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Introduction: Photovoltaic systems offer immense potential as a future energy
source, yet maximizing their efficiency presents challenges, notably in achieving
optimal voltage due to their nonlinear behavior. Operating current and voltage
fluctuations, driven by temperature and radiation changes, significantly impact
power output. Traditional Maximum Power Point Tracking (MPPT) methods
struggle to adapt accurately to these dynamic environmental conditions.
While Artificial Intelligence (AI) and optimization techniques show promise,
their implementation complexity and longer attainment times for Maximum
Power Point (MPP) hinder widespread adoption.

Method: This paper proposes a hybridMPPT technique that integrates the Pelican
Optimization algorithm (POA) with the Perturb andObserve algorithm (P&O) for a
grid-connected photovoltaic system (PV). The proposed technique consists of
two loops: PO as the reference point setting loop (inner loop) and POA as a fine-
tuning (outer)loop. The combination of inner and outer loops minimizes
oscillations by adjusting the perturbation direction and enhancing the
convergence speed of the MPPT.

Results and Discussion: To validate the efficacy of the proposedMPPT technique
for different environmental conditions, a comprehensive comparison is
conducted between the proposed hybrid pelican and perturb and observe
(HPPO) technique and other MPPT algorithms. The proposed technique has
optimized PV and grid outputs with an MPPT efficiency of 99%, best tracking
speed, and total harmonic distortion (THD) for all conditions below 5% agree with
IEEE 519 standards.
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1 Introduction

The integration of non-conventional energy sources,
particularly photovoltaic (PV) systems, into the grid, has
garnered considerable attention due to their capacity to alleviate
environmental issues and meet the growing energy demand
worldwide. Optimizing PV system energy output while
guaranteeing effective power transfer to the grid is a crucial area
of research (Dutta et al., 2018). The PV system’s power generation is
subject to variations in weather-related factors, including load, solar
irradiation, and PV cell temperature. In addition, the current against
voltage and power against voltage curves illustrate a non-linear
connection between the PV module and voltage. Consequently, the
PV array should constantly operate at its maximum power point, or
MPP, tomaintain the PV system’s efficiency (Wang et al., 2016). The
extreme MPP, often referred to as the Global Maximum Power
Point, or GMPP, is suggested to be tracked by MPPT controllers
(Chen et al., 2014).

Numerous Maximum Power Point Tracking (MPPT) solutions
have been studied in the literature; these strategies were selected
based on several factors, including needs, implementation, tracking
capabilities, and accuracy. Conventional methods, such as the
Perturb and Observe algorithm (P&O) and incremental
Conductance (INC.), are simple to implement and the most used
MPPTs but are unable to track GMPP during changing
environmental conditions. Furthermore, they demonstrate
oscillations close to MPP that exhibit sluggish convergence when
the ambient circumstances alter (Ghasemi et al., 2016). Artificial
Intelligence (AI) based MPPT methods like Neural network (NN)
and Fuzzy Logic MPPT Controllers were extensively investigated to
address the limitations of the conventional techniques however, the
design, classification rules, and training were the main limitations.
The limitations and advantages are summarized in
(Seyedmahmoudian et al., 2016). In recent years, the emphasis
has been on MPPT techniques that primarily use optimization
algorithms and bio-inspired algorithms to track GMPP. To
improve efficiency, MPPT techniques based on Artificial Bee
Swarm Optimization (ABSO), Grey Wolf Optimization (GWO),
Flower Pollination Algorithm (FPA), Ant colony Optimization
(ACO), Cuckoo Search, and Particle Swarm Optimization (PSO)
have been used recently (Kumar et al., 2023; Boubaker, 2023; Chang
et al., 2023) provide a thorough analysis of the MPPT performance
in comparison to optimization algorithm-based MPPT. In (Díaz
Martínez et al., 2021), PSO was employed to determine the MPP by
proposing convergence detection and change in solar insolation. A
single-phase grid-linked solar method utilizing GMPP tracking
based on the particle swarm optimization (PSO) approach is
proposed by the authors (Grid-tied photovoltaic system based
on). The goal of the PSO-based MPPT process is to address
issues related to mismatching phenomena, including partial
shadowing in photovoltaic arrays. The study suggests a current
generator technique for calculating the grid-tied inverter’s reference
current. This algorithm works in conjunction with a DC-bus
controller and MPPT algorithms, and it is based on a
synchronous reference frame. Furthermore, the energy processed
by the PV system is managed by the current generator to prevent
overpower rating of the inverter. The system’s performance and
feasibility are evaluated through simulation and experimental

results. Improvement-based PSO MPPT for PV inverters was
proposed by the authors (Sangrody et al., 2024), and it was
verified by an experiment in which the MPPT was used to solve
problems including fluctuations AT GMPP, sluggish tracking time,
and becoming stuck in LMPP. To track GMPP under partial shade
situations, several changes are suggested that employ PSO in
combination with the direct duty cycle (Hayder et al., 2020),
(Koh et al., 2023).

In (Ahmed and Salam, 2014), the Authors introduced an MPPT
approach for solar PV schemes utilizing the Cuckoo Search (CS)
process. The concept of CS is detailed in the paper, emphasizing its
advantages, including rapid convergence and increased efficiency,
while requiring fewer tuning parameters. Comparative assessments
between two recognized MPPT methods, P&O and PSO, are
conducted under diverse environmental conditions. The results
demonstrate CS’s superiority over P&O and PSO in tracing
ability, transient behavior, and convergence. However, the levy
flight methodology for tracking and composite mathematical
modeling makes it more complex.

In (Prasanth Ram and Rajasekar, 2017), Authors proposed FPA-
based MPPT for GMPP tacking. The proposed model was tested to
track local MPP and Global MPP in a single stage. (Yousri et al.,
2019)., presents a novel optimization algorithm, the Chaotic-Flower
Pollination Algorithm (C-FPA), designed for peak power tracking in
solar PV structures under partial shading conditions. This algorithm
dynamically integrates chaos maps (including Logistic, sine, and tent
maps) to adjust the fundamental procedure limits. The algorithm’s
efficacy is demonstrated in various partial shading conditions.
Statistical analysis indicates that the C-FPA enhances the
reliability and stability of the flower pollination algorithm (FPA)
and delivers improved tracking efficiency with fifty percent less
tracking time than FPA. Nevertheless, the paper lacks a
comprehensive comparison with other existing MPPT techniques.
Furthermore, it does not discuss the implementation challenges or
limitations of the C-FPA algorithm in real-world PV systems.

The Grey Wolf Optimization (GWO) peak tracking technique
outperforms existing MPPT algorithms, such as P&O and PSO peak
tracking methods, based on findings reported in the research (A
New MPPT Design Using). The proposed method effectively
monitors the global peak of a solar array under partial shade
conditions, addressing the drawbacks of poor tracking efficiency
and oscillations. In (Comparative analysis of MPPT algorithms), a
comparative analysis demonstrates that all peak power tracking
systems can reach the GMPP under various test conditions,
including uniform solar irradiance, partial shading, and smooth
irradiance transients. The main disadvantage is that because of the
vast search space, it requires more calculation time. The
implementation of fuzzy logic control (FLC) is divided into three
parts (Abbadi et al., 2020): defuzzification, control rule evaluation,
and fuzzification. The FLC tracks MPP quickly and in uniform
conditions however, the main disadvantage is that non-uniform
environmental conditions complicate the implementation. Defining
the shape of membership rule tables affects the tracking speed
depending on intuition and experience. The authors in (Jyothy
and Sindhu, 2018) presented an MPPT based on neural networks
(NNs). This method’s ability to monitor the GMPP depends on both
the learning process and the structure. Because it relies on the PV
characteristics, NN is mostly applied in uniform circumstances,
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according to the more precise number of data sets (VPV, IPV)
presented in the literature. The primary drawback of the method is
the requirement for PV system data, which makes it expensive to
keep and complicated to adjust the parameters (Mellit and
Pavan, 2010).

An Adaptive neuro-fuzzy inference system (ANFIS) based
MPPT is proposed in (Belhachat and Larbes, 2017) to achieve
GMPP.ANFIS are immune to variations in the training data
since they include built-in adaptive learning capabilities. Due to
the requirement for substantial computer resources and excellent
training data, this approach has several drawbacks. Due to the
chances of overfitting and scalability, the response time of
ANFIS-based MPPT can be slower, and improvements were
proposed as well by the authors (Savrun and İnci, 2021).

Developed by combining many MPPT techniques to improve
overall performance and leverage the advantages of each algorithm,
hybrid MPPT algorithms make up the third category. A hybrid
usually combines one quasi-seeking strategy with one true-seeking
technique. Two phases are involved in the tracking proven in these
hybrid methods: first, the MPP is estimated, and then it is adjusted
using the optimization technique (Mohapatra et al., 2017). Many
MPPT approaches have been proposed recently. The authors in
(Ram et al., 2020), proposed the FPA and P&O-based hybrid MPPT
technique. FPA, a bio-inspired metaheuristic algorithm,
demonstrates a favorable balance between exploration and
exploitation capabilities. P&O, a simple and robust MPPT
method, is integrated via a novel switching strategy, ensuring
efficient exploitation of both algorithms. The suggested FPA and
P&O method is compared with other MPPT methods, including
Enhanced Leader Particle Swarm Optimization (ELPSO) and
established PSO approaches. Notably, the paper lacks
experimental results or validation using real-world PV systems.
The findings are derived solely from simulation outcomes and
compared with other MPPT methods.

In (Ge et al., 2020), simulation findings demonstrate the benefits
of the BAT-Fuzzy approach in tracking the highest power point
effectively and efficiently, even during sudden changes in solar
irradiation. The program demonstrates exceptional skills in
managing power transfer between the hybrid system and the
electrical network, guaranteeing prompt transient response and
enhanced stability. However, further research and
experimentation are required to evaluate the viability and
performance of the BAT-Fuzzy performance in practical
applications. An entirely novel grid-integrated photovoltaic (PV)
control system is shown in (Padmanaban et al., 2019). The system
uses the Artificial Bee Colony (ABC) method and ANFIS to reduce
the RootMean Square Error and optimize the membership function,
resulting in rapid PV power tracking. In (Meddour et al., 2019),
PSO, FS-MPC (finite set model predictive controller) and a
comparison with P&O are presented. To boost energy output
and efficiency, the authors suggested an improved P&O-PI
MPPT based on a Genetic Algorithm (GA) for both axis-tracking
and stationary grid-linked solar systems (Zaghba et al., 2019). An
improved P&O with ABC to track GMPP is proposed by the authors
in (Restrepo et al., 2021), and the findings indicate greater efficiency
with a quick payback period. Based on tracking speed, control
strategy, complexity, stability, ability to track under non-uniform
environmental conditions, and efficiency, the literature has

compared several other hybrid MPPT techniques, including fuzzy
particle swarm optimization (FSPO), ANFIS, GWO-P&O MPPT,
PSO-P&O MPPT, and hill climb (HC)-ANFIS MPPT. The
limitations of the majority of the hybrid techniques are intricate
mathematical computations and design (Bollipo et al., 2021). Recent
studies have proposed various optimization techniques for
enhancing the efficiency of MPPT in photovoltaic (PV) systems,
each addressing specific challenges such as partial shading, system
stability, and improved power extraction. In (Ranjan et al., 2024), the
authors explore adaptive strategies for Building Applied
Photovoltaic (BAPV) systems under partial shading, addressing
voltage imbalances and the trade-offs between static and dynamic
MPPT algorithms to improve real-time performance. Bayesian
optimization Extreme Gradient (BO-XG) Boost-based voltage/var
optimization is proposed in (BO-XGBoost-based voltage), to
improve XG Boost performance and reduce PV system levelized
cost of energy (LCOE), validated on the PG&E 69-node system. In
(A Dimension-Independent Array Relocation (DIAR) Approach for
Partial Shading Losses Minimization in Asymmetrical Photovoltaic
Arrays), a Dimension-Independent Array Relocation (DIAR)
approach is introduced to reduce partial shading losses in
asymmetrical PV arrays, achieving over 96% efficiency. An
optimized method for determining PV-inverter power sizing ratio
(PSR) is presented, balancing energy production and cost-
effectiveness (Imad et al., 2024). A novel super-twisting sliding
mode controller to enhance real-time power management in
grid-connected PV systems proposed by authors in (Mohapatra
et al., 2024), to improve efficiency under dynamic conditions. In
(Aljafari et al., 2024),The ggorilla Troop reconfiguration-power line
communication (GTR-PLC) approach enhances power output and
monitoring under partial shading, achieving a 38.37% power
increase with 98.99% efficiency. In (Smadi et al., 2024), artificial
intelligence-based control using ANN optimizes energy flow and
addresses grid connection delays in PV systems. In (Jiang, 2024), an
African Vulture Optimization Algorithm with RNN was proposed
for efficient MPPT, achieving 99.81% accuracy. In (Krishnaram
et al., 2024), a hybrid GWO-MFTSMC algorithm was proposed to
improve MPPT efficiency under partial shading, with 99.72%
simulation and 96.15% hardware conversion efficiency. In
(Satpathy et al., 2024), the Authors proposed a multi-string
differential power processing (MS-DPP) voltage equalizer that
improves power output under partial shading, achieving over
99% efficiency. In (Mariprasath et al., 2024), a high voltage gain
boost converter with cuckoo search optimization enhances MPPT
efficiency in PV systems is proposed. In (Refaat et al., 2024), a Horse
herd Optimization -based MPPT controller outperforms other
algorithms in tracking time and efficiency under varying
conditions. In (Ranjan Satpathy et al., 2024), a Grouped String
Voltage Balancing (GSVB) approach improves PV system
performance under shading and multi-irradiance conditions. In
(Sameera et al., 2024), the Authors compared all major soft
computing and hybrid MPPT techniques, analyzing the
performance of Cuckoo Search, JAYA, and PSO.

The Pelican Optimization Algorithm (POA) is a straightforward
optimization technique that effectively addresses optimization
issues, offering simplicity, adaptability, and ease of
implementation. It is tested by authors for both unimodal and
multimodal optimization problems (Trojovský and Dehghani,
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2022). While POA often outperforms traditional MPPT algorithms
in tracking the Global Maximum Power Point (GMPP), it may
exhibit randomness and some unpredictability, leading to unwanted
oscillations during the search process. On the other hand, the
Perturb and Observe (P&O) method, known for its simplicity,
continuously adjusts the operating point to track the MPP but
may face oscillations around the MPP and slower convergence in
dynamic conditions. Research suggests that hybrid approaches can
leverage the strengths of both algorithms to improve MPPT
performance (Gao et al., 2009). However, careful consideration of
each method’s advantages and disadvantages is required to avoid
slow convergence and local maxima (Batarseh and Za’ter, 2018).
Many current MPPT techniques still struggle to adapt to varying
environmental conditions, leading to reduced efficiency and energy
production. To address this gap, this paper proposes a novel hybrid
MPPT approach, combining P&O with POA, to optimize grid-
connected PV systems. The novel proposed Hybrid HPPO MPPT
aims to minimize oscillations and improve both local and global
search capabilities, enhancing convergence and tracking precision.
The paper also compares the proposed hybrid technique with
existing techniques, including PSO, CUCKOO, FPA, GWO,
FUZZY, ANFIS, and NN, to evaluate its performance, stability,
and feasibility under various conditions.

The rest of the paper is structured as follows: Section 2 describes
the problem statement, Section 3 describes the overview of the
Proposed HPPO, Section 4 describes the modeling of the 5-level
Neutral clamped inverter used and the operation of the proposed
technique, Section 5 discusses the results, and Section 6 concludes
the paper.

2 Research problem

The existing literature on Solar PV MPPT algorithms presents
various methodologies to enhance efficiency, stability, and rapid
response under varied environmental and grid conditions. Most
MPPT methods are made to effectively search spaces and identify
near-optimal or ideal answers to optimization problems. The POA
achieves an appropriate balance between exploration and
exploitation, making it useful for utilizing promising regions to
converge toward the optimal level or solution.

The studied literature concentrated on unique aspects of PV
systems, such as modeling approaches, oscillation mitigation,
dynamic weather conditions, partial shading, grid integration,
and specific algorithms like Hybrid ANFIS-PSO, CS, ANN, Fuzzy
Logic Control (FLC), and NN-MPPT. However, this focused
approach limits a holistic understanding and comparative
analysis across multiple factors impacting MPPT efficiency and
system stability.

The studies often lack direct comparative assessments with a
broad range of MPPT techniques, especially across different
environmental conditions or system sizes. The challenges of
incorporating photovoltaic schemes into the grid include
optimizing energy output and power transfer efficiency. Selecting
the most effective Peak Power Point Tracking algorithm is critical in
optimizing solar PV schemes. Although the PO MPPT method is
extensively used due to its ability to continuously adjust the solar PV
functional point for maximum power output, it can be further

enhanced by integrating advanced optimization methods. The
quest for improved efficiency, stability, and performance prompts
exploration into hybrid approaches, such as the (HPPO), which
syndicates the capabilities of the P&O MPPT with the adaptability
and robustness of the Pelican Optimization (PO).

The main contributions are:

1. A novel hybrid HPPOMPPT is employed in the PV-connected
grid to achieve maximum peak power from PV under varying
solar irradiance and temperatures.

2. The proposed hybrid HPPOMPPTmethod is used to diminish
steady-state oscillations and to prevent premature convergence
due to perturbation direction with better tracking speed.

3. A 3-phase grid-connected PVmodel, suitable for power system
dynamic analysis, is introduced to validate the proposed
method via MATLAB/Simulink.

4. The proposed hybrid HPPO MPPT is integrated with a 5-level
Neutral clamped inverter employing a feed-forward control
strategy, demonstrating its to extract the peak power, enhance
power quality, and support the grid functionality.

5. The proposed HPPO MPPT is contrasted with other
optimization algorithm-based MPPT techniques.
Performance in terms of output voltage, current, power,
tracking speed, and THD show the benefits of
the HPPO MPPT.

The novelty of this paper lies in implementing the Pelican
Optimization Algorithm, inspired by the hunting behavior of
pelicans to efficiently track prey, aiming to reduce tracking time.
This algorithm is combined with the Perturb and Observe (P&O)
MPPTmethod, which maximizes the output of grid-connected solar
PV systems through systematic perturbation and observation of
output levels. The integrated approach is designed to ensure that PV
systems operate at maximum efficiency when connected to the grid,
maintaining optimal performance even under varying
environmental conditions.

3Hybrid pelican optimization algorithm
and perturb and observe MPPT

Figure 1 below shows the suggested hybrid POA and POMPPT-
controlled solar PV-connected grid configuration. A flyback
converter, a 5-level 3-phase inverter, an inductor, a three-phase
grid, and a solar module make up the system. The flyback converter
is managed using the P&O MPPT algorithm and hybrid pelican
optimization. A feed-forward decoupling controller is used to
manage the three-phase inverter. In Figure 1, the various
components are succinctly summarized.

3.1 Perturbation and observation algorithm

The P&O technique in solar PV approaches has gained
popularity since it is easy to install and reasonably priced. Using
this method, the PVmodule’s voltage and current measurements are
used to calculate PV power. Equation 1 illustrates how algorithmic
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changes and boost converter tweaks to improve the system’s
performance based on comparative research.

D k + 1( ) � D k ± ΔD (1)

The optimal duty cycle is found using the P&OMPPT approach.
The result is obtained by adding the previous perturbation (Dk+1) to
the present perturbation (Dk) throughout each cycle. The
computing procedure includes power, instantaneous voltage
change (V), prior instant power (P), instantaneous current
change (I), and analysis of the observed PV current and voltage.
The next step is to assess V to determine whether P is more
important than 0. If V is larger than 0, D lowers the duty cycle.
Similarly, D increases the duty cycle if P is less than 0 and V is more
than 0. On the other hand, if P is less than 0 and V is not greater than
0, the duty cycle is decreased by D.

Three main limitations of the P&O technique include drifting
caused by abrupt variations in irradiance and partial shadow
situations, long convergence times, and large oscillations around
the peak power point. A critical component of the P&OMPPT is the
perturbation step size (D). The perturbation step size in the Perturb
and Observe (P&O) algorithm is a crucial parameter that directly
impacts the speed and stability of convergence to achieve the
maximum power point (MPP). A small step size minimizes
oscillations around the MPP, allowing the system to stabilize
more precisely once it reaches optimal conditions. However, if

the step size is too small, it can slow down the algorithm’s
response, especially during rapid changes in irradiance or
temperature, potentially hindering the system’s ability to track
the MPP accurately. Faster oscillation settling results from larger
decay durations, which get stronger as they get closer to the peak
power point. On the other hand, shorter decay durations postpone
the steady state but provide smoother oscillations. The algorithm’s
tracking of fluctuations in the peak power point is greatly influenced
by the direction of the perturbation step size, which affects the P&O
MPPT system’s efficiency, especially as irradiance increases.

To solve these problems, a modified P&OMPPT approach with
a programmable step size has been suggested; however, it still
requires refinement. Scholars have proposed the use of PV peak
power point tracing-based soft computing technologies to
counteract the drawbacks of the traditional P&OMPPT approach.

3.2 Pelican optimization algorithm

The mathematical concept and motivation for the
recommended Pelican Optimization Algorithm (POA) are
detailed in this section: (Trojovský and Dehghani, 2022).

3.2.1 Proposed POA mathematical model
The POA is an algorithm that relies on a population, with

members of this population being represented by pelicans. Every

FIGURE 1
Block diagram of hybrid pelican optimization and PO MPPT for solar input to grid integration.
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member of the population represents each potential solution
candidate in such algorithms. Using their relative positions in the
search space, these members propose estimates for the variable
quantity of the optimization problem. Beginning with the lowest and
maximum bounds of the issue, the population elements are
randomly initialized using Equation 2.

xi,j � lj + rand uj − lj( ), i � 1, 2, . . . ,N, j � 1, 2, . . . .,m (2)
x(i,j) represents the value of the jth variable via the ith candidate
solution. N is the number of population members; represents
problem variables; rand is a random number in the interval [0,
1]; lj is the jth lower limit of the problem variables; and uj is the jth
upper bound. The population matrix, denoted by Equation 3, is the
matrix that arranges the pelican population membership in the
POA. In this matrix, the variables for each choice are represented by
the columns, and each row denotes a possible solution.

X �

X1

..

.

Xi

..

.

XN

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×m

�

x1,1 / x1,j / x1,m
..
.

1 ..
.

1 ..
.

xi,1 / xi,j / xi,m
..
.

1 ..
.

1 ..
.

xN ,1 / xN ,j / xN ,m

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
N×m

(3)

The Pelicans population matrix is denoted by X, where each Xi

signifies the ith pelican in the population.
According to the POA, pelicans are distinct members of the

population, and each one represents a potential fix for the given
issue. As a result, each prospective solution’s objective function
is evaluated. Equation 4 defines the vector that results from
evaluating the objective function as the objective
function vector.
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F1

..

.

Fi

..

.
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N×1

(4)

The neutral function parameters of each corresponding
candidate solution are included in the objective function vector,
denoted as F.

The POA strategy emulates the hunting tactics of pelicans in two
distinct stages, involving the simulation of their behavior and
approach during the pursuit and capture of prey:

1. Moving in the direction of the prey (exploration phase).
2. At the water’s surface, skimming (exploitation phase).

Phase 1: Advancing Towards The Prey (Exploration Stage).
Finding and approaching the prey is the initial step for the

pelicans. The approach used by these birds is modeled in this
phase of the POA in terms of exploration and search space
scanning capabilities. The random creation of the prey
position inside the search zone is essential to the POA. This
randomness helps the POA become more adept at exploring and
navigating the problem-solving domain. Equation 5 provides a
mathematical description of these concepts and the pelican’s
hunting strategy.

xP1
i,j �

xi,j + rand. pj − I.xi,j( ), Fp < Fi;

xi,j + rand. xi,j − pj( ), else,

⎧⎨⎩ (5)

In Equation 6, the parameters denote various aspects of the
pelican’s movement and the adjustment of its position based on the
exploration phase. This phase involves the pelican possibly
relocating into uncharted spaces in the search area, influenced by
a randomly chosen integer, I, which can either be one or two. The
selection of I plays a role in the algorithm’s exploration capacity and
ability to navigate the search space more precisely. If the pelican’s
new position results in a better objective function value, it is
accepted, which maintains the algorithm’s trajectory toward more
optimal solutions. This kind of updating, known as adequate
updating, allows the algorithm to converge into less optimal paths.

Xi � XP1
i , FP1

i < Fi;
Xi, else,

{ (6)

Based on data from the pelican’s objective function value
through phase 1, shown as FP1

i XP1
i . Following its exploring

phase, the pelican’s position is updated and represented by its status.
Phase 2: At the Water’s Surface: Winging (Exploitation Phase).
The simulation involves modeling their wing-stretching

behavior when the pelicans reach the water surface phase in the
second stage. This action emulates their tactic to raise fish in that
specific region, allowing the pelicans to capture more prey. Adapting
this pelican behavior in the suggested POA leads to convergence
towards more beneficial locations within the hunting zone. This
strategy amplifies the algorithm’s potential for exploiting local areas
and enhances its capacity for conducting local searches.
Mathematically, Equation 7 represents the pelicans’
hunting technique.

xP2
i,j � xi,j + R. 1 − t

T
( ). 2.rand − 1( ).xi,j (7)

Hence, according to phase 2, xP2i,j represents the ith pelican’s new
location in the jth dimension. The constant R has a value of 0.2. The
“R” stands for the neighborhood’s radius surrounding the
population members. For local searches to converge toward more
optimal solutions, the (1-t/T) coefficient is necessary. This
parameter dynamically adjusts the search region around each
member so that the Pelican Optimization Algorithm (POA) may
effectively use and explore the search space.

A broader area surrounding each member is considered in the
initial stages when the coefficient holds a higher value. As the
iterations progress, this coefficient gradually diminishes, leading
to a smaller neighborhood radius for each member, ensuring more
precise local scanning. The POA can effectively converge toward
global and optimal solutions by enabling smaller and more exact
steps in exploring the vicinity around each population member. The
pelican’s modified position is shown by Equation 8, which also
indicates whether or not the new location is accepted at this time.

Xi � XP2
i , FP2

i < Fi;
Xi, else,

{ (8)

As the pelicans adjust their locations by the system, the new
importance of the ith pelican, represented as XP2

i , and its real
function value based on phase 2, represented as FP2i , is ascertained.
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The Pelican Optimization Algorithm (POA) is inspired by the
natural hunting behavior of pelicans, where they alternate between
exploring wide areas to locate prey and then focusing on specific
movements to capture it effectively. In the context of MPPT, POA
simulates this by balancing two phases: exploration and exploitation.
During the exploration phase, the algorithm uses broad duty cycle
adjustments to identify potential regions of high power on the PV
curve. Once it detects a promising power region, POA switches to
the exploitation phase, where it makes precise adjustments to fine-
tune the duty cycle around the identified Maximum Power
Point (MPP).

4 Modelling of 5-level neutral
clamped inverter

The five-level, three-phase Neutral Point Clamped inverter is
represented in Figure 1, showcasing a power circuit diagram. A
standard n-level NPC configuration necessitates a single DC voltage
source and (n−1) capacitors to establish (n−1) DC voltage levels.
Within this framework, every leg encompasses 2 (n−1) two-
quadrant switching devices and 2 (n−2) clamping diodes. This
design results in ‘n’ switching states for each leg, establishing an
n-level pole voltage related to the DC bus midpoint. For example, as
displayed in Figure 1, there are five distinctive switching states for
the power semiconductors of leg 1. A distinct combination of ON
and OFF positions for the respective switches defines each state.

4.1 Flyback converter

The transformation of alternating current (AC) into direct
current (DC) while preserving galvanic isolation between the
inputs and outputs characterizes power converters known as
flyback converters. Energy is accumulated in circuits during the
current flow and discharged when the current is intersected. It works
as an independent switching conversion for voltage transformers
that can step up or decrease the output voltage using a mutually
coupled inductor.

From a variety of input voltages, the flyback converter may
regulate and control the output voltages. Compared to most other
converting mode power supply circuits, this converter has fewer
components. What distinguishes the design’s on/off functionality is
“fly back.”

4.2 Control of feed-forward decoupling for
three-phase grid-connected solar inverter

Deriving the equations involves an assumption considering a
constant voltage across the three-phase electrical system and is
written below as Equation 9, (Grid-tied photovoltaic system
based on),Equation 11.

ea � Ecosωt (9)
ea � E cos ωt − 2π/3( ) (10)
ea � E cos ωt + 2π/3( ) (11)

The power grid’s angular frequency and maximum voltage on
grid (E) are found in Equation 12.
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dt
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dt
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⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (12)

Equation 13 illustrates the coordinate transformation from the
three-phase, fixed-frame abc to the two-phase, synchronously
rotating dq.

did
dt

diq
dt

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ � 1

L
−R ωL
−ωL −R[ ] id

iq
[ ] − 1

L
ed
eq

[ ] + 1
L

ud

uq
[ ] (13)

The above equations show the d- and q-axes components for the
three-phase system’s grid voltage (ed and eq) and grid current (ud
and uq). They also represent the d and q-axis components (id and iq)
of the output current of the inverter. Equations 14, 15 are
explained below.

ud � L
did
dt

+ Rid − ωLiq + eq (14)

uq � L
diq
dt

+ Riq − ωLiq + eq (15)

The d and q-axis variables are interdependent, as the established
d-q mathematical paradigm illustrates. The controller’s design is
complex. The system may accomplish reliable closed-loop control
by utilizing the feed-forward decoupling control approach in
conjunction with the provided PI controller. The following are
the outlined control Equations 16, 17.

ud � Kp + Ki

s
( ) id* − id( ) − ωLiq + ed (16)

uq � Kp + Ki

s
( ) iq* − iq( ) − ωLid + eq (17)

A 3-phase solar grid inverter’s inner-loop current is
independently controlled by a sinusoidal pulse width modulator
(SPWM) for both reactive and active power using the feed-forward
decoupling control approach, as shown in Figure 2.

5 Hybrid pelican and PO MPPT

Environmental factors like temperature and irradiance
significantly influence the output of a solar PV scheme. The PV
system must operate at maximum power despite these varying
climatic conditions. To achieve this, a peak power tracker aids
the PV array. The authors propose utilizing a novel MPPT
technique, which integrates P&O MPPT with Pelican
Optimization, aiming to maximize power generation.

Conventional MPPT techniques, like the P&O algorithm,
frequently encounter difficulties in variable environments, such as
oscillations at the MPP, and can be trapped at local peaks, especially
in situations with changeable irradiance. Similarly, while successful

Frontiers in Energy Research frontiersin.org07

Abdullah et al. 10.3389/fenrg.2024.1505419

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1505419


FIGURE 2
Control strategy of feed-forward decoupling control.

FIGURE 3
Flowchart of hybrid Pelican optimization algorithm and P&O MPPT.
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in complicated settings like partial shading, MPPT approaches based
on optimization algorithms may have sluggish convergence and
increased complexity. The advantages of both strategies are
combined in the proposed novel hybrid MPPT technique. As
seen in Figure 3’s flowchart, the hybrid strategy operates in two
loops, utilizing the POA’s global search capabilities and the P&O
method’s quick local search efficiency.

In the first loop (inner loop), the P&O algorithm is employed to
perform rapid local optimization under uniform conditions. This
algorithm perturbs the duty cycle D by a small step△D and observes
a change in power output (V*I � P). If the Power increases,
perturbation is maintained, and if power decreases, the
perturbation is updated, Duty cycle adjustment can be shown by
Equations 18 below.

Dnew � Dold +△D if dp/dv > 0 (18)
Dnew � Dold −△D if dp/dv < 0 (19)

The value△D in this stage is kept small to reduce the oscillations
near MPP. The range of value from (0.005–0.01).

In the second loop (outer loop), The POA is activated by
complex conditions like partial shading where multiple LMPP
exists. POA evaluates a population of possible solutions, each
representing a duty cycle. It then updates the best-known
individual positions (pbest) and the global best position (gbest). The
change in duty cycle (Vnew) is calculated using Equation 20 below
and the updated (new) duty cycle in Equation 21 below:

Vnew � Vold + C1 × rand( ) × pbest − X( )
+ C2 × rand( ) × gbest − X( ) (20)

Updated Duty Cycle can be written as,

Xnew � Xold + Vnew +△D (21)

Vnew = Velocity of a pelican (change in duty cycle).
X = Current position (Duty Cycle).
C1 and C2 = acceleration coefficients.
rand () = Stochasticity in the search process, allowing the

algorithm to search space without getting trapped.
pbest = Distance between current position(X) and best position

found by the pelican.
gbest = Distance between the global best position found by the

pelican and the current position (x).
△D = Perturbation step from the P&O method.
The equations for velocity (v) and position (x) updates in the

POA are central to how the algorithm manages the step ΔD
indirectly. During the exploratory phase, larger velocities
correspond to larger step sizes, enabling the algorithm to explore
the search space effectively. As the system converges on the global
MPP, the step size decreases, allowing for more precise control and
stability in the duty cycle adjustments. This dynamic adjustment
helps the hybrid HPPOMPPT algorithm in tracking the MPP under
uniform and varying environmental conditions.

A particular convergence rule, based on the ratio between the
best and worst fitness values in the population, is implemented to
guarantee efficient convergence. To ascertain if the algorithm has
successfully converged to an ideal solution, this ratio is essential. The
convergence requirement can be expressed analytically as:

Xbest −Xworst( )/Xbest≤ ϵ, flag � 1 (22)

Xbest = best duty cycle found by optimization algorithm so far.
Xworst = Worst duty cycle found by optimization

algorithm so far.
∈ = Threshold for convergence.
Fl � 1 , This is a convergence indicator flag.
When the above condition is met, the algorithm is considered to

have converged. The flag is set to 1, indicating that the population
has reached a state where further iterations may yield diminishing
returns. However, environmental conditions such as irradiance are
not constant andmay vary due to factors like cloud cover or shading,
causing the position of the MPP to shift. For changing
environmental conditions, the previous convergence might no
longer hold, and the algorithm needs to adapt quickly. The
program detects that the conditions have changed and restarts
itself if the difference ratio condition Equation 22 is broken. To
guarantee that the duty cycle stays within reasonable bounds and
that the search space is sufficiently covered, the method resets the
starting duty cycle values into a new range.

After reinitialization, the algorithm resets key variables such as
the gbest, Xbest, and convergence flags. This ensures that the algorithm
starts afresh, considering the new environmental conditions and the
changed MPP, and starts the optimization process again.

The hybrid HPPO (Pelican Optimization and Perturb and
Observe) algorithm combines the strengths of both POA and
P&O but at the cost of higher computational complexity and
resource requirements compared to the standalone approaches.
The P&O algorithm is computationally simple, with linear
complexity O (Dutta et al., 2018) requiring minimal memory and
processing power, making it ideal for low-resource systems. In
contrast, POA is more complex due to its population-based
optimization process, with a quadratic or higher computational
cost (O (n2)) and increased memory demands to store the
population and their associated variables. The hybrid HPPO
algorithm, while leveraging the fast convergence of P&O and the
stability of POA, requires significantly more memory and processing
power due to the need to manage both algorithms simultaneously.
This makes HPPO more resource-intensive, demanding faster
processors and more memory compared to standalone P&O, but
it offers more precise tracking of the Maximum Power Point (MPP)
under varying environmental conditions.

6 Simulation results

A detailed simulation study has been conducted to assess the
performance of the HPPO MPPT algorithm, designed explicitly for
grid-connected photovoltaic (PV) systems. Performance evaluation
parameters (PEP) are the PV system’s voltage, current, and power
response, the efficiency of PV MPPT, DC link voltage response, grid
power response, and THD of grid current.

The simulation was implemented usingMATLAB 2020 software
on a computer with a 4.1 GHz processor and 16 GB RAM. In
addition, a thorough comparison was conducted between the
suggested HPPO algorithm and various existing MPPT
techniques, such as NN MPPT, GWO MPPT, fuzzy MPPT, FPA
MPPT, CUCKOO MPPT, PSO MPPT, and ANFIS MPPT. The
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following specific cases were used to conduct the
comparative analysis:

Case 1: To evaluate the ability of the algorithm to adapt to varying
irradiance conditions, the panel’s temperature was maintained at
25°C. In contrast, the irradiance variation array was chosen as
[1000,800,600,400] W/m2 with a sampling period of 0.2 s.

Case 2: To assess the algorithm’s robustness in responding to
temperature fluctuations, the PV panel irradiance was fixed as
1000 W/m2, and the temperature was varied from 35°C to 10°C
after every 0.2 s.

The typical climatic conditions of grid-connected PV systems
in most locations and seasons are characterized by the range of
irradiance and temperature levels, which include 1,000 to 400 W/
m2 for irradiance and 10°C to 35°C for temperature in Case 1 and
Case 2, respectively. Since the effectiveness and performance of
PV and outputs fluctuate directly with solar intensity and
temperature, these fluctuations are required to evaluate the
hybrid HPPO algorithm’s adaptability when applied to real-
world scenarios. Making use of the formula P � η.G.A, Where
P is the output of the Photovoltaic system. η is efficiency
depending on temperature, G is irradiance, and A is the area
of the PV panel (constant).

TABLE 1 PV voltage details for case 1.

Irradiance (W/m2) 1,000 800 600 400 1,000 800 600 400

MPPT PV voltage (V) PV current (A)

HPPO 215.1 216.4 217.5 216.8 48.92 43.96 34.53 26.53

PSO 214.5 205.2 151.3 98.5 48.26 36.11 31.43 25.27

CUCKOO 214.3 176 155.6 104.6 48.11 43.04 31.27 23.48

FPA 214.6 206.5 205.3 205.3 47.93 38.01 21.07 15.95

GWO 214.3 175 150.6 105.5 48.13 43.74 30.23 23.25

Fuzzy 213.5 165 120.5 93.2 47.82 41.27 30.29 22.80

ANFIS 213.8 215.2 215.6 165.6 48.87 39.15 29.46 25.53

Neural Network 213.9 215.1 215.8 215.2 48.78 39.18 29.43 16.40

FIGURE 4
PV voltage response for Case 1.
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6.1 Simulation results for case 1

6.1.1 PV voltage response
In the following section, the simulation results of the PV voltage

and PV current of the HPPO MPPT algorithm, along with P&O
MPPT, Cuckoo MPPT, FPA MPPT, GWO MPPT, Fuzzy MPPT,
ANFIS MPPT, NN MPPT, are presented in Table 1. Based on the
preferred evaluation, parameters were deliberated individually for
the condition of case 1.

Notably, HPPO consistently demonstrates competitive PV
voltage across varying irradiance levels. At 1000 W/m2, the PV
voltage for HPPO is 215.1 V, outperforming other algorithms.
Similarly, at 400 W/m2, HPPO maintains a high PV voltage of
216.8 V. In contrast, alternative MPPT algorithms exhibit varying
performances and fluctuating PV voltage values under changing
irradiance conditions. These quantitative results reveal the favorable
performance of HPPO in sustaining stable and optimized PV voltage
responses compared to alternative MPPT techniques.

A graphical representation of the PV voltage response of HPPO
and other MPPT algorithms has been presented in Figure 4 for
comparison.

6.1.2 PV current response
Table 1 provided above compares the PV current values

corresponding to various algorithms with reference HPPO under
different irradiation conditions.

The table shows that HPPO consistently demonstrates
competitive PV current values across varying irradiance levels. At
1000 W/m2, the PV current for HPPO is 48.62A, outperforming
other algorithms. Similarly, at 400 W/m2, HPPO maintains a high
PV current of 26.53A. In contrast, alternative MPPT algorithms
exhibit varying performances and fluctuating PV current values
under changing irradiance conditions. These results confirm the
better performance of HPPO in sustaining stable and optimized PV
current responses compared to alternative MPPT techniques.

The PV current response for case 1 has been presented in Figure 5.

FIGURE 5
PV Current response for Case 1.

TABLE 2 PV power response for case 1.

Irradiance (W/m2) 1,000 800 600 400

MPPT PV power (W)

HPPO 10459 8,431 6,358 4,235

PSO 10352 7,410 4,756 3,489

CUCKOO 10310 7,575 4,865 3,466

FPA 10286 7,850 4,325 3,658

GWO 10315 7,655 4,553 3,453

Fuzzy 10210 6,810 4,012 3,125

ANFIS 10448 8,426 6,351 4,228

Neural Network 10445 8,427 6,352 3,529
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6.1.3 PV power response
Table 2 compares the PV output response of various algorithms

with reference HPPO under different irradiation conditions.
Notably, HPPO consistently demonstrates competitive PV

power across varying irradiance levels. At 1000 W/m2, the PV
voltage for HPPO is 10459W, the highest compared to other
considered algorithms. Similarly, at 400 W/m2, HPPO maintains
a high PV voltage of 4235W. In contrast, alternative MPPT
algorithms exhibit varying performances, with fluctuations in PV
power values under changing irradiance conditions, confirming the

supremacy of the HPPO algorithm for maintaining stable and
optimized PV power response performance of HPPO in
sustaining stable and optimized PV power responses in
comparison with alternative MPPT techniques.

The PV power for case 1, has been presented in Figure 6.

6.1.4 PV MPPT efficiency response
Table 3 compares the MPPT efficiency corresponding to various

algorithms with reference HPPO under different irradiation
conditions.

The efficiency values are expressed as a percentage and reflect
how effectively each MPPT algorithm optimizes the PV system’s
operation at its maximum power point. From the table, it is
observed for 1000 W/m2, the PV efficiency is at its maximum
power point for HPPO, which is 99.96%, outperforming other
algorithms. Similarly, at 400 W/m2, HPPO maintains a high
efficiency of 99.80. In contrast, alternative MPPT algorithms
exhibit varying performances, with fluctuations in
inefficiencies under changing irradiance conditions. These
results emphasize the superior efficiency of HPPO in
optimizing the PV system across a range of irradiance
conditions, establishing it as a robust and effective
MPPT algorithm.

6.1.5 DC link voltage response
For all the MPPT algorithms, the simulation results for DC link

voltage obtained at the output of the inverter have been tabulated in
Table 4 to compare their performance.

FIGURE 6
PV Power response for Case 1.

TABLE 3 Efficiency of the PV MPPT for case 1.

Irradiance (W/m2) 1,000 800 600 400

MPPT Efficiency of the PV MPPT (%)

HPPO 99.96 99.92 98.2 97.80

PSO 98.97 89.82 86.74 84.70

CUCKOO 98.57 89.77 76.46 77.92

FPA 98.34 93.03 87.97 72.69

GWO 98.61 90.72 87.55 83.85

Fuzzy 97.61 94.71 88.05 85.12

ANFIS 98.21 97.82 97.81 97.72

Neural Network 99.12 98.87 95.83 83.23
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HPPO has demonstrated competitive DC link voltage when
subjected to varying irradiance levels. From the values of the DC link
voltage levels, HPPO is outperforming other MPPTS. At 1000 W/
m2, the DC link voltage for HPPO is 1056V, outperforming other
algorithms. Similarly, at 400 W/m2, HPPO maintains a high PV
voltage of 1040 V. These quantitative results reveal the favorable
performance of HPPO in sustaining stable and optimized DC link
voltage compared with alternative MPPT techniques.

6.1.6 Grid power response
Table 4 provided above compares the grid power values of

various algorithms with HPPO under different irradiation
conditions.

The PV grid power for HPPO is 10302W for 1000 W/m2,
outperforming other algorithms. Similarly, at 400 W/m2, HPPO
maintains a high PV grid power of 4176W. In contrast, alternative
MPPT algorithms exhibit varying performances and fluctuating PV
grid power values under changing irradiance conditions. These
quantitative results reveal the favorable performance of HPPO in
sustaining stable and optimized grid power responses compared to
alternative MPPT techniques.

6.1.7 Efficiency of overall system
Table 5 presents the efficiency of the overall PV system,

considering both the PV array and the Maximum Power Point
Tracking (MPPT) algorithms.

Notably, HPPO consistently demonstrates competitive
efficiency of the overall PV system values across varying
irradiance levels. At 1000 W/m2, the PV efficiency for HPPO is
98.5%, outperforming other algorithms. Similarly, at 400 W/m2,
HPPO maintains a high PV efficiency of 98.6%. In contrast,
alternative MPPT algorithms exhibit varying performances and
fluctuating PV efficiency values under changing irradiance
conditions. These quantitative results reveal the favorable
performance of HPPO in sustaining stable and optimized overall
PV efficiency responses compared with alternative MPPT
techniques.

6.1.8 Total harmonic distortion
High THD affects grid stability due to distortion in voltage and

current waveform since distorted waveforms lead to poor power
quality that could damage the equipment, lower efficiency, and cause
overheating. Some of the reasons for relevance include triggering

TABLE 4 DC link voltage details for case 1.

Irradiance (W/m2) 1,000 800 600 400 1,000 800 600 400

MPPT DC link voltage (V) Grid power (W)

HPPO 1,058 1,055 1,054 1,040 10302 8,288 6,237 4,176

PSO 1,049 1,048 1,047 1,039 9,948 7,225 4,618 2,424

CUCKOO 1,053 1,047 1,045 1,037 10021 7,363 4,743 2,377

FPA 1,050 1,046 1,046 1,036 10029 7,646 4,217 2,576

GWO 1,052 1,048 1,043 1,035 9,985 7,494 4,457 2,384

Fuzzy 1,053 1,049 1,046 1,038 10016 6,626 3,880 2072

ANFIS 1,048 1,047 1,043 1,035 10187 8,165 6,148 4,127

Neural Network 1,050 1,051 1,045 1,032 10226 8,242 6,174 3,451

TABLE 5 Efficiency of the overall system for case 1.

Irradiance (W/m2) 1,000 800 600 400

MPPT Efficiency of the overall
system (%)

HPPO 98.5 98.3 98.1 98.6

PSO 96.1 97.5 97.1 97.4

CUCKOO 97.2 97.2 97.5 96.8

FPA 97.5 97.4 97.5 96.9

GWO 96.8 97.9 97.9 97.2

Fuzzy 98.1 97.3 96.7 97.5

ANFIS 97.5 96.9 96.8 97.6

Neural Network 97.9 97.8 97.2 97.8

TABLE 6 Total Harmonic Distortion of the grid current for Case 1.

Irradiance (W/m2) 1,000 800 600 400

MPPT Total harmonic distortion of the
grid current (%)

HPPO 0.5 0.48 0.59 0.58

PSO 1.5 2.0 2.5 2.6

CUCKOO 1.3 1.7 2.4 1.7

FPA 2.2 1.7 1.8 2.0

GWO 1.8 1.9 1.5 1.9

Fuzzy 0.8 1.8 1.2 2.1

ANFIS 1.0 1.0 1.0 1.5

Neural Network 1.0 1.1 0.9 1.2
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resonances in the grid, amplifying currents, and potentially
breaking grid operations, along with elevated THD thereby
shortening equipment lifespan, increasing power losses and
heat, and interfering with protective relay operation, risking
unintentional disconnections and reliability loss. Table 6
compares the total harmonic distortion (THD) values
corresponding to various algorithms with reference HPPO
under different irradiation conditions, also called oscillations
around MPP. THD is a measure of the distortion in the
waveform of the grid current, reflecting the presence
of harmonics.

The PV THD for HPPO is 0.5% at 1000 W/m2, which is better
than previous methods. Similarly, HPPO has the best PV THD of
0.58% at 400 W/m2. As a result, HPPO continuously shows
competitive PV THD values over a range of irradiance levels.

Figure 7 displays the THD of the grid current response for case 1.
Table 7 compares the convergence time, tracking time, tracking

speed, convergence speed, and stability of the proposed technique
with other techniques for case 1.

The table compares several algorithms based on their
convergence time, tracking time, convergence speed, and stability.
The proposed HPPO emerges as the top performer, with the fastest

FIGURE 7
Total Harmonic distortion of grid current response for Case 1.

TABLE 7 Convergence time, tracking time for case 1.

Algorithm Convergence time (s) Tracking Time(s) Convergence speed Stability

HPPO 0.12 0.03 Fastest Most stable

PSO 0.15 0.05 Moderate Moderate

CUCKOO 0.18 0.07 Slower Higher oscillations

FPA 0.18 0.07 Slower Higher oscillations

GWO 0.25 0.10 Slow Less stable

Fuzzy 0.25 0.10 Slow Less stable

ANFIS 0.25 0.10 Slow Less stable

Neural Network 0.30 0.12 Slowest Least stable
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convergence time of 0.12 s and the quickest tracking time of 0.03 s,
and is the most stable algorithm, while the Neural Network
algorithm performs the worst, with the slowest convergence and
tracking times, making it the “least stable” technique.

6.2 Simulation results for case 2

6.2.1 PV voltage response
Table 8 compares the PV voltage values corresponding to

various algorithms with reference HPPO under different
temperature conditions.

Notably, HPPO consistently demonstrates competitive PV
voltage values across varying temperature levels. At 35°C, the PV
voltage for HPPO is 218 V, outperforming other algorithms.
Similarly, at 10°C, HPPO maintains a high PV voltage of
229.8 V. In contrast, other algorithms such as PSO, CUCKOO,
FPA, GWO, Fuzzy, ANFIS, and Neural Network record lower values
ranging from 180 V to 220 V. These quantitative results reveal the
favorable performance of HPPO in sustaining stable and optimized
PV voltage responses in comparison with alternative MPPT
techniques.

The graphical representation of PV output voltage for the HPPO
algorithm and other techniques has been presented in Figure 8.

TABLE 8 PV Voltage details for Case 2.

Temperature (°C) 35°C 25°C 15°C 10°C PV current (A)

MPPT PV voltage (V)

HPPO 218 214.9 222.8 229.8 55.58 53.64 51.39 50.42

PSO 208 209 218 217 48.09 48.00 49.84 49.07

CUCKOO 206 212 213 213 48.59 49.01 50.48 49.65

FPA 210 213 216 218 47.65 48.86 50.30 49.26

GWO 198 216 214 216 50.54 48.20 49.19 47.25

Fuzzy 195 196 197 198 51.04 50.86 50.66 50.37

ANFIS 185 206 218.9 224 53.31 50.63 49.63 49.10

Neural Network 180 204 219.5 225.6 54.77 51.16 49.15 42.92

FIGURE 8
PV voltage response for case 2.
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6.2.2 PV current response
Table 8 provided above compares the PV current values

corresponding to various algorithms with reference HPPO under
different Temperature conditions.

Notably, HPPO consistently demonstrates competitive PV
current values across varying irradiance levels. At 35°C, the PV
current for HPPO is 55.58A, outperforming other algorithms.
Similarly, at 10°C, HPPO maintains a high PV current of
50.42 A. In contrast, alternative MPPT algorithms exhibit varying
performances and fluctuating PV current values under changing
temperature conditions. These quantitative results reveal the
favorable performance of HPPO in sustaining stable and

optimized PV current responses compared to alternative MPPT
techniques.

The PV current for case 2 is presented in Figure 9.

6.2.3 PV power response
Table 9 compares the PV power values corresponding to various

algorithms with reference HPPO under different temperature
conditions.

Notably, HPPO consistently demonstrates competitive PV power
values across varying temperature levels. At 35°C, the PV power for
HPPO is 10016W, outperforming other algorithms. Similarly, at 10°C,
HPPO maintains a high PV power of 11095W. In contrast, alternative
MPPT algorithms exhibit varying performances and fluctuating PV
power values under changing temperature conditions. These
quantitative results reveal the favorable performance of HPPO in
sustaining stable and optimized PV power responses compared to
alternative MPPT techniques.

The PV power for case 2 is presented in Figure 10.

6.2.4 The efficiency of PV MPPT response
The efficiency values of PVMPPT are presented in Table 10.
HPPO consistently demonstrates competitive PV MPPT efficiency

values across varying irradiance levels. At 35°C, the PV MPPT efficiency
for HPPO is 99.96%, outperforming other algorithms. Similarly, at 10°C,
HPPO maintains a high PV MPPT efficiency of 99.70%. In contrast,
alternative MPPT algorithms exhibit varying performances and
fluctuating PV MPPT efficiency values under changing temperature
conditions. These quantitative results reveal the favorable performance
of HPPO in sustaining stable and optimized PV MPPT efficiency
responses compared with alternative MPPT techniques.

FIGURE 9
PV current response for case 2.

TABLE 9 PV Power response for Case 2.

Temperature (°C) 35°C 25°C 15°C 10°C

MPPT PV power (W)

HPPO 10016 10453 11004 11095

PSO 10002 10403 10865 10865

CUCKOO 10009 10390 10752 10789

FPA 10007 10408 10865 10956

GWO 10006 10412 10526 10853

Fuzzy 9,952 9,968 9,980 9,973

ANFIS 9,862 10429 10865 9,654

Neural Network 9,859 10436 10789 9,682
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6.2.5 DC link voltage response
Table 11 compares the PV DC Link voltage values under case 2.
From the tabulated values, it was observed that for the HPPO

algorithm at 35°C, the DC link voltage is 1073V. For 10°C, HPPO
maintains a high PV voltage of 1062 V. These quantitative results
reveal the favorable performance of HPPO in sustaining stable and
optimized DC link voltage.

6.2.6 Grid power response
The grid response regarding grid power output for all MPPT

algorithms has been tabulated in Table 11 under variable conditions.
The grid power output for HPPO is 9826W for 35°C,10268 for

25°C,10829W for 15°C, and 10913W for 10°C. Notably, HPPO

consistently has the highest value of grid output voltage in all the
temperature conditions considered.

6.2.7 Efficiency of the overall system
Table 12 compares the PV system efficiency values

corresponding to various algorithms with reference HPPO under
different temperature conditions.

HPPO consistently demonstrates competitive PV system
efficiency values across varying temperature levels. At 35°C, the
PV system efficiency for HPPO is 98.20%, outperforming other
algorithms. Similarly, at 10°C, HPPO maintains a high PV system
efficiency of 98.36%. In contrast, alternative MPPT algorithms
exhibit varying performances and fluctuating PV system
efficiency values under changing temperature conditions. These
quantitative results reveal the favorable performance of HPPO in
sustaining stable and optimized PV system efficiency compared to
alternative MPPT techniques.

6.2.7.1 THD response system
The simulation results of calculated THD values for the case

2 condition are in tabular form in Table 13 and graphically
in Figure 11.

HPPO consistently demonstrates competitive PV THD response
values across varying temperature levels. At 35°C, the PV THD
response for HPPO is 0.53%, outperforming other algorithms.
Similarly, at 10°C, HPPO maintains a high PV THD response of
216.8 V. In contrast, alternative MPPT algorithms exhibit varying
performances and fluctuating PV THD response values under
changing temperature conditions. These quantitative results
reveal the favorable performance of HPPO in sustaining stable

FIGURE 10
PV Power response for Case 2.

TABLE 10 Efficiency of the PV MPPT for case 2.

Temperature (°C) 35°C 25°C 15°C 10°C

MPPT Efficiency of the PV MPPT (%)

HPPO 99.96 99.93 99.75 99.70

PSO 99.82 99.46 98.59 97.88

CUCKOO 99.89 99.33 97.57 97.20

FPA 99.87 99.50 98.59 98.70

GWO 99.86 99.54 95.52 97.77

Fuzzy 99.32 95.30 90.56 89.85

ANFIS 98.42 99.70 98.59 96.97

Neural Network 98.39 99.77 97.90 87.23
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and optimized PV THD response compared with alternative MPPT
techniques.

The PV THD response for case 2 is presented in Figure 11.

Table 14 below is a comparison of the proposed technique’s
convergence time, tracking time, tracking speed, convergence speed,
and stability with other techniques for case 2.

This table compares the performance of various algorithms
based on how quickly and steadily they reach a stable state in a
system. The proposed HPPO technique is the most responsive and
reliable, with the fastest convergence time of 0.12 s, while the Neural
Network-based MPPT is the slowest at 0.30 s, with the least stability
among all methods.

7 Conclusion

This paper introduces a grid-interactive PV system utilizing the
hybrid HPPO method for MPPT. The performance evaluation of
this innovative technique was conducted by examining a range of
parameters, including PV voltage, current, power, MPPT efficiency,
grid voltage, current, inverter metrics, power factor, overall system
efficiency, total harmonic distortion (THD), and convergence speed.
Two distinct scenarios were analyzed: varying irradiance at a
constant temperature and fluctuating temperature at steady
irradiance.

In the first scenario, where irradiance varied while temperature
remained constant at 25°C, the HPPO (Hybrid Particle Population
Optimization) MPPT algorithm consistently outperformed other
algorithms across all tested parameters. It achieved an MPPT
efficiency exceeding 99.8% and maintained an overall system
efficiency above 98%, demonstrating robust optimization of PV
systems in dynamic conditions. The HPPO algorithm also
demonstrated the fastest convergence and tracking times (0.12s
and 0.03s, respectively) and the highest stability among tested
algorithms. Unlike PSO and Cuckoo, which showed moderate to
slower speeds andmoderate to higher oscillations, HPPOminimized
harmonic distortions effectively, making it exceptionally stable.

In the second scenario, where temperature changes occurred at
fixed irradiance, HPPO continued to excel across all parameters,
sustaining an MPPT efficiency above 99.8% and a PV system
efficiency of 98.4%, outperforming all other techniques. THD
analysis revealed that HPPO produced minimal harmonic

TABLE 11 DC Link Voltage details for Case 2.

Temperature (°C) 35°C 25°C 15°C 10°C 35°C 25°C 15°C 10°C

MPPT DC link voltage (V) Grid power (W)

HPPO 1,076 1,074 1,068 1,062 9,826 10268 10829 10913

PSO 1,070 1,066 1,059 1,053 9,623 10117 10550 10587

CUCKOO 1,074 1,068 1,066 1,058 9,730 10101 10446 10445

FPA 1,071 1,067 1,067 1,057 9,762 10143 10588 10619

GWO 1,073 1,069 1,064 1,056 9,624 10194 10305 10584

Fuzzy 1,074 1,070 1,067 1,059 9,771 9,704 9,651 9,728

ANFIS 1,069 1,071 1,064 1,056 9,619 10108 10483 9,423

Neural Network 1,071 1,072 1,066 1,053 9,653 10142 10489 9,474

TABLE 12 Efficiency of the overall system for Case 2.

Temperature (°C) 35°C 25°C 15°C 10°C

MPPT Efficiency of the overall system (%)

HPPO 98.20 98.23 98.41 98.36

PSO 96.21 97.25 97.10 97.44

CUCKOO 97.21 97.22 97.15 96.81

FPA 97.55 97.45 97.45 96.92

GWO 96.18 97.91 97.90 97.52

Fuzzy 98.18 97.35 96.70 97.54

ANFIS 97.54 96.92 96.48 97.61

Neural Network 97.91 97.18 97.22 97.85

TABLE 13 Total Harmonic Distortion of the grid current for Case 2.

Temperature (°C) 35°C 25°C 15°C 10°C

MPPT Total harmonic distortion of the
grid current (%)

HPPO 0.53 0.58 0.89 0.68

PSO 1.5 2.2 2.5 2.4

CUCKOO 1.6 1.1 2.4 1.4

FPA 2.8 1.6 1.4 2.2

GWO 1.89 1.4 1.6 1.9

Fuzzy 0.95 1.9 1.9 2.4

ANFIS 1.4 1.5 1.2 1.8

Neural Network 1.6 1.7 0.94 1.6
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distortion in grid current under 5% while delivering the best
convergence and tracking speed, thus supporting a cleaner, more
stable power output that aligns with IEEE 519 standards. Algorithms
like GWO, Fuzzy, ANFIS, and Neural Networks were slower and less
stable, with convergence times up to 0.30s and tracking times up to
0.12s, showing higher oscillations and reduced reliability. Overall,
HPPO’s performance in both convergence speed and stability makes
it ideal for precise, rapid tracking in dynamic conditions.

The simulation results confirm that the proposed HPPO
method achieves efficiencies exceeding 99% across various

scenarios, highlighting its superior performance compared to
other approaches. This consistency in effectiveness under
diverse conditions positions it as a promising solution for
enhancing the efficiency and reliability of grid-connected PV
systems. Future work will involve hardware testing of the
MPPT to alleviate computational demands through the use
of efficient microcontrollers or programmable arrays, as well as
exploring a broader range of conditions to gain deeper insights
into the method’s limitations and potential for further
optimization.

FIGURE 11
Total harmonic distortion of grid current response for Case 2.

TABLE 14 Convergence time, tracking time summary for case 2.

Algorithm Convergence Time(s) Tracking Time(s) Convergence speed Stability

HPPO 0.12 0.03 Fastest Most stable

PSO 0.15 0.05 Moderate Moderate

CUCKOO 0.18 0.07 Slower Higher oscillations

FPA 0.18 0.07 Slower Higher oscillations

GWO 0.25 0.10 Slow Less stable

Fuzzy 0.25 0.10 Slow Less stable

ANFIS 0.25 0.10 Slow Less stable

Neural Network 0.30 0.12 Slowest Least stable
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