SSA algorithm exhibits
greater stability and higher optimization accuracy. However, as
it is still in the developmental stage, it has certain limitations.
Specifically, the algorithm employs random initialization of the
population without prior knowledge, which can result in uneven
distributions of the initial population. To address this issue, a circular
chaotic mapping approach is utilized to initialize a more stable
and uniformly distributed sparrow population. By employing the
CSSA, the established GMM is effectively solved, resulting in the
CSSA-GMM fault diagnosis model. The model training results are
presented in Figure 11.
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FIGURE 10
Training process and testing results of the GMM fault diagnosis model. (A) Training process of the training set. (B) Training process of the validation set.
(C) Testing results of the test set. (D) Density plot of testing results for the test set.

Figure 11 illustrates that the CSSA-GMM model proposed
in this study demonstrates superior performance in diagnosing
and distinguishing between inter-turn short-circuit faults and
stator ground faults in generator outlet PTs, achieving an
accuracy of 99.478%. In the actual detection process, there are
errors in data collection; therefore, when establishing a fault
diagnosis model, it is necessary to consider that the data may
contain noise. This paper re-obtained 40 sets of data through
simulation and processed the original measurement data by
adding Gaussian white noise (Yang et al., 2016). The already
trained GMM-CSSA model was then tested. Although its accuracy
decreased, it remained above 95%, indicating that the model has
a certain level of robustness and reliability. To further validate
the effectiveness of this method, diagnostic tests were conducted
using other artificial intelligence algorithms, with the training
results presented in Table 1. In comparison, the method introduced
in this paper significantly enhances fault diagnosis accuracy,
consistently maintaining a high level of precision across various
voltage levels and effectively identifying different degrees of
fault severity.

5 Summary and prospects

PTs play a crucial role in power systems by converting high
transmission voltages into lower voltages that are suitable for
relays and measuring devices. However, when an inter-turn short-
circuit fault occurs on the primary side of the PT at the generator
outlet, the voltage of the faulted phase on the secondary side
significantly decreases, while the voltage on the preceding phase
markedly increases. This voltage imbalance leads to the emergence
of fundamental zero-sequence voltage, a characteristic similar to
that observed in stator winding ground faults of generators. Such
similarities can often result in the misoperation of zero-sequence
voltage protection, leading to unnecessary losses. To prevent these
misoperations and develop novel fault diagnosismethods, this paper
begins with an equivalent circuit analysis of inter-turn short-circuit
faults on the primary side of the generator outlet PT. Numerical
calculations are utilized to elucidate the causes of misoperation. A
simulation model for both PT inter-turn short-circuit faults and
generator statorwinding ground faults is established using Simulink,
which validates the numerical analysis through simulations. This
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FIGURE 11
Training process and testing results of the CSSA-GMM fault diagnosis model. (A) Training process of the training set. (B) Training process of the
validation set. (C) Testing results of the test set. (D) Density plot of testing results for the test set.

TABLE 1 Different Artificial Intelligence Techniques for Identifying Inter-Turn Short-Circuit Faults in generator outlet PT.

Methods Training set accuracy Validation set accuracy Test set accuracy Noisy set accuracy

Multiple Linear Regression 80.874% 87.024% 81.643% 72.147%

Support Vector Machine 80.374% 86.839% 79.585% 77.231%

GMM 99.986% 94.068% 90.545% 86.397%

CSSA-GMM 99.998% 99.284% 99.466% 96.478%

model demonstrates the distinctions between inter-turn short-
circuit faults and stator ground faults, and it investigates their
electrical characteristics.

The electrical characteristics of these two fault types are
similar, exhibiting only subtle differences. Therefore, it is essential
to integrate both voltage and current features for effective fault
diagnosis. To ensure that the electrical characteristics are adaptable

across various voltage levels and can accurately identify faults
under different severity conditions, this study combines neural
network technology with electrical analysis. We propose a CSSA-
GMM neural network diagnostic model that employs the CSSA
to determine the unknown parameters in the GMM, thereby
enhancing model accuracy. This method effectively diagnoses both
PT inter-turn short-circuit faults and stator ground faults, achieving
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an accuracy of 99.466% across various voltage levels and different
short-circuit ratios. Despite the influence of noise, the accuracy
remains at 96.478%. The model presented in this study offers a
reliable approach for diagnosing and distinguishing PT inter-turn
short-circuit faults at generator outlets, which are oftenmisidentified
at the generator outlet. This advancement contributes to the
intelligent fault recognition capabilities of relay protection systems.
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