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The integration of a large number of electric vehicles (EVs) offers a new
perspective for providing voltage regulation services for the operation of
distribution networks. The flexible charging and discharging capabilities of
EVs can help mitigate voltage fluctuations and improve grid stability. In this
paper, we utilize EV clusters by controlling the discharging power to realize
voltage regulation of distribution networks. We formulate a feedback-based
optimization problem with the objectives of minimizing voltage mismatch as
well as reducing the cost of voltage regulation services provided by EV clusters.
Then we propose an algorithm with online resistance estimation to find the
optimal solution without requiring complete information about distribution
networks. The convergence of the proposed algorithm is guaranteed by the
oretical proof. Numerical results in 33-bus system validate the performance of
the algorithm. The results validate the applicability of the proposed approach in
distribution networks, highlighting the potential of EV clusters as a flexible and
cost-effective solution for voltage regulation.
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1 Introduction

In recent years, a low-carbon society has become a common goal for many countries,
which promotes energy transition (Wang et al., 2021b); (Qin et al., 2024b); (Sun et al.,
2023). Moreover, large-scale renewable energy resources (RES) have been witnessed in
distribution networks, such as wind power, solar power, hydropower, etc., (Qin et al.,
2024c); (Jia et al., 2020); (Liu et al., 2022); (Qin et al., 2024a). These RES are much
more variable and unpredictable than conventional generations and loads, posing a great
challenge to the stable operation of the modern network (Guo et al., 2022); (Shuai et al.,
2021). Improper regulation may lead to voltage fluctuation and instability, which will
degrade the performance of the network, even resulting in potential danger (Li et al., 2017);
(Wang Z. et al., 2020); (Zhang et al., 2024). To address the issue, there is a growing need
for a flexible and responsive voltage regulation strategy. One promising approach is the
utilization of electric vehicles (EVs) for voltage regulation (Yang et al., 2024); (Wang et al.,
2024); (Yin et al., 2023); (Yang et al., 2023).The network operator compensates EVs for their
participation in voltage regulation. In this paper, we investigate how to utilize EVs to realize
voltage regulation in distribution networks at a relatively low cost.
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Voltage regulation by EVs in distribution networks aims to
minimize the voltage mismatch by regulating the charge/discharge
power of EV clusters. Model predictive control (MPC) based
methods are widely considered in this area (Li et al., 2019);
(Wang et al., 2022); (Hu et al., 2022); (Feng and Liu, 2023). In
reference (Li et al., 2019), a model predictive control (MPC)method
is proposed to allow EVs to participate in the grid voltage regulation
as a reactive power compensation device tomaintain the grid voltage
within a stable range. Authors in Wang et al. (2022) developed
an MPC-based decentralized algorithm to solve the voltage-related
problem using the respective PVs and EVs while ensuring that the
EV charging demand is satisfied while contributing to the voltage
regulation. Reference (Hu et al., 2022) established a distributed
MPC strategy for EV chargers to exploit reactive power vehicle-to-
grid (V2G) abilities and participate in real-time voltage regulation
of both balanced and unbalanced distribution networks without
intervening in the active power exchange. The adaptive primary
control and the distributed MPC-based secondary control were
combined in Feng and Liu (2023) to maintain accurate dynamic
power sharing and stable frequency and voltage.

While MPC-based methods are powerful for voltage regulation,
optimization-based methods may handle complex objectives and
constraints and scale better with problem size. Many existing
works have investigated optimization-based methods (Beaude et al.,
2013); (Wu et al., 2016); (Wang S. et al., 2020); (Zhao et al.,
2020); (Hu et al., 2021); (ur Rehman, 2022); Yumiki et al. (2022);
(Wang et al., 2023). Authors in Beaude et al. (2013) investigated a
decentralized optimizationmethodology to coordinate EV charging
in order to contribute to the voltage control on a residential
electrical distribution feeder. Reference Wu et al. (2016) used
the EVs to regulate the voltage of the smart grid and propose
an algorithm to maximize the revenue of the parking lot in a
line distribution grid considering the EV users’ charging demand
and the voltage fluctuations. A game-theoretic machine learning
framework was proposed in Wang S. et al. (2020) to utilize
EV charging stations and achieve decentralized Volt-Var control.
Reference Zhao et al. (2020) studied an incentive mechanism
based on Nash bargaining theory to solve the voltage regulation
problem in a distributed network integrated with EVs. Reference
Hu et al. (2021) proposed a distributed voltage regulation scheme for
dominantly resistive distribution networks through a coordinated
EV charging/discharging process. A novel and robust central
aggregation hierarchical V2G optimization algorithm is proposed
in ur Rehman (2022) to provide voltage and frequency regulation
services to the grid. Reference Yumiki et al. (2022) developed
a system-level design for the control of electric power grids by
EVs to realize multi-objective ancillary service including primary
frequency control and voltage amplitude regulation. Authors in
Zhang et al. (2018) proposed a novel EV charging scheduling
mechanism by controlling the active and reactive charging power
of EVs to provide joint voltage and frequency regulation. They
formulate a non-convex optimization problem and solve it by
transforming the problem into a second-order cone program
problem. Reference Wang et al. (2023) proposed an incentive-based
control strategy to encourage EVs in desired locations to participate
in grid voltage regulation.

In most aforementioned optimization-based works, the main
focus is on problem formulation and modeling. The optimization

problem is usually formulated with power flow constraints of the
network model. Few works intend to investigate how to solve the
problem effectively. Commonly, gradient-based methods to find
the optimal solution are widely utilized. However, accurate model
information is hard to obtain, e.g. resistance values of electrical
lines, due to environmental influences. How to realize voltage
regulation with EVs in distribution networks without accurate
model information remains unsolved.

In this paper, we formulate a voltage regulation strategy
in distribution networks provided by EV clusters with an
online parameter estimation method. Our main contributions
are as follows:

• The voltage regulation problemwith EV clusters is formulated.
Both power flow constraints and economic cost are considered
in the optimization problem. The operator aims to eliminate
voltagemismatch as well asminimize the cost of compensation
for EV clusters.
• A feedback-based optimal seeking algorithm with online
parameter estimation is proposed. Traditionally, exact
information about network parameters, especially values of
resistance, is necessary for optimal seeking. Nevertheless,
due to exogenous influences or measurement errors, this
information is usually not accurate. To solve the issue,
we incorporate a recursive least squares (RLS) based
method to estimate necessary parameters, which utilizes
power and voltage information to update the estimation of
resistance online.
• Performance of the proposed algorithm is demonstrated
including estimation accuracy and convergence to the optimal
point. We theoretically prove that the estimation error of
parameters converges exponentially. Moreover, we prove that
decision variables converge to the optimal point under our
proposed algorithm.

The rest of this paper is organized as follows. In Section 2,
preliminaries are presented and the distribution network is built.
Section 3 formulates the problem of voltage regulation with EV
clusters in distribution networks. An optimal seeking algorithm
with online parameter estimation is proposed in Section 4. The
convergence proof of the algorithm is also given in this section.
Numerical results are demonstrated in Section 5. Finally, Section 6
concludes the paper.

2 Preliminaries and modeling

2.1 Preliminaries

In this paper, ℝn+ represents the n-dimensional (non-negative)
Euclidean space. For a column vector x ∈ ℝn (matrix Am×n ∈ ℝm×n),
the transpose is denoted by xT(AT). For a matrix A, Ai,j represents
the entry in the i-th row and j-th column of A. Use σi(A) to
denote the i-th singular value of A. ‖A‖F = √∑i,j|A|

2
i,j = √∑i(σi(A))

2

is Frobenius norm ofA. ‖x‖ = √xTx is the Euclidean norm and ‖A‖ =
maxx≠0

‖Ax‖
‖x‖

is the L2 norm of matrix A. In denotes the identity
matrix inℝn×n. Sometimes, we also omit the subscript n to represent
the identity matrix with the proper dimension. The Kronecker
product is denoted by ⊗. ‖x‖ = √xTx is the Euclidean norm. We
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use 1 to denote the column vector where all elements are 1. For a
square matrix A ∈ ℝn×n, σmin(A) represents the minimal eigenvalue
of A while σmax(A) represents the maximal eigenvalue. Then the
L2 norm of matrix A can be also denoted by ‖A‖ = √σmax(ATA).
The Cartesian product of the sets Ωi, i = 1,…,n is denoted by
∏n

i=1Ωi. With a collection of xi in the set X, the vector composed of
xi, i = 1,…,n is defined as x = col(xi) ≔ (xT1 ,x

T
2 ,…,x

T
n)

T and x−i =
colj≠i(xj) ≔ (x

T
1 ,x

T
2 ,…,x

T
i−1,x

T
i+1,…,x

T
n)

T.The projection of x onto the
set Ω is defined as PΩ(x) = argminy∈Ω ‖x− y‖. An operator T:Ω ⊂
ℝm→ℝm is called non-expansive if it satisfies ‖T(x) −T(y)‖ ≤ ‖x−
y‖.

2.2 Distribution network model

We consider a radial distribution network with N+ 1 nodes,
represented by the graphG f = (N0,E f).N0 = {0}⋃N is the set of all
nodes, whereN = {1,2,…,N} and node 0 represents the substation
with a fixed voltage. The set E f ⊆N0 ×N0 represents the electrical
lines in the distribution network. We denote the set of neighbors
of node i by N f

i = {j ∣ (j, i) ∈ E f ,∀j ∈N0}. The active and reactive
power on the line connecting node i and j is denoted by Pi,j and Qi,j,
respectively. Next, we introduce an assumption of the availability of
EV clusters.

Assumption 1: Each node in the distribution network is connected
to one EV cluster which can charge and discharge within a certain
power range except node 0. Node 0 does not have an EV cluster
connected to it.

The active power generated by EV cluster i is denoted by gi. The
generation power is actually the discharge power of EV clusters. di
is active power load at node i. Therefore, the active power injection
pi at node i is given as follows:

pi = gi − di (1)

As for the reactive power, we use qi to denote the reactive power
injection at node i. We assume that qi is uncontrollable.

From the DistFlowmodel proposed in Baran andWu (1989), we
have the following power flow equations of the distribution network.

−Pj = Pi,j − ri,jli,j − ∑
k∈N f

j

Pj,k (2a)

−qj = Qi,j − xi,jli,j − ∑
k∈N f

j

Qj,k (2b)

vi − vj = ri,jPi,j + xi,jQi,j − (r
2
i,j + x

2
i,j) li,j (2c)

where vi =
1
2
|Vi|

2 with Vi as the complex voltage at node i. ri,j and
xi,j are the resistance and reactance of the line (i, j), respectively. The

term li,j =
P2i,j+Q

2
i,j

|Vi|
2 indicates the square of the current amplitude on

the line (i, j), which represents the power loss in the network. When
the power loss is relatively small compared with power flow, we can
further make an approximation of (2) by linearization with a very
small error (Farivar et al., 2013). Let li,j = 0, we have linearized power
flow equations of the distribution network as follows:

−pj = Pi,j − ∑
k∈N f

j

Pj,k (3a)

−qj = Qi,j − ∑
k∈N f

j

Qj,k (3b)

vi = vj + ri,jPi,j + xi,jQi,j (3c)

The incidence matrix of the network G f = (N0,E f) is denoted
byM = [m0 MT]T ∈ ℝ(N+1)×N, wheremT

0 is the first row ofM and
M ∈ ℝN×N is the remaining part of M. We use vs to denote the
voltage at node 0. Then with (Equation 1), the compact form of
(Equations 3a–c) is given as Wang Z. et al. (2020):

MP = g− d (4a)

MQ = q (4b)

[m0 MT] ⋅ [vs vT]
T = diag (r)P+ diag (x)Q (4c)

where g≔ col(g1,g2,…,gN) with d, q, P, Q, v defined similarly.
diag (r) and diag (x) are two diagonal matrices whose elements on
the diagonal are ri,j and xi,j, respectively.

Since the network is connected, M is of full rank. Left-
multiplying (Equation 4a) and (Equation 4b) by M−1 and
substituting it into (Equation 4c) to eliminate P andQ, we obtain:

v = Rg+Xq−Rd−M−Tm0vs
= Rg+Xq−Rd+ 1vs (5)

where R =M−Tdiag(r)M−1,X =M−Tdiag(x)M−1 are symmetric
positive definite matrices with −M−Tm0 = 1 Kekatos et al. (2015b),
(Keatos et al. 2015a). The Equation 5 implies that each component
vi of v is an affine function with subject to gi. We define the affine
function for vi as vi = πi(gi). The system model is shown in Figure 1.

3 Problem formulation

In this section, we formulate an optimization problem to realize
voltage regulation in the distribution network by EV clusters. For EV
cluster i, the discharge power is limited, denoted by

g
i
≤ gi ≤ gi,∀i ∈N (6)

where g
i
and gi represent the lower and upper bounds of discharge

power, respectively.
When EV clusters discharge to help realize voltage regulation,

we compensate for EV clusters according to their discharge power.
The compensation function for EV cluster i is denoted by

fci (gi) = aig
2
i + bigi (7)

where ai and bi are positive constants (Wang et al., 2021a).
To realize voltage regulation, we aim to maintain voltage at

each node as a predetermined value. We use the node voltage
as a feedback value and define the voltage mismatch as the
following function:

Vi (vi) = (vi − v0)
2 (8)

The goal for the network operator is to lower voltage mismatch
while reducing compensation costs, which is a combination of
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FIGURE 1
System model.

(Equation 7) and (Equation 8). Therefore, the regulation problem
can be summarized as the following optimization problem:

ming Φ (g) = α
N

∑
i=1

fci (gi) + (1− α)
N

∑
i=1

Vi (vi) (9a)

s.t. g
i
≤ gi ≤ gi,∀i ∈N (9b)

vi = πi (gi,g−i) (9c)

where 0 < α < 1 is a trade-off constant. By tuning the value of α,
we can achieve different balances between compensation cost and
regulation performance.

Lemma 1: The cost function Φ(g) (Equation 9a) is μ-
strongly convex.

Proof: The cost function Φ(g) (Equation 9a) can be expressed as:

Φ (g) = αgTAg+ αbTg+ ‖Rg+Xq−Rd+ 1vs − v01‖2

For a positive μ satisfying μ < 2σmin(A), we have

Φ (g) −
μ
2
‖g‖2 = gT(αA−

μ
2
I)g+ αbTg+ ‖Rg+Xq−Rd+ 1vs − v01‖2.

Obviously, Φ(g) − μ
2
‖g‖2 is still a convex function.Therefore, the

cost function Φ(g) is μ-strongly convex with 0 < μ < 2ασmin(A).
Remark 1. For the optimization problem (Equation 9a–c), the

cost function (Equation 9a) is a strictly convex function subject to g.

The constraints (Equation 9b) and (Equation 9c) form a non-empty
convex compact set on g. Therefore, there exists a unique optimal
solution for the problem (Equation 9a–c).

4 Algorithm

The optimization problem (Equation 9a–c) is a constrained
convex optimization problem. One commonly used algorithm is the
projected gradient descent (PGD) method, which is demonstrated
in (Equation 10).

gk+1 = PG (gk − τ∇Φ(gk)) (10)

where τ is the step size and the set G =∏N
i=1Gi. The gradient is

computed as follows:

∇Φ(gk) = 2αAgk + αb+ (1− α)R
T (vk − v01) (11)

where the matrix A and vector b are defined as follows:

A =
[[[[[

[

a1 0 ⋯ 0
0 a2 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ aN

]]]]]

]

,b =
[[[[[

[

b1
b2
⋮
bN

]]]]]

]

The key step in the iteration (Equation 10) is the gradient
computation (Equation 11). Obviously, it relies on the network
resistance parameter R, which is difficult to obtain due to two
reasons. On the one hand, the precise resistance value is usually not
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available because of wire aging and environmental influences. On
the other hand, not all lines are exactlymeasured.Thus the resistance
matrix R in the linear equation given in (Equation 5) is not known.
To solve the problem, we utilize recursive least squares (RLS) to
help estimate R for the gradient computation. The RLS algorithm
acquires new knowledge during the iteration and uses it to update
the estimation of R online.

For the RLS design, we first transform (Equation 5) into a
simpler form. Let v̄ = Xq−Rd− 1vs, thenwe express (Equation 5) as:

vk = Rgk + v̄ (12)

Since we only need to estimate R in gradient computation
(Equation 11), we introduce a difference form of (Equation 12) to
eliminate the constant term v̄. In PGD method (Equation 10), the
variable gk changes for each iteration until the algorithm converges.
We use Δgk = gk+1 − gk to denote the iteration difference of g, leading
to a voltage difference defined as Δvk = vk+1 − vk. Then we have the
difference form of (Equation 12):

Δvk = RΔgk (13)

To utilize RLS, we need to transform the matrix R into a vector.
By introducing the regressor matrix ψk = Δgk ⊗ IN and parameter
vector θ = vec(R̃), we transform (Equation 13) into:

Δvk = ψT
kθ (14)

Now we utilize the RLS method to obtain the recursive
estimation of θ, denoted by θ̂k. The RLS design is as follows:

θ̂k+1 = θ̂k + Pk−1ψkD
−1
k (Δvk −ψ

⊤
k θ̂k) (15a)

Pk = λ−1 (I− Pk−1ψkD
−1
k ψ⊤k )Pk−1 (15b)

where Dk = λT+ψ⊤k Pk−1ψk with T ∈ ℝN×N being a positive definite
matrix and constant real forgetting factor 0 < λ < 1. Pk ∈ ℝN

2×N2
is

the covariance matrix with the initial matrix P−1 being positive
definite. This RLS algorithm (Equations 15a, b) is for the multiple-
output system like (Equation 14), which is an extension to the
traditional single-output RLS algorithm Johnstone et al. (1982).

To learn θ by the RLS method (Equations 15a, b), we need to
get enough information, i. e, utilize different ψk to explore different
vk and then infer the elements of θ. This can be described as
the persistency of excitation condition Brüggemann and Bitmead
(2021):Thematrix sequence {ψk} is said to be persistently exciting if
for some S ≥ 0 and all j ≥ 0 there exist positive reals,β and γ, such that

0 < βI ≤
j+S

∑
i=j

ψiψ
⊤
i ≤ γI <∞.

Using the estimation parameter θk vector to recover Rk, we may
compute the gradient (Equation 11) as:

∇Φ̂k (gk) = 2αAgk + αb+ (1− α)R
T
k (vk − v01) (16)

Then the operator may use (Equation 16) to update gk in
(Equation 10). The PGD-RLS algorithm is outlined in Algorithm
1. Our proposed algorithm consists of two steps. Step 1 involves
the PGD (Equation 10), where the gradient is computed using the

Initialization for EV clusters: gi,0 ∈ Gi

Initialization for estimation: R0,P−1 = wI,w > 0

Iteration at k:

Step 1: The operator measures the voltage vk and

makes iteration.

gk+1 = PG (gk −τ∇Φ̂k(gk))

Step 2: EV clusters apply generation power in the

network. The operator measures voltage difference

Δvk+1 and computes the regressor matrix ψk+1.

θ̂k+1 = θ̂k +Pk−1ψkD
−1
k
(Δvk −ψ⊤k θ̂k)

Pk = λ−1 (I−Pk−1ψkD
−1
k
ψ⊤
k
)Pk−1

Recover Rk+1 from θ̂k+1 for the next

iteration.

Algorithm 1. PGD-RLS.

estimated parameter Rk from the previous iteration instead of the
exact value. Step 2 employs an RLS algorithm (Equations 15a, b) for
online parameter estimation. It makes use of the information about
voltage and power during iterations to update the estimationRk.The
online estimation does not rely on prior knowledge of the network
resistance. Step 1 provides sufficient input-output information for
Step 2 to refine the estimation of R online. Meanwhile, Step 2
provides the updated estimation result for Step 1, allowing for the
consistent update of gk until convergence is achieved.

Next, we will analyze the performance of the proposed
algorithm, which includes the estimation accuracy of RLS method
(Equations 15a, b) and the convergence of decision variable gk.
We first show the exponential convergence of RLS method
(Equations 15a, b).

Theorem 1: For any initial estimation θ̂0, the estimation error ‖θ̂k −
θ‖2 converges exponentially to zero, i.e. there exists a ν > 0 such that

‖θ̂k − θ‖2 ≤ νλk‖θ̂0 − θ‖2,

for all k ≥ S, where ν = λ−(S+1)−1
σmin(T−1)β(λ−1−1)

σmax (P−1−1) with P−1 being a
positive definite matrix.

Following Lemma 2 and Theorem 3 in Brüggemann and
Bitmead (2021), Theorem 1 is easy to prove, which is omitted
here. With Theorem 1 guaranteeing the convergence of estimation
error, we now intend to prove the convergence of the PGD-RLS
Algorithm 1. First, we have a property about the gradient of the
cost function (Equation 9a).

Lemma 2: The gradient of the cost function ∇Φ(g) (9a) is L-
Lipschitz continuous.

Proof. For any g1,g2 ∈ G, we have

‖∇Φ(g1) −∇Φ(g2)‖ = 4α2(g1 − g2)TATA(g1 − g2)

+ (1− α)2(g1 − g2)T(RTR)2 (g1 − g2) .

If we chooseL ≥ σmax(4α2ATA+ (1− α)2(RTR)2), then ‖∇Φ(g1) −
∇Φ(g2)‖ ≤ L‖g1 − g2‖. Therefore, the gradient of the cost function is
L-Lipschitz continuous.
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FIGURE 2
IEEE 33-bus distribution network.

WithTheorem 1 and Lemma 1,2, we have the following theorem
about the convergence of the PGD-RLS Algorithm 1.

Theorem2: With step sizes chosen to satisfy 0 < τ < 2μ
L2
, the decision

variable gk in the proposed PGD-RLS Algorithm 1 converges to
the optimal solution to the optimization problem (Equations 9a–c),
denoted by g

∗
.

Proof.

‖gk+1 − g
∗‖2 = ‖PG (gk − τ∇Φ̂k (gk)) − PG (g

∗ − τ∇Φ (g∗))‖2

≤ ‖gk − τ∇Φ̂k (gk) − (g
∗ − τ∇Φ (g∗))‖2

≤ τ2‖∇Φ(gk) −∇Φ̂k (gk)‖
2 + ‖gk − τ∇Φ(gk)

−(g∗ − τ∇Φ (g∗))‖2

The first inequality holds because the projection operator is
nonexpansive while the second inequality holds because of the
triangle inequality. For the term τ2‖∇Φ(gk) −∇Φ̂k(gk)‖

2, we have

τ2‖∇Φ(gk) −∇Φ̂k (gk)‖
2 = (1− α)2τ2‖(Rk −R)(vk − v01)‖2

≤ (1− α)2τ2‖Rk −R‖
2‖vk − v01‖

2

= (1− α)2τ2(σmax (Rk −R))
2‖vk − v01‖

2

≤ (1− α)2τ2(
N
∑
i=1
(σi (Rk −R))

2)‖vk − v01‖
2

= (1− α)2τ2‖Rk −R‖
2
F‖vk − v01‖

2

= (1− α)2τ2(∑
i,j
|(Rk)i,j −Ri,j|2)‖vk − v01‖2

= (1− α)2τ2‖θ̂k − θ‖
2‖vk − v01‖

2

≤ (1− α)2τ2νλk‖θ̂0 − θ‖
2M2

where ν is the constant inTheorem 1 andM is the maximum of the
function ‖vk − v01‖2. ‖vk − v01‖2 is a quadratic function with respect
to vk, which is an affine function on gk. Since all the elements of
gk are bounded by (Equation 6), the output of function ‖vk − v01‖2

is bounded. Therefore, the maximum M exists. Since λ < 1, the
convergence of τ2‖∇Φ(gk) −∇Φ̂k(gk)‖

2 is guaranteed.
For the second term ‖gk − τ∇Φ(gk) − (g

∗
− τ∇Φ(g

∗
))‖2, we have

‖gk − τ∇Φ(gk) − (g
∗ − τ∇Φ (g∗))‖2

= ‖gk − g
∗‖2 − 2τ⟨gk − g

∗,∇Φ(gk) −∇Φ (g
∗)⟩

+τ2‖∇Φ(gk) −∇Φ (g
∗)‖2

≤ (1− 2τμ+ τ2L2)‖gk − g
∗‖2

The inequality holds because Φ(gk) is μ-strongly convex with
the gradient being L-Lipschitz continuous. Since 0 < τ < 2μ

L2
, then

FIGURE 3
Convergence of relative error ϵ = ‖θ̂k−θ‖

2

‖θ‖2
.

FIGURE 4
Voltage variation at Node 1, 11, 21, 31.

ρ = (1− 2τμ+ τ2L2) < 1. So the convergence of ‖gk − τ∇Φ(gk) −
(g
∗
− τ∇Φ(g

∗
))‖2 is guaranteed.

Therefore, we have proved that the decision variable gk in the
PGD-RLS Algorithm 1 converges to the optimal solution g

∗
to the

optimization problem (Equations 9a–c).

5 Case study

In this section, we validate the PGD-RLS algorithm
through simulation results on the 33-bus distribution
network shown in Figure 2.

5.1 Simulation setup

For the generation constraints of EV clusters, the lower bound
of discharge power is gp

i
= 0 kW, the upper bound is gpi = 100 kW.
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FIGURE 5
Final voltage of all nodes with different algorithms.

The voltage at the substation (Node 0) is vs = 1 p. u. The trade-off
constant α = 0.3, which means we emphasize the voltage regulation
performance more. The voltage regulation goal here is set as v0 =
1 p. u.

5.2 Case 1: single period

Initially, the distribution network is stable with each voltage
within an acceptable range. Then the active load at every node
increases by 2%, leading to a voltage drop. To address this, the
operator applies our PGD-RLS Algorithm 1 to adjust the discharge
power of each EV cluster, aiming to restore the voltage to the
desired level.We first demonstrate the convergence of the estimation
error, defined as ϵ = ‖θ̂k−θ‖

2

‖θ‖2
in Figure 3. The initial estimation θ̂0 is

randomly selected using a random number generation function.
The results show that the error decreases rapidly within the first 10
iterations. Although the convergence rate slows down, it eventually
reaches a near-zero value after approximately 210 iterations, which
corresponds to our theoretical analysis and Theorem 1. Figure 3
validates the feasibility of the proposed PGD-RLS Algorithm 1 for
parameter estimation.

We take the voltage at Node 1, 11, 21, and 31, for example to
illustrate the voltage variations during the iterations in Figure 4.
When active loads increase, the voltage drops immediately, as shown
in the 100th iteration in Figure 4. The operator then utilizes the
PGD-RLS algorithm to iteratively adjust the generation power of
EV clusters, which causes voltage variation. As seen in Figure 4, the
voltage responds quickly to changes in active loads. BlueAfter about
250 iterations, which takes less than 7.5 s on a personal computer,
all voltages return to the desired values, which demonstrates the
effective regulation performance of our PGD-RLS algorithm 1.

Next, we compare the regulation performance of different
algorithms by showing the voltage at all nodes when the
algorithms converge to their optimal solutions, as depicted in
Figure 5. From Figure 5, we see that the results of the traditional
PGD method (Equation 10) (green line with square dots) and the

FIGURE 6
Final voltage of all nodes in the larger network.

FIGURE 7
Voltage regulation with on-load tap changers.

proposed PGD-RLS algorithm (red line with diamond dots) are
quite similar with only minor differences. Although the regulation
performance of the PGD-RLS algorithm is slightly inferior to
that of PGD, it is more practical since it does not require much
prior knowledge of the resistance of the distribution network.
Additionally, we implement another test case using PGD with fixed
estimation (blue line with round dot), i.e. offline estimation. Here
the fixed estimation θ̂fixed is set as θ̂fixed = θ̂0. Since the estimation is
not accurate enough and cannot be updated, the voltage mismatch
is larger for all nodes compared to that of the PGD and PGD-
RLS algorithms. This comparison demonstrates that the regulation
performance suffers significantly if the fixed estimation is inaccurate.
It highlights the necessity of using RLS to realize online estimation.

Moreover, we apply our algorithm in the network three times
the size of the original one to show the scalability. The result
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FIGURE 8
Relative active load change from 8 a.m. to 9 p.m.

FIGURE 9
Voltage loss from 8 a.m. to 9 p.m.

is shown in Figure 6. The figure shows that the voltage of the vast
majority of nodes is maintained near the target voltage, with only a
few nodes having slightly larger offsets. However, compared to the
on-load tap changers method, the voltage regulation performance is
clearly better, which demonstrates the scalability of the algorithm.

Finally, we add a test case of voltage regulation with on-load
tap changers. The result is displayed in Figure 7. At the initial state,
the voltage of all nodes is stable with acceptable values. Then the
active loads increase by 2%. By utilizing on-load tap changers, we
have the voltage of all nodes as shown in Figure 7. It is noticeable
that the voltage at the node far away from the tap changer remains
relatively low. If we adopt the tap changer to make the lowest voltage
acceptable, the voltage of other closer nodes will be too high, as
displayed in Figure 7. However, by using EV clusters to realize
voltage regulation, we may overcome the drawback of the on-load
tap changers method with relatively consistent voltage of all nodes.

FIGURE 10
Convergence of relative error with different forgetting factor λ.

5.3 Case 2: Real-life simulation

In case 2, we conduct a simulation based on the real-life trend of
active load changes.The sampled profiles of active loads are from an
online data repository (Hebrail and Berard, 2012). Here we set the
active load at 8 a.m. as the reference value and the active load change
is shown in Figure 8.The granularity is 10 min.We utilize the voltage
loss ‖v−v0‖

2

‖v01‖2
as the performance indicator.

Similar to Case 1, the PGD-RLS Algorithm 1, PGD with fixed
estimation algorithm, and the traditional PGD algorithm (10) are
tested. The fixed estimation of the coefficient R in PGD with fixed
estimation algorithm is selected randomly, representing little prior
knowledge about the network resistance.Moreover, we add anMPC-
based algorithm for further comparison. Here we assume that the
model (5) utilized in theMPC-basedmethod is not accurate enough
by introducing aGaussian noise to the coefficientR.This assumption
is an imitation of the scenario where the accurate network resistance
is not accessible.

As shown in Figure 9, in most of the moments, the voltage
loss by PGD-RLS and PGD is maintained at less than 0.15 and
the difference in the voltage loss is tiny. This further illustrates
the effectiveness of the online estimation of parameters using RLS.
However, when the active load rises quickly, the voltage loss of PGD-
RLS is higher than that of PGD. This is because the estimation
value of the coefficient R has a tiny error compared to the real
value. Nevertheless, the difference ismaintained at about 0.01, which
still shows a good voltage regulation performance. This sacrifice in
the regulation performance is acceptable since we do not have an
accurate value of the coefficient R.

The PGDwith fixed estimation algorithm shows poor regulation
performance, as the voltage loss is much higher than that of the
other two algorithms. Since the estimation is randomly selected
without correction, the gap between the solution of PGD with fixed
estimation algorithm and the optimal solution is huge, weakening
the performance of voltage regulation badly. This result stresses the
necessity of designing effective parameter estimationmethods when
seeking the optimal solution.
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FIGURE 11
Costs and voltage loss with different trade-off coefficient α.

As for the performance of the MPC-based method, it has a
similar result with our PGD-RLS algorithm, but with a higher loss.
MPC-based methods may perform well if the model is accurate
enough. However, the noise always exists in real practice and will
decrease the performance of voltage regulation as shown in Figure 9.
If the model is more complex, the result will become more
unsatisfactory, which is inferior to our PGL-RLS algorithm in
scenarios where model information is not precise.

5.4 Sensitivity analysis

In this subsection, we will analyze the effect of the forgetting
factor λ and the trade-off coefficient α.

We first analyze the impact of the forgetting factor λ on the
accuracy of parameter estimation. Utilizing the simulation setup in
Section 5.1, we record the convergence of the relative estimation
error ϵ for different values of λ. The results are shown in Figure 10.

It is clear that the convergence rate slows as the value of λ
increases. Additionally, the convergence value of the relative error
also increases with higher values of λ. These two phenomena
illustrate that the performance of the estimation deteriorates when
the forgetting factor λ approaches one. The results in Figure 10
corroborate the theoretical analysis presented inTheorem 1.

Next, we explore the effect of the trade-off coefficient α on both
the compensation cost and the voltage regulation performance, as
indicated by the voltage loss. We employ the same simulation setup
from Section 5.1, varying α from 0.1 to 0.5. For reference, we set the
cost and voltage loss with α = 0.5 as the baseline value. The results
are illustrated in Figure 11.

From Figure 11, we observe that the cost decreases as the value
of α increases, while the voltage loss increases. The choice of α

thus reflects a trade-off between better regulation and lower cost,
providing operators with a range of options.

6 Conclusion

In this work, we investigate voltage regulation in distribution
networks using EV clusters. By utilizing a feedback-based
optimization approach, we formulate a voltage regulation problem
to minimize voltage mismatch while keeping the cost of services
provided by EV clusters relatively low. To find the optimal solution
without precise knowledge of network resistance, we propose a
PGD algorithm with an RLS method to enable online estimation of
resistance.The accuracy of the RLS online estimation is proved.The
convergence of the proposed PGD-RLS algorithm is rigorously
guaranteed. Numerical results in the IEEE 33-bus verify the
effectiveness of the proposed method for voltage regulation. Future
research directions include the decentralization of the proposed
framework to allow each EV cluster to individually implement the
update of discharge power.
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