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To enable the online strength assessment of distribution systems integrated with
Distributed Energy Resources (DERs), a novel hybrid model and data-driven
approach is proposed. Based on the IEC-60909 standard, a new short-circuit
calculation method is developed, allowing inverter-based DERs (IBDERs) to
be represented as either voltage or current sources with controllable internal
impedance. This method also accounts for the impact of distant generators by
introducing a site-dependent Short Circuit Ratio (SCR) index to evaluate system
strength. An adaptive sampling strategy is employed to generate synthetic
data for real-time assessment. To predict the strength of distribution systems
under various conditions, a rectified linear unit (ReLU) neural network is
trained and further reformulated as a mixed-integer linear programming (MILP)
problem to verify its robustness and input stability. The proposed method is
validated through case studies on modified IEEE-33 and IEEE-69 bus systems,
demonstrating its effectiveness regarding the varying operating conditions
within the system.

KEYWORDS

system strength, short circuit ratio, distribution systems, input stability verification,
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1 Introduction

1.1 Motivation

Circuit calculation is a fundamental tool for distribution system protection and control
(Boutsika and Papathanassiou, 2008). With the increasing integration of inverter-based
distributed energy resources (IBDERs), such as photovoltaic generators (PVs) and battery
energy storage systems (BESSs), in distribution systems, short-circuit levels are rising,
pushing the systems closer to their static voltage stability limits (Wu et al., 2017) and
reducing overall system strength (Qays et al., 2023). System strength is widely evaluated
using the Short Circuit Ratio (SCR), which depends nonlinearly on factors such as net
power injection and the control strategies of IBDERs (Qays et al., 2023). Traditional SCR
quantification methods rely on short-circuit calculations and impedance estimation under
fault conditions (He et al., 2023), but these offline approaches are not suitable for real-time
estimation under time-varying operating conditions induced by fluctuating loads andDERs.
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To address these limitations, data-driven approaches for
short-circuit calculations have emerged, leveraging deep learning
techniques to achieve faster and more adaptable predictions.
Various studies have explored the use of artificial neural networks
(ANNs) to estimate short-circuit characteristics under diverse
operating scenarios (Aljarrah et al., 2023), detect faults and
disturbances (Guillen et al., 2020), and improve prediction accuracy
by incorporating network topology information (Ruikai et al.,
2024). However, while these data-driven models show promise,
they often lack interpretability and robustness, making them
unsuitable for safety-critical applications without further validation.
To enhance the robustness and interpretability of deep learning
models, several techniques—such as gradient-based visualization
(Zhang andZhu, 2018),mixed-integer linear programming (MILP)-
based robustness verification (Anderson et al., 2020), and inverse
optimization methods (Genzel et al., 2022)—have been proposed.
Despite these advancements, the robustness and interpretability of
data-drivenmodels for short-circuit calculation and SCR estimation
have not yet been thoroughly explored. This gap motivates the need
for a comprehensive framework to ensure reliable and interpretable
online strength assessment of distribution systems with IBDERs.

1.2 Literature review

The strength of distribution systems is a key characteristic that
describes the extent of voltage changes in response to faults or
disturbances (Gu et al., 2019). It is commonly quantified using
the Short Circuit Ratio (SCR)1, which can take various forms,
such as composite, weighted, multi-infeed effective, interaction
factors, inverter interaction, and site-dependent SCRs (Qays et al.,
2023). Impedance is often used to represent system strength,
as the SCR can approximate this impedance (Gavrilovic, 1991).
In Wu et al. (2017), a site-dependent SCR (SDSCR) metric
is proposed for transmission systems with high penetration of
renewable energy sources, providing insights into the impact of
these sources on voltage stability through the relationship between
voltage stability and the Jacobian matrix. To address complex inter-
inverter interactions, a hierarchical-infeed interactive effective SCR
is introduced in Xiao et al. (2022). Additionally, a novel grid
strength impedance metric is proposed in Henderson et al. (2024)
to quantify AC system strength across a wide range of frequencies.
However, the relationship between short-circuit current and SCR,
specifically in terms of short-circuit-based SCR calculation, has not
been fully explored.

Various approaches have been developed to calculate the
short-circuit currents in distribution systems with DERs. For AC
distribution systems, DERs can be represented as either voltage
or current sources according to the IEC-60909 standard (Thurner
and Braun, 2018). The influence of different load models on short-
circuit behavior in distribution systems has been examined in
Mathur et al. (2015). To facilitate the integration of three-phase
IBDERs into existing short-circuit calculation procedures, a general

1 Apart from the SCR and its variations, the impedance equivalent is

another approach (Henderson et al., 2024), which is not suitable for

higher voltage or multiple RESs interaction.

Δ short-circuit model for DERs is introduced in Strezoski et al.
(2017). Additionally, a fast short-circuit calculation method tailored
for unbalanced three-phase distribution systems with IBDERs is
proposed in He et al. (2023), which incorporates fault ride-through
control and converter current limiting. For assessing topology
and line impedance parameters, a numerical approach based on
a specialized Newton-Raphson iteration and power flow equations
is proposed in Zhang et al. (2020). The post-fault temporary over
voltage has been incorporated into the SCR calculation in Xin et al.
(2024). While these methods provide accurate results, they are
typically model-based, making them computationally intensive and
time-consuming, thereby limiting their suitability for real-time or
online applications.

With the advancement of deep learning techniques, data-
driven methods for short-circuit calculations have gained
prominence in recent years. In Guillen et al. (2020), a fault
detection and location method is developed using graph theory
representation and microsynchrophasors, accounting for the
uncertain operating conditions and intermittency of IBDERs.
Similarly Aljarrah et al. (2023), employs an artificial neural network
(ANN) to estimate short-circuit current characteristics—such
as sub-transient, transient, and peak currents—under varying
scenarios driven by high renewable integration. A supervised
learning approach for internal short-circuit detection in Li-ion
batteries is presented inNaha et al. (2020).Meanwhile Gholami et al.
(2019), introduces a short-circuit fault location method using
current and voltage synchrophasors from PMUs along with pre-
fault state estimation results as input features. In Ruikai et al.
(2024), the superposition theorem is utilized to improve data-
driven short-circuit calculations by incorporating the effects of
network topology. While these data-driven models demonstrate
effectiveness, especially neural networks, they often suffer from
a “black-box” nature, lack interpretability, and cannot ensure
robustness in the generated results.

Recent studies have proposed using machine learning
techniques to forecast the SCR. A multilayer perceptron neural
network is trained on data collected from sensors in inverter systems
(e.g., voltage and current), with its hyperparameters optimized via
an evolutionary algorithm Priyadarshini et al. (2024). A multi-
objective machine learning algorithm has been proposed to forecast
the SCR for the next day or week, utilizing ground truth data from
both experimental and simulated cases Qays et al. (2025). To assess
site-dependent SCRunder varying operating conditions, an artificial
neural network is trained to predict site conditions under varying
cloud distributions Javadi et al. (2018).

To enhance the robustness and interpretability of deep networks,
several techniques have been proposed in recent years. A stable
training method was introduced in Zheng et al. (2016) to improve
the robustness of neural networks. This robustness—defined as
the resistance of the model to small perturbations in input
samples without causing significant performance degradation—is
further analyzed from a geometrical perspective in Fawzi et al.
(2017). Gradient-based localization techniques have been employed
to visualize and interpret the hidden layers of deep networks,
thereby offering insight into the network’s decision-making process
(Zhang and Zhu, 2018). Additionally, in Anderson et al. (2020),
trained neural networks are reformulated as mixed-integer linear
programming (MILP) problems to verify their robustness over
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specified input regions, where robust optimization methods are
used to determine the maximum and minimum network outputs.
The robustness of neural networks has also been examined using
inverse optimization techniques, as demonstrated in Genzel et al.
(2022), to validate their performance over a given dataset (Amini
and Ghaemmaghami, 2020). However, to the best of the author’s
knowledge, the robustness of trained short-circuit calculation or
SCR data-driven models has yet to be thoroughly investigated.

1.3 Contributions

In this work, a novel online system strength assessment
method for distribution systems with high penetration of IBDERs
is proposed. To accurately capture the influence of DERs on
system strength, a new SCR calculation method is developed
based on the IEC-60909 standard, where the short-circuit current
contribution from IBDERs can be limited. The SCR is formulated
as a parametric function of renewable energy outputs and load
levels, which is further approximated using a neural network with
adaptive sampling. The robustness of the trained neural network is
validated using aMILP approach.The key contributions of this study
are as follows:

• A new SCR calculation method is proposed based on the
IEC-60909 standard, which effectively incorporates the impact
of DERs on network impedance. This approach enables
more accurate assessment of system strength in distribution
networks with high DER penetration.
• A novel online SCR forecasting method is proposed, utilizing

robust optimization techniques to verify the performance
of the neural network. This approach enables real-time and
reliable evaluation of system strength, addressing the dynamic
and uncertain nature of DERs within the distribution system.

1.4 Outline

This paper is organized as follows: Section 2 introduces
the SCR calculation method for distribution systems with high
penetration of IBDERs. In Section 3, a ReLU neural network
is trained using adaptive sampling to generate synthetic data
for SCR approximation under uncertain operating conditions.
Section 4 verifies the robustness of the trained ReLU network. In
Section 5, comprehensive case studies are presented to validate
the effectiveness of the proposed method. Finally, conclusions
are drawn in Section 6.

2 Short circuit ratio assessment for
distribution systems with
inverter-based distributed energy
resources

In this section, the SDSCR of distribution systems with IBDERs
is derived to quantify the strength of distribution systems under
given conditions. The short circuit under a three-phase fault is used
to calculate the short circuit impedance following the IEC-60909

standard, where one IBDER can be integrated as either a voltage
source or a current source.

2.1 Network topology

A distribution system with IBDERs is defined as a connected
graph, i.e., G ≔ {N ,E ,D,G,R,W} with a set of branches,
where

• i ∈N is the set of AC buses
• ij ∈ E is the set of AC branches2

• d ∈D is the set of AC loads
• g ∈ G is the set of conventional generators
• r ∈R≔R′ ∪R″ is the set of IBDERs
• w ∈W is the set of DERs as current sources

For distribution systems, the network topology is assumed
to be radial. Following the revision of IEC-60909, the
IBDERs with full converters can be modeled as constant
current sources (Thurner et al., 2018). R′ is the set of grid-forming
IBDERs, andR′′ is the set of grid-following IBDERs. The g ∈ G and
r ∈R′ are treated as voltage sources. The w ∈W and r ∈Rprime′ are
treated as current sources.

2.2 Short circuit ratio calculation

The short circuit includes two components, i.e., the short
circuit calculation contribution from voltage sources and
current sources (Thurner and Braun, 2018).

2.2.1 Voltage source current contribution
At the fault location i, according to the theorem ofThevenin, the

equivalent voltage UQ,i after there phase short circuit fault is given
as follows:

UQ,i =
cUR,i

√3
,∀i ∈ G ∪R′, (1)

where UR,i is the nominal voltage of bus i. c is the voltage
correction factor, which depends on the voltage levels (Thurner and
Braun, 2018).

By neglecting all current source elements, The short circuit
current contributed by the voltage source at bus i, i.e., I″kIi, can be
derived by the following network equations (Thurner et al., 2018):

[[[[

[

Y11 ⋯ Yn1

⋮ ⋱ ⋮

Y1n ⋯ Ynn

]]]]

]

[[[[[[[[[[

[

U1

⋮

UQi

⋮

Un

]]]]]]]]]]

]

=

[[[[[[[[[[

[

0

⋮

I″kIi
⋮

0

]]]]]]]]]]

]

(2)

To solve Equation 2, the inverse of admittance matrix, i.e.,
impedance matrix, is introduced as follows:

2 The transformers are embedded in the branch set.
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[[[[[[[[[[

[

0

⋮

I″kIi
⋮

0

]]]]]]]]]]

]

=
[[[[

[

Z11 ⋯ Zn1

⋮ ⋱ ⋮

Z1n ⋯ Znn

]]]]

]

[[[[[[[[[[

[

U1

⋮

UQi

⋮

Un

]]]]]]]]]]

]

(3)

The short circuit at bus i is given as follows:

I″kIi =
UQi

Zii
,∀i ∈ G ∪R′ (4)

Remark 1: Y =
[[[[

[

Y11 ⋯ Yn1

⋮ ⋱ ⋮

Y1n ⋯ Ynn

]]]]

]

is the admittance matrix, which

is typically sparse for power networks. It should be noted that,
different integration method will affect the the diagonal element, Yii
by the impedance of R′ and R″.

Remark 2: If the fault impedance at location i is given, the short
circuit current should be modified I″kIi =

UQi

(Zii+Zfault)
,∀i ∈ G ∪R′,

where Zfault is the fault impedance.

2.2.2 Current source current contribution
For the current source injection at current source i, its current

injection under fault, i.e., I″kCi, is given as follows Thurner and
Braun (2018):

I″kCi = −j(kIR,i) , (5)

where k is the ratio of short circuit to rated current IR,i, which is given
by the manufacturer.

By short-circuiting all voltage resources, the bus current
injection at bus i, can be derived as follows:

[[[[[[[[[[

[

U1

⋮

0

⋮

Un

]]]]]]]]]]

]

=

[[[[[[[[[[

[

Z11 ⋯ Zn1

⋮ ⋱ ⋮

Zii

⋮ ⋮

Z1n ⋯ Znn

]]]]]]]]]]

]

[[[[[[[[[[

[

−I″kC1
⋮

I″kIIi − I″kCi
⋮

−I″kCn

]]]]]]]]]]

]

(6)

As shown in Equation 6, the voltage at the location i is 0, the fault
current is given as follows:

I″kIIi =
1
Zii
⋅

n

∑
m=1

Zim ⋅ I″kC,m (7)

Based on the Equations 4, 7, the initial short circuit at location i
can be derived as follows:

I″ki =
UQi

Zii
+ 1
Zii
⋅

n

∑
m=1

Zim ⋅ I″kC,m (8)

With dc and ac correction factors, i.e.,m and n, the thermal short
circuit current is defined as follows:

Ith,i = √mi + niI″ki (9)

Remark 3: Correction factors mi and ni are site dependent. For
distribution systems with synchronous generators, if the fault
location i is far from the generator, some empirical functions can
be found in Bolgaryn et al. (2022).

2.2.3 Short circuit ratio
Considering the impacts of renewable energy sources on

the SDSCR (Wu et al., 2017), the following index is proposed to
quantify the SDSCR:

SCRi =
UR,iIth,i

Pr,i + ∑
j∈N ,j≠i

Pr,jωij
, (10)

where Pr,i is the output of IBDER at bus i, ωij is the coefficient to
quantify the impacts of remote IBDERs,

ωij = |
Zij

Zii
(
Ui

Uj
)
∗
| (11)

Remark 4: As shown in Equation 10, ωij plays an important role in
the SDSCR (Qays et al., 2023). In this work,ωij considers the impacts
of voltage variation within the distribution systems. It should be
noted that, ωij is taken as the magnitude of ωij defined in Wu et al.
(2017), as the voltage angle is close to each other within the same
distribution network.

The system strength of distribution systems with IBDERs can be
further defined as the following parametric function depending on
the operating conditions ξ ≔ {Pr,Cr,Pd,∀r,d}3:

fSS (ξ) =min
i∈N

SCRi (ξ) (12)

Based on the derivation within this section, the system strength
is highly nonlinear.

3 ReLU neural networks for online
short circuit ratio assessment

Considering the varying operating condition ξ within the
distribution systems and nonlinear nature of fSS(ξ), function
Equation 12 can not always be solved efficiently for online
applications. In this section, it is reformulated as a data-
driven application problem via active sampling over ξ ∈
U (Bamdad et al., 2020).

3.1 ReLU neural work based short circuit
ratio approximation

For a given set of system strength samples, i.e.,
{(ξω, fSS(ξω)),∀ω ∈Ω}

4, a ReLU neural network is designed and
trained to capture the relation between ξs and fSS(ξs).

A ReLU neural network is shown in Figure1, where the
activation function is a ReLU function, as follows:

ReLU (x) =max (0,x) (13)

3 Cr is the control mode of the r-th IBDER, i.e., voltage source or

current source.

4 The Ω is defined Subsection 3.2.
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FIGURE 1
An illustrative neural network with ReLU activation function.

The propagation of the ReLU neural network is
defined as follows:

a(0) = x,

z(l) =W(l)a(l−1) + b(l),∀l ∈ {1,…,L} ,

a(l) = ReLU(z(l)) =max(0,z(l)) ,∀l,

f′SS =W
(L+1)a(L) + b(L+1),

(14)

where Θ≔ {Wl,b(l),∀l ∈ {1,….,L+ 1}} are the weight factors and
bias for the neuron on each layer l, which should be optimized to
minimize the following mean square error (MSE) function:

minΘMSE (Θ) = 1
|Ω|
∑
ω∈Ω
( fSS (ξω) − f

′
SS (ξω;Θ))

2 (15)

For the training process, the gradient approaches are widely
adopted, e.g., adaptive moment estimation (ADAM) (Zhang, 2018).

Remark 5: It can be observed that, the training set Ω ⊆ U .

3.2 Active sampling for synthetic system
strength assessment data set generation

As shown in Equation 15, the Ω will affect the performance
of the trained neural network, from the input perspectives. The
following algorithm adopts an iterative procedure to generate
the training dataset Ω, i.e., an active sampling algorithm.
In Line 9 of Algorithm 1, the cross-validation method is used to
identify the region with maximum error.

Remark 6: In Algorithm 1, a finite large scalar should be assigned
to K, to meet the stopping criterion in Line 18.

4 Mixed-integer linear programming
based input stability verification

In this section, the trained ReLU neural network is further
reformulated as a MILP problem to verify the robustness of the

Algorithm 1. Active Sampling for Approximating System Strength Function
fSS(ξ).

derived neural network. The linear transformation and activation
function are formulated as equal and unequal constraints to
reformulate the neural network. The main merit of reformulating
the trained neural network as a mixed-integer linear programming
problem is to derive the adversarial samples within local area. This
sample can be further used to check the local stability of the trained
neural network.

4.1 Linear transformation equations

For each neuron j in layer l, the relation between this neuron and
the output from neurons in layer l− 1 can be depicted as follows:

y(l)j =
n(l−1)

∑
i=1

W(l)ji z
(l−1)
i + b

(l)
j , for l = 1,2,…,L, (16)

where y(l)j and z(l−1)i are the input and output respectively; W(l)ji and
b(l)j are the weight factor and bias, respectively.For the input layer,
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the following constraint is added tomap the input to the first hidden
layer linearly:

z(0)i = xi, for i = 1,2,…, |ξ|,

where xi is treated as the decision variable as well, where xi ∈
[ξi,min,ξ)i,max].

4.2 ReLU activation constraints

To reformulate the ReLU activation function Equation 13, a
binary variable δ(l)j ∈ {0,1} is introduced to realize the exactly
reformulated. For each neuron j in layer l:

z(l)j ≥ 0, (17)

z(l)j ≥ y
(l)
j , (18)

z(l)j ≤ y
(l)
j − y
(l)
min,j (1− δ

(l)
j ) , (19)

z(l)j ≤ y
(l)
max,jδ
(l)
j , (20)

δ(l)j ∈ {0,1} , (21)

where y(l)min,j and y(l)max,j are the minimum and maximum boundary
value of neuron j in layer l.

Theorem 1: Equations 17–21 are the exact reformulation of ReLU
activation function Equation 13.

The proof Theorem 1 is a direct result by enumerating
δ(l)j as either 0 or 1. The y(l)min,j and y(l)max,j play an important
role in the reformulation Equations 17–21, regarding the
solution space and feasibility. The boundary-tightening
technique is widely adopted to formulate a compact model
(Liu et al., 2024).

4.3 Variable bounds

For each neuron j in layer l, the following constraints are placed
on the input and output of each neuron:

y(l)min,j ≤ y
(l)
j ≤ y
(l)
max,j (22)

0 ≤ z(l)j ≤ z
(l)
max,j =max(0,y(l)max,j) (23)

4.4 Objective function

When it comes to the objective function, the objective function
is set to minimize or maximize the output, as follows:

minormax zL (24)

As shown in Equations 16–24, the reformulated problem,
i.e., one MILP problem, can be solved by the off-the-shelf
commercial solver.

Remark 7: For some neural network embedded optimization
techniques, the objective function Equation 24 is set to 0.

Remark 8: For boundary-tightening, the following two problems
are solved for each neuron to derive the y(l)min,j and y(l)max,j:

y(l)min,j =min y(l)j
s.t. (16) − (23)

(25)

y(l)max,j =max y(l)j
s.t. (16) − (23)

(26)

In Equations 25, 26, the boundaries of the input and output are set
to a sufficient big scalar.

5 Case studies

In this section, the performance of the proposed system strength
assessment method is assessed using the numerical results conducted
on the modified IEEE-33 bus systems with a set of IBDERs.

5.1 Case description

As shown in Figure 2, the modified IEEE-33 bus systems have
33 buses, 32 AC branches, 32 loads, and 8 IBDERs. The base load
level is 2.9 MW. The installation capacity of IBDERs is 2.835 MVA.
All IBDERs are assumed to be controlled as either voltage or current
sources. The k parameter is set to 1.2 for each IBDER. The transient
dynamic parameters are set to 1 and 0.5 p.u. regarding the resistance
and reactance.

For the ReLU neural networks, there are 6 layers, and there are
64, 128, 256, 128, 64, and 1 neuron in each layer. There are 49 key
features for the system strength assessment. The Latin hypercube
sampling approach is adopted to generate the initial training set
with 1,000 samples. In Algorithm 1, after evaluating the error
distribution, the first 10 samples with the highest errors are used
to generate new samples, whereas simple random sampling is used
to generate additional 5 samples. K is set to 100. The frequency
distribution of the system strengthwithin setΩ0 is shown in Figure3.

The formulated problem Equation 16–24 is solved by Gurobi.To
verify the claimed contributions, the following cases are conducted:

I. The base case with either voltage source or current
source IBDERs.

II. The load levels are changing.
III. A initial neural network is trained with Ω0

IV. Algorithm 1 is adopted to train the neural network.

5.2 Result analysis

The system strength, i.e., SCR, in Cases I are reported in Table 1,
where C stands for grid-following and V stands for grid-forming.
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FIGURE 2
Modified IEEE-33 bus system with IBDERs.

FIGURE 3
Histogram of system strength across Ω0.

TABLE 1 System strength under different control modes and location.

IBDER1 IBDER2 IBDER3 IBDER4 IBDER5 IBDER6 IBDER7 IBDER8 SS

S1 C C C C C C C C 1.99

S2 V C C C C C C C 2.42

S3 C C C C V C C C 2.35

S4 C C C C C V C C 2.32

As it can be observed, the voltage control of IBDERs can always
increase the system strength. When the voltage-controlled IBDER
is close to the load center, e.g., bus 2 and bus 6, this contribution
is higher. These results indicate the proposed system’s strength

assessment method is Section 2 can effectively identify the location
for IBDER sitting regarding SCR.

The system strength under different control modes and load
levels are illustrated in Figure4. It can be observed that the increase
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FIGURE 4
System strength under different control modes and load levels.

FIGURE 5
Forecasting and real system strength results in Case III.

of load leads to the rise of system strength directly, and this trend is
not affected by the control mode. Along with the increase in load
level, the system strength is always higher, when all IBDERs are

under voltage control mode. Moreover, when the load arrives at
3.7 MW, the SCR is close to 1.5, indicating the system is close to the
voltage stability margin. These results indicate that the formulated
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FIGURE 6
Forecasting and real system strength results on the test set in Case III.

FIGURE 7
Forecasting and real system strength results in Case IV.
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SS assessment method can identify the weak points in the operating
conditions.

The forecasting result and ground truth SS information in Case
III are shown in Figures 5, 6, respectively. It can be observed that
the training performance, i.e., mean squared error (MSE), of the
ReLU network is 0.6585. However, when it comes to the extended
training set, the MSE has been increased to 0.7500. It indicates the
trained ReLU network obtained fromΩ0 is unstable on the complete
event space.

The forecasting result and ground truth SS information of Case
IV are shown in Figure 7. As it can be observed, the forecasting and
real SS are close to each other, i.e., the R2 score is 0.99848. With the
help of extended training samples, the performance of the trained
ReLU neural network is acceptable. What is more, the minimum SS
derived by Section IV is given as 1.3577, almost 10% smaller than
the training sample performance over the whole sample space.

Regarding the computational feasibility, the proposed method
demonstrates significant efficiency improvements over traditional
simulation-based approaches. The offline SCR calculation requires
an average processing time of 1.7 s under varying operating
conditions, while the online forecasting scheme achieves a
processing time of just 0.003 s. This demonstrates that the proposed
method is approximately 560 times faster, making it well-suited
for real-time applications in distribution systems. Such efficiency
ensures timely system strength assessment, even in dynamic
operating environments, and enhances its practical applicability
for modern distribution systems with high DER penetration.

6 Conclusion

In this paper, an innovative online forecasting scheme for
distribution systems with inverter-based distributed energy
resources is presented. A new system strength metric, derived from
the site-dependent short circuit ratio and based on the IEC-60909
standard, quantifies the impacts of inverter controlmodes on system
strength. A ReLU neural network-based forecasting technique with
adaptive sampling and embedded cross-validation is proposed,
enhancing prediction accuracy and robustness. The trained neural
network is reformulated as a mixed-integer linear programming
problem to verify its input robustness.

Numerical results on the IEEE-33 bus system demonstrate
that the proposed system strength metric effectively captures
the influence of voltage control on short circuit behavior.
Adaptive sampling improves training data quality, leading to a
more robust neural network. The reformulated MILP approach
provides a quantitative measure of the neural network’s robustness,
confirming the feasibility of the proposed framework for
practical applications.

While the proposed system strength metric and online
forecasting method show promise, their scalability to
larger and more complex networks may require further
refinement. Additionally, the computational burden of the
MILP-based robustness verification could pose challenges
for real-time applications in highly dynamic systems. Future
work will focus on improving scalability and computational
efficiency while validating the approach in more diverse and
complex scenarios.
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