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Introduction: Accurate and rapid carbon accounting method for the power
industry is crucial to support China’s low-carbon transformation. Currently,
carbon emission accountingmethods are based on slowly updated fuel statistics
or expensive monitoring equipment, resulting in high costs and delays in carbon
emission estimation. Power data offers high real-time availability, accuracy,
and resolution, and exhibits a strong correlation with carbon emissions. These
characteristics provide a pathway for achieving rapid and precise annual carbon
emission accountings. However, carbon emission data inherently exhibits small
sample characteristics, making these methods less effective in small sample
conditions and leading to lower accounting accuracy.

Methods: Therefore, this paper proposes an augmented pre-training-based
“electricity-to-carbon” method under small sample conditions.

Results: This approach utilizes the correlation between electricity and carbon
data as well as the autocorrelation characteristics of carbon emission data to
construct a machine learning-based electricity-carbon fitting model for rapid
and accurate carbon emission estimation. To address the challenges of small
sample learning, this paper introduces an interpolation pre-training method to
optimize themodel’s hyperparameters and conserve samples formodel training,
thereby improving the model’s generalization and robustness.

Discussion: Case studies on a real dataset verifies the effectiveness of the
proposed method. The findings of this study can promote the development
of carbon measurement technology and facilitate the low-carbon transition of
developing countries.

KEYWORDS

carbon emission accounting, small sample, machine learning, data augmentation, light
gradient boosting machine

1 Introduction

Since the Industrial Revolution, global greenhouse gas emissions have continuously
increased, leading to increasingly severe climate issues (IEA, 2023). Controlling
greenhouse gas emissions and addressing climate change have become critical
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challenges that countries must face. In 2020, China proposed the
“carbon peak and carbon neutrality” goal, regarded as powerful
measures to tackle global climate issues (Jiang et al., 2022).

Accurate and rapid carbon emission accounting methods
are fundamental for various entities to undertake low-carbon
initiatives, playing a vital guiding and supportive role (Wang et al.,
2024). Currently, methods for annual carbon emission accounting
can generally be categorized into the fuel emission factor
method, material balance method, and direct monitoring
method. The fuel emission factor method calculates carbon
emissions as the product of the emission factor and activity
data (Chaudhari and Mulay, 2019). The material balance method
indirectly accounts carbon emissions through the input materials,
based on the law of conservation of mass (Kim et al., 2023).
Whereas the direct accounting method primarily relies on
continuous emission monitoring systems for real-time carbon
emission tracking (Zubair et al., 2023). While these methods
can effectively account for carbon emissions, they have notable
limitations. The fuel emission factor and material balance methods
rely on precise energy consumption statistics, which often
require extensive statistical periods, resulting in delayed carbon
emission accounting. The direct monitoring method can obtain
real-time, accurate carbon emissions for individual entities but
requires expensive carbon emission monitoring equipment, making
widespread adoption for carbon emission accounting challenging.

In response, some researchers have proposed research on
“electricity-to-carbon conversion” (Zhang et al., 2019), which
bases on the correlation between carbon emissions and electricity
generation/consumption. In this method, the real-time electricity
data are used as measured value for carbon emission estimation
and regression analysis is employed to estimate the carbon
emissions. This method contingent on two key premises: (1)
there is a strong correlation between electricity data and carbon
emissions, with statistics indicating a correlation coefficient
exceeding 0.9 (Li et al., 2024), which will intensify with increasing
electrification; (2) Benefit fromChina’s robust electricitymonitoring
infrastructure, electricity data possess real-time accuracy, high
resolution, and broad collection scope, making rapid carbon
emission calculations possible (Huang et al., 2025). The crux of
“electricity-to-carbon conversion” lies in fitting the relationship
between electricity data and carbon emission data.Machine learning
methods can uncover the intrinsic connections between these
two variables, providing a feasible pathway for quick and precise
“electricity-to-carbon conversion”.

Currently, numerous studies by domestic and international
scholars focus onmachine learning-based approaches to “electricity-
to-carbon conversion”. For instance, literature (Aras and Van,
2022) proposes an interpretable forecasting framework based on
Shapley Additive Explanations (SHAP), which not only accurately
predicts future values of carbon dioxide emissions but also reveals
the contribution of electricity consumption to the predictions,
thereby providing more effective decision support for policymakers.
Literature (Li et al., 2018) analyzes the main energy sources in the
Beijing-Tianjin-Hebei region, highlighting the significant impact
of electricity consumption on carbon emissions, and uses various
machine learning models to predict future carbon emissions in the
region.These studies validate the effectiveness of machine learning-
based “electricity-to-carbon conversion”, yet some practical issues

remain unresolved when applying it to annual carbon emission
accounting in China. China’s carbon accounting research starts
relative late, resulting in a lack of comprehensive statistical data.
Most energy-related statistical data in yearbooks are annual, without
quarterly and monthly data. Consequently, China’s annual carbon
emission data inherently exhibit small sample characteristics. For
example, provincial-level annual carbon emission data publicly
disclosed by Carbon Emission Accounting and Datasets (CEADs)
began in 1997, only contains fewer than 30 data points to date
(Shan et al., 2018; Shan et al., 2020; Xu et al., 2024). Since machine
learning methods rely on a large number of training samples,
this small sample condition poses challenges for training and
optimization, preventing them from achieving their full potential.

To address these challenges, this paper proposes an “electricity-
to-carbon conversion” method based on augmentation pre-training
optimization strategy under small sample condition for rapid
and accurate annual carbon emission accounting. Specifically,
this method utilizes the correlation between electricity and
carbon emissions, incorporating historical carbon emission data
as additional input to enhance the accuracy of carbon emission
accounting. To address the small sample challenge, this paper
proposes an augmentation pre-training model optimization
strategy, training model on an augmented dataset generated
through interpolation augmentation to optimize the model’s
hyperparameters, thereby improving the model’s generalization
ability and robustness under small sample conditions. Experimental
results on the Guangdong provincial-level electricity-carbon dataset
demonstrate that the proposed method significantly improves the
accuracy of annual carbon emission accounting compared to various
baseline methods.

2 Problem statement and overall
framework

2.1 Problem statement

Traditional machine learning-based “electricity-to-carbon
conversion” methods typically formulate the accounting problem
as a regression model, where electricity data for the target year t,
Pt is used to estimate the carbon emissions Ct for that year. Due
to the autocorrelation between historical carbon emissions data
{Ct−s,Ct−s+1,⋯,Ct−1} and the carbon emissions Ct of the target year
(where s represents the input length of the historical data), this paper
incorporates historical emissions as inputs into the “electricity-to-
carbon conversion” model. In summary, this relationship can be
expressed as shown in Equation 1:

Ct = f(Pt,Ct−1⋯,Ct−s) (1)

Where f(⋅) denotes the “electricity-to-carbon conversion”
model. Due to the limited number of observations samples,
the model faces a small-sample learning challenge. While
some machine learning algorithms can accommodate small-
sample learning, the performance of these algorithms is
highly sensitive to hyperparameters. Small-sample learning
typically lacks sufficient data to effectively optimize
hyperparameters, which makes it difficult for traditional machine
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FIGURE 1
Overall framework of the proposed method.

learning-based “electricity-to-carbon conversion” methods to
achieve satisfactory accounting accuracy under small-sample
conditions.

2.2 Overall framework

Based on the analysis above, optimizing the hyperparameters
of machine learning algorithms under small-sample conditions
is a critical step to improving accounting accuracy. To address
this, we propose an “electricity-to-carbon conversion” method
based on electricity data and augmentation pre-training, as
outlined in Figure 1. This approach consists of three main steps:
feature engineering, model construction, and augmentation pre-
training.

First, feature engineering involves analyzing the correlation
between collected electricity production and consumption
data and carbon emissions data to select highly correlated
electricity data as input features for the “electricity-to-carbon
conversion” model. Second, an appropriate machine learning
algorithm is chosen to build the model, mapping the input
features to annual carbon emissions. Finally, to optimize
the model under small-sample conditions, we introduce an
augmentation pre-training optimization method to obtain the
optimal hyperparameters for the “electricity-to-carbon conversion”
model.

3 Methodology overview

The following sections provide a detailed introduction to each
component of the proposed framework.

3.1 Feature engineering

The “electricity-to-carbon conversion” method relies on the
correlation between electricity and carbon emission data.Therefore,
it is essential to perform correlation analysis on the collected power
generation and consumption data, selecting the electricity data
most strongly correlated with carbon emissions as input features
for the model.

In this study, the Pearson correlation coefficient and Spearman
correlation coefficient are used to quantify the relationship between
feature data and target data (Cohen et al., 2009). Their calculations
are shown in Equations 2, 3:

Rp =

n

∑
i=1
(xi − x)(yi − y)

√
n

∑
i=1
(xi − x)

2
n

∑
i=1
(yi − y)

(2)

Rs = 1−
6

n

∑
i=1

di
2

n(n2 − 1)
(3)

Where Rp denotes the Pearson correlation coefficient and Rs
denotes the Spearman correlation coefficient. xi and yi denote the
values of the two variables for the i-th sample point, while x and
y are the means of the two variables. The variable di denotes the
difference in ranks between xi and yi, and n represents the sample
size.

The Spearman and Pearson correlation coefficients are used
to assess the relationship between feature data and target data,
with values ranging from −1 to 1. A value closer to 0 indicates
a weaker correlation, while values closer to 1 signify a stronger
positive correlation, and values closer to −1 indicate a stronger
negative correlation.The Spearman coefficient measures monotonic
relationships without requiring linearity or normal distribution
of the data, whereas the Pearson coefficient reflects only linear
correlations and assumes that the data follows a normal distribution
(Hauke and Kossowski, 2011).

Data from the past 17 years (2004–2021) were used in the
calculation and Table 1 presents the correlation analysis results
between various electricity data and carbon emissions. The data
reveals a strong monotonic and linear relationship between total
annual carbon emissions and electricity consumption, thermal
power generation, and total electricity, while a negative correlation
is observed with hydropower generation. Therefore, electricity data,
excluding hydropower generation, is selected as input variables
for the model.

3.2 “Electricity-to-carbon conversion”
model

Figure 2 illustrates the structure of the proposed “electricity-to-
carbon conversion” model. The input variables X include this year’s
electricity production PG,t (comprising total generation and thermal
power generation), historical carbon emissions Ct−1,Ct−2,⋯Ct−s,
and total electricity consumption PC,t. The composition of the input
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TABLE 1 Correlation coefficients between various electricity data and carbon emissions.

Coefficient type Feature name Feature correlation

Spearman Coefficient

Generation –
Carbon Emissions

0.9371

Thermal Power –
Carbon Emissions

0.9021

Hydropower –
Carbon Emissions

−0.4755

Electricity Consumption –
Carbon Emissions

0.9146

Pearson Coefficient

Generation –
Carbon Emissions

0.9810

Thermal Power –
Carbon Emissions

0.9825

Hydropower –
Carbon Emissions

−0.4698

Consumption –
Carbon Emissions

0.9428

FIGURE 2
Structure of the “electricity-to-carbon conversion” model.

variable X is shown in Equation 4:

X = {X1,X2⋯Xn} = {Ct−1,Ct−2⋯Ct−s,PG,t,PC,t} (4)

This study employs the Light Gradient Boosting Machine
(LightGBM) as the regression fittingmodel. LightGBM is a machine
learning algorithm based on decision tree methods and gradient
boosting, designed to iteratively optimize model residuals and
enhance predictive performance (Wang et al., 2017; Ke et al., 2017).
Comprising multiple simple decision trees, LightGBM features a
simpler structure compared to other machine learning models,
making it particularly suitable for small sample learning tasks.
Additionally, it utilizes methods such as histogram algorithms
and leaf-wise strategies to improve computational efficiency and
predictive accuracy. The mathematical model for LightGBM is

expressed in Equation 5:

Ct =
N

∑
n=1

fn(dt) (5)

where Ct denotes the estimated annual carbon emissions obtained

from the LightGBM model; fn(dt) denotes the estimate from
the n-th regression tree; t represents time; N indicates the total
number of regression trees; and n denotes the specific tree
number.

The objective function of the LightGBM model comprises a
loss function and a regularization term. The expression for the
objective function of the t-th tree is provided in where Equation 6.
The expressions for the loss function and the regularization penalty
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are given in where Equation 7 and where Equation 8, respectively.

Yn = Ln +Ωn (6)

Ln =
T

∑
t=1
[Ct − (C

n−1
t + fn(dt))]

2

(7)

Ωn = γJ+
1
2
λ

J

∑
j=1

w2
j (8)

where Yn denotes the objective function of the n-th tree, and Ln and
Ωn represent the loss function and regularization penalty of the n-
th tree, respectively. J denotes the number of leaf nodes, while w
signifies theweight values of these nodes. j refers to the j-th leaf node,
and λ represents the penalty coefficient for the leaf nodes. T denotes
the total number of samples, and Cn−1

t indicates the estimate of the
i-th sample from the n−1-th tree.

The input variable X and annual carbon emissions Y are
designated as the feature set and target set, respectively, for training
the LightGBM model. The final LightGBM model is obtained after
multiple iterations, converging to the minimum loss.

3.3 Model optimization method based on
augmentation pre-training

The hyperparameters required for LightGBM are shown in
Table 2. The selected hyperparameters have a direct and significant
impact on the model’s fitting performance. To ensure that the
“electricity-to-carbon conversion” model has good generalization
performance and regression fitting ability, effective optimization of
the hyperparameters is necessary. However, in cases with insufficient
sample sizes, model optimization can easily fall into local optima.
To enable more thorough and effective optimization under small
sample conditions, this paper proposes a model optimization
method based on augmentation pre-training. Figure 3 illustrates
the processing flow of the augmentation pre-training method,
which generates a large amount of augmented data through an
interpolation augmentation module, allowing the LightGBMmodel
to undergo pre-training and optimization on this augmented dataset
to obtain a set of optimal hyperparameters for formal training.

Interpolation augmentation is the primary step of augmentation
pre-training. As shown in Figure 4, this method first uses numerical
interpolation to fit discrete data points into a continuous numerical
function y(t) and then performs high-frequency sampling on
this function to obtain a large amount of augmented data.
In the interpolation method, the commonly used piecewise
linear interpolation approximates y(t) by connecting adjacent
interpolation points with line segments. Its mathematical modeling
is represented by Equations 9, 10:

yh(t) =
n

∑
j=0

yjlj(t) (9)

lj(t) =

{{{{{{{{
{{{{{{{{
{

t− tj−1
tj − tj−1
, tj−1 ≤ t ≤ tj, (j ≠ 0)

t− tj+1
tj − tj+1
, tj ≤ t ≤ tj+1, (j ≠ n)

0, t ∉ [tj−1, tj+1]

(10)

TABLE 2 Hyperparameters to be determined in the LightGBMmodel.

Name Meaning Range

num_leaves Maximum Number of
Leaves

{16, 32, 64, 128}

learning_rate Learning Rate {0.001, 0.01, 0.1}

lamda1 Regularization Coefficient
L1

[0, 1] real

lamda2 Regularization Coefficient
L2

[0, 1] real

feature_fraction Random Feature Selection
Ratio

[0, 1] real

n_estimators Number of Base Learners {100, 200, 500, 1,000, 2,000,
5,000}

FIGURE 3
Augmentation pre-training flowchart.
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FIGURE 4
Interpolation augmentation flowchart.

Where, t represents time, serving as the independent variable
for the fitted function yh(t), while lj(t) represents the interpolation
basis function. tj and yj denote the j-th group of sampling points in
the dataset.

Assuming that when y(t) ∈ C2[t1, t2] is given, there exists an
upper bound on the error between the piecewise linear interpolation
function yh(t) and the actual function y(t). The upper bound of the
error, max

t1≤t≤tn
|y(t) − yh(t)|, can be estimated using Equation 11.

max
t1≤t≤tn
|y(t) − yh(t)| =

max
t1≤t≤tn
|y″(t)|

8
h2 (11)

Where, h denotes the sampling interval, i.e., h = tj − tj−1, j ≠ 0. As
indicated by Equation 11, there exists an upper limit on the error
between the augmented data and the real data, which ensures the
reliability of the numerical augmentation method.

Model optimization is the core step of augmentation pre-
training, achieved through an iterative process of “training-
evaluation-feedback” adjustment for hyperparameter optimization.
In each iteration, the LightGBM is first trained on the augmented
training set, then the fitting performance is evaluated on the
augmented validation set, and finally, hyperparameters are
optimized based on the evaluation results.

To efficiently optimize hyperparameters in a complex
parameter space, this study proposes an improved particle
swarm optimization algorithm based on adaptive inertia weight
and local neighborhood strategy (Adaptive Inertia and Local
Neighborhood Particle Swarm Optimization, AILN-PSO). The
PSO algorithm is a classic swarm intelligence optimization method
that effectively addresses continuous optimization problems but
suffers from low computational efficiency and a tendency to
fall into local optima (Marini and Walczak, 2015). Therefore,
we employ adaptive inertia weights and local neighborhood
strategies to enhance the algorithm’s computational efficiency and
optimization accuracy.

In standard PSO, the inertia weight controls the search step of
the particles. When the weight is large, particles tend to explore
a larger search space; when the weight is small, particles focus
more on local searches. The adaptive inertia weight dynamically
balances exploration and exploitation by adjusting the weight value
at different stages of the algorithm. To improve efficiency, this
study adjusts the inertia weight to a function that decreases as the
number of iterations increases, allowing the search to transition

from global to local. The expression for the adaptive inertia weight
is shown in Equation 12.

ω(k) = ωmax −(
ωmax −ωmin

Kmax
)× k (12)

Where, ωmax and ωmin denote the maximum and minimum
values of the inertia weight, respectively, while Kmax denotes the
maximum number of iterations, and k is the current iteration count.

In standard PSO, all particles update their positions based on
the global best particle. However, the global best particle may
sometimes limit the particles’ ability to escape local optima.The local
neighborhood strategy enhances the diversity of the population by
allowing each particle to update its position based only on the best
particle in its neighborhood, which helps to avoid getting trapped in
local optima. Under this strategy, the update velocity and position of
the particles are represented by Equations 13, 14, respectively.

va(k+ 1) = ω(k) ⋅ va(k) + c1 ⋅ r1 ⋅ (pa(k) − xa(k)) + c2 ⋅ r2 ⋅ (la(k) − xa(k))
(13)

xa(k+ 1) = xa(k) + va(k+ 1) (14)

Where, xa(k) and va(k) represent the position and velocity of
particle A at the k-th iteration, while c1 and c2 are the acceleration
coefficients. r1 and r2 are random numbers. pa(k) denotes the
historical best position of particle a and la(k) indicates the best
position of particle A within its local neighborhood. In this study,
the Mean Squared Error (MSE) of the pre-trained model on the
augmented validation set is used as the evaluation metric. The
maximum number of iterations for AILN-PSO is set to 300, and
an early stopping mechanism is implemented. Specifically, if the
evaluation value does not improve for 10 consecutive iterations, it
is considered that the optimization process has converged, leading
to the termination of training and the output of the optimized
hyperparameters.

4 Case analysis

4.1 Experimental data

The carbon emission dataset used in this study is sourced
from the China Carbon Accounting Database (CEADs)
(Shan et al., 2018; Shan et al., 2020; Xu et al., 2024), while
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the electricity data comes from the National Bureau of
Statistics (National Bureau of Statistics of China, 2024). The
electricity data includes electricity consumption, total power
generation, thermal power generation, and hydropower generation.
The dataset spans from 1997 to 2021, with an annual granularity.

4.2 Experimental setup

To comprehensively evaluate the performance of the proposed
method, various machine learning models suitable for small
sample learning were selected for comparison. The specific models
are as follows:

1) ARMA:TheAuto-RegressiveMoving Average (ARMA)model
is a commonly used time series model that extrapolates future
data points based on past time series. ARMA uses only
historical carbon emissions as input data and does not include
electricity data.

2) MLP: The Multilayer Perceptron (MLP) is a type of
feedforwardneural network trained using the backpropagation
algorithm. MLP can handle complex nonlinear problems
and is widely used in regression tasks, but it has many
hyperparameters that require careful selection of model
structure.

3) SVM: The Support Vector Machine (SVM) effectively
addresses nonlinear regression problems through kernel
functions and helps prevent overfitting, thus maintaining
good generalization capabilities with small samples. Given
its potential advantages in small sample learning, it is selected
as the benchmark model.

The length of historical data has a critical impact on model
performance: an appropriate historical data length allows the model
to capture and learn the changing trends in carbon emissions, while
a length that is too long increases feature complexity and reduces
the amount of training samples. Therefore, this study first discusses
the selection of historical data length by comparing the performance
of models with different historical data lengths to determine the
optimal length.

Table 3 presents the hyperparameters to be optimized of MLP
and SVM model. To validate the effectiveness of the proposed
augmentation pre-training method in small sample learning, the
hyperparameter optimization method based on augmentation pre-
training is compared with the hyperparameter optimizationmethod
using the validation set. In augmentation pre-training optimization,
the model’s hyperparameter optimization is conducted on the
augmented dataset; whereas in validation set optimization, the
hyperparameters are optimized on the validation set. In both
methods, the dataset is divided into training, validation, and test sets,
with proportions of 6:2:2.

4.3 Evaluation metrics

This study employs two statistical metrics to assess the
goodness of fit of the “electricity-to-carbon conversion” model:
Mean Absolute Percentage Error (MAPE) and Root-Mean-Square
Error (RMSE). These two metrics are commonly used in regression

TABLE 3 Hyperparameters of MLP and SVMmodel.

Algorithm Parameter name Parameter value

MLP

Number of layers [2, 9] Integer

Learning Rate {0.001, 0.01, 0.1}

Number of hidden neurons [3, 12] Integer

SVM

Kernel function {“Linear”, “Polyno”, “RBF”,
“Sig”}

Cost [10–2, 10] Real

Gamma [10–2, 10] Real

analysis, with smaller values indicating less deviation between the
fitted values and the actual values. RMSE is an error evaluation
metric that measures the deviation between predicted values and
target values, with smaller numbers indicating closer alignment
between model predictions and target values. MAPE is a relative
error evaluation metric suitable for comparing the error rates
between different model predictions and target values, where
smaller values signify lower errors. Their expressions are given in
Equations 15, 16:

RMSE = √ 1
n

n

∑
i=1
( ̂yi − yi)

2 (15)

MAPE = 100%
n

n

∑
i=1
|
̂yi − yi
yi
| (16)

Where, yi denotes the i-th output value of the model, yi denotes
the actual value at the i-th point, and n indicates the number
of samples.

4.4 Experimental results and analysis

The accounting results of carbon emissions are shown in
Tables 4, 5.

Tables 4, 5 present the performance evaluation data of each
model under different historical data lengths, revealing significant
differences in performance across methods. Shorter data lengths
provide better accounting accuracy due to the availability of more
training samples and the substantial variations in carbon emission
trends over different periods. Additionally, each machine learning
model achieved better results using the augmentation pre-training
optimization method.

A comparison of the models under the optimal method
is shown in Table 6, detailing their fitting performance. It is
evident from the table that all models outperform ARMA, which
relies solely on the autocorrelation characteristics of historical
carbon emissions without incorporating power features. This
indicates that power features significantly enhance accounting
accuracy. For MLP, the training data volume is still too limited,
hindering its learning effectiveness. SVM and LightGBM show
good accounting results, demonstrating their superiority in small
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TABLE 4 MAPE of each accounting method.

Method Model Historical data length

1 2 3 4

Augmentation Pre-training Optimization

MLP 0.0484 0.0602 0.0739 0.0869

SVM 0.0232 0.0341 0.0349 0.0385

LightGBM 0.0154 0.0338 0.0218 0.0349

Validation Set Optimization

MLP 0.0551 0.0655 0.1014 0.1002

SVM 0.3000 0.0668 0.1058 0.1026

LightGBM 0.0388 0.0488 0.0340 0.0451

TABLE 5 RMSE of each accounting method.

Method Model Historical data length

1 2 3 4

Augmentation Pre-training Optimization

MLP 45.357 47.054 56.903 64.863

SVM 14.189 30.387 24.346 34.744

LightGBM 12.101 28.909 17.957 22.091

Validation Set Optimization

MLP 49.203 49.652 67.446 76.935

SVM 20.092 39.932 62.804 60.863

LightGBM 36.050 45.825 32.934 38.867

TABLE 6 Comparison of fitting errors of each model under optimal
parameters.

Method MAPE RMSE

ARMA 0.0504 51.424

MLP 0.0484 49.203

SVM 0.0232 20.092

LightGBM 0.0154 12.101

The best fitting performance is highlighted in bold.

sample learning tasks. LightGBM, with its simpler structure, more
easily identifies suitable hyperparameters, yielding good fitting
performance under both optimization methods. In contrast, SVM
has numerous and complex hyperparameters that require richer
samples for optimization, resulting in suboptimal performance
on the small sample validation set, although significant accuracy
improvements were observed after augmentation pre-training
optimization.

To provide a more intuitive comparison of the differences
between the various models’ “electricity-to-carbon” performance,

FIGURE 5
Accounting results of different models.

the accounting results of all models utilizing the best method on
the test set are compared with the actual values, as shown in
Figure 5 and Table 7.
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TABLE 7 Estimation results of each model.

True values Forecasting values

ARMA MLP-APO SVM-APO LightGBM-APO

533.1979 567.2609 527.994 541.053 536.2429

557.2784 576.3876 531.8637 546.7939 534.8913

552.2894 548.9893 542.442 574.6744 560.8066

575.148 597.375 547.1164 589.8395 569.8505

669.6168 797.7952 566.9095 680.4802 658.3808

From the analysis of Figure 5, it is evident that ARMA andMLP
exhibit significant deviations between their measured values and
target values, with some accountings being either too high or too low.
Although the SVMregressionmodel shows better evaluation results,
there remains a noticeable deviation betweenmany fitted values and
the target values. In contrast, LightGBM’s fitted values align more
closely with the target values, demonstrating a tighter distribution
of accounting values relative to the actual target values.

5 Conclusion

To address the challenges of using machine learning methods
for “electricity-to-carbon” conversion in small samples, this
paper proposes a novel approach based on augmentation pre-
training. Specifically, the proposed method generates a substantial
amount of augmented data through interpolation augmentation
for model pre-training, optimizing and determining the model’s
hyperparameters in the process. The pre-trained hyperparameters
are then retained and applied to the formal training, thereby
overcoming the difficulties in optimizing machine learning
models under small sample conditions and improving model
performance.

To validate the effectiveness of the proposed method,
common time series models such as ARMA, SVM, and
MLP were selected as benchmark models for comparative
experiments. The experimental results indicate that the proposed
method significantly enhances the accuracy of carbon emission
accountings under small sample conditions when compared
to various benchmark methods, providing a feasible solution
for rapid, precise, and low-cost annual carbon emission
accounting.

There are still some limitations in the current work, which
will be addressed in future studies. For instance, the current
research lacks an in-depth exploration of the authenticity of
the augmented data and its impact on model performance.
Future research should focus on the influence of interpolation
augmentationmethods on augmentation pre-training. Additionally,
the carbon emission accounting method proposed in this study
has only been tested on annual datasets, so its effectiveness and
generalizability on high-resolution datasets also require significant
investigation.
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