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As the complexity of microgrid systems, the randomness of load disturbances,
and the data dimensionality increase, traditional load frequency control methods
for microgrids are no longer capable of handling such highly complex and
nonlinear control systems. This can result in this can result in significant
frequency fluctuations and oscillations, potentially leading to blackouts in
microgrids. To address the random power disturbances introduced by a large
amount of renewable energy, this paper proposes a Learning-Driven Load
Frequency Control (LD-LFC) method. Additionally, a Graph Convolution
Neural Networks -Proximal Policy Optimization (GCNN -PPO) algorithm is
introduced, which enhances the random power disturbances introduced by a
large amount of renewable energy. Algorithm is introduced, which enhances the
perception ability of the reinforcement learning agent regarding grid state data by
embedding a graph convolutional network. The effectiveness of this approach is
validated through simulations on the isolated microgrid Load Frequency Control
(LFC) model of China Southern Grid (CSG).
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1 Introduction

Alternative energy growth has substantially increased with introducing the nation’s
first-class energy structure and the world’s first-class power generation systems online. As a
result of this change, renewable energy sources like solar, wind, lakes, and gas have been
promoted (Li et al., 2022). These tools are necessary to apply less energy and reduce carbon
emissions. Cases of renewable energy systems include large, well-known apartments, more
minor local features, and specific ones. Distributed technology is widely accepted among
these because of its lower maintenance costs, cost-effectiveness, and economic gains. This
group includes all kinds of strength besides clean energy, climate, infrared, biomass, river,
and hydrogen-based strength (Zhou et al., 2023). Nearby island’s power systems are often
used to solve power issues, especially in mountains and land. These thermal systems have
benefits but often need help maintaining a steady frequency due to their low strength and
outcome. When there is much energy over frequency, these issues only worsen. Today, the
importance of Load frequency control (LFC) is paramount to smart grids, and it is being
thoroughly investigated (Chen, 2023; Li and Cheng, 2023; Hassan et al., 2022).
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Using in LFC microgrid systems is challenging because the data
is complex, people use energy differently at different times, and the
weather changes significantly. Conventional methods often have
issues due to construction limitations and need help to employ
thorough answers as data expands. Model-driven approaches may
also lead to false prediction when the condition is confusing,
lowering the possibilities’ value. Standard algorithms are less
effective and accurate because of aspects with useless features.
Modern transistors require more than just regular model-based
approaches to achieve the best possible weight frequency control
(LFC) because of their difficulty and restricted nature (Su
et al., 2021).

Due to the expansion of linked renewables and the swings in the
energy industry, power systems spanning many regions have
become more complex. These methods require new ideas for
challenging behaviours, changing circumstances,
miscommunications, and speech delays. New energy tools have
been developed, such as cerebral group control, predicted energy,
and excellent control (Huang and Lv, 2023). High-dimensional
variables with redundant and irrelevant features further diminish
the efficiency and accuracy of standard algorithms. The nonlinear
and constraint-laden nature of these systems complicates problem-
solving efforts, making traditional model-based methods inadequate
for achieving optimal LFC in modern microgrids (Zhang
et al., 2021).

The growth of interconnected microgrids and the evolution of
power markets have led to the development of more extensive and
complex multi-regional power systems. These systems require
innovative strategies to address nonlinearity, time-varying
behaviors, uncertainties, and communication delays.
Consequently, advanced control strategies, such as neural
network-based control, robust control, and predictive control,
have emerged.

For instance, Wang et al. (2022) demonstrated how neural
systems can improve connected products in credible websites in
denial-of-service damage. Similarly, Xu et al. (2017) examined the
administration of gas-cell and device-mix energy storage systems.
They sought to increase the fat frequency energy using distinctive
machine types known as the Hammerstein neurological network.
Practical tools were developed simultaneously to limit the risks and
restrictions of products in a range of fields. These ideas were tested
using different computer simulation techniques and Lyapunov’s
concept of devotion.

Several researchers have successfully solved complex software
issues using recently developed LFC techniques. Kazemy et al.
(2020) suggested using extensive neurological systems to solve
power system issues among the population. Kumar et al. (2021)
created a system that uses brain sites to quickly adapt power options
to changing business issues.

Based on proper column variations, suitable H∞ control
methods have been proven to have challenges and problems and
maintain balance within prescribed parameters. For instance, Li and
individuals. They developed LFC activities that increased phone
frequency and improved strength performance. As validated designs
demonstrate, these cutting-edge techniques are essential to
sustaining power network security. Zhang H. et al. (2019)
developed event-triggered LFC schemes that optimize
communication bandwidth utilization while preserving control

performance. These techniques, validated through simulations,
highlight the importance of novel strategies for maintaining grid
stability. This adaptive event-triggered scheme, which utilizes
Lyapunov stability theory and linear matrix inequalities, reduces
transmission frequency while preserving control performance.
Wang et al. (2021) suggested a strong, event-based H-LFC
strategy to enhance its endurance against violence and show its
rewards using real-world examples.

Using the Extended State Observer (ESO) method, Active
Disturbance Rejection Control (ADRC) addresses all unresolved
problems that might affect the system’s output. This enables a
particular message perspective. Zhang et al. (2022) developed a
new control method known as Estimated Flatness-based ADRC
(EF-ADRC) for power system’s automatic load frequency control
(LFC). In contrast to the traditional step-by-step method, this
approach uses stage outputs to determine the system’s state,
allowing it to follow desired pathways properly. In both
single-area and multi-area practices, this technique was
effective. Ma and others correctly address charm and
limitations thanks to improved techniques and forecasting
models. Ma et al. (2016) suggested a connection plan that
would improve cooperation and control over a number of
remote locations while also considering the effects that events
offer. The system demonstrated greater freedom and power in
calculations than North products.

System variants in interior design power (IMC) are used to
create products that respond immediately. Jia et al. (2020) proposed
IMC and design reduction for complex systems to control weight
frequency power LFC issues, facilitating quick and precise
communications.

Traditional methods need help keeping microgrid fat
frequency energy because of changing routines, shifts in
energy usage, and the uncertainty of renewable energy sources.
Standard methods are impacted and become more complicated as
a result of the widespread use of solar and wind energy. On the
other hand, flexible system control mechanisms are provided by
RL algorithms. They often engage with their environment, alter
how they act, and improve their abilities to respond in more
specific ways.

Yan and Xu (2020) demonstrated a teamwork-based approach
to managing weight LFC across linked sites by working with various
brokers. This method combines distributed management with
extensive understanding to increase resilience. Thanks to creating
a novel online resource that self-improves without using specific
forms. Yin et al. (2019) developed an adaptive online RL method
that minimizes reliance on precise models, enhancing adaptability to
system dynamics, particularly for wind power. Wei et al. (2020)
applied a DQN-based RL approach for multi-area LFC, leveraging
deep neural networks to independently adjust generation in
response to frequency shifts. Zhang X. et al. (2019) presented a
model-free DRL approach that effectively managed LFC without
precise modeling. Zhao and Lu (2021) deployed policy-gradient
DRL to manage frequency stability in grids with high renewable
shares, demonstrating superior speed and accuracy compared to
traditional methods. Nian and Sun (2021) applied the Deep
Deterministic Policy Gradient (DDPG) algorithm to LFC,
effectively managing power system fluctuations with a robust
adaptive control strategy. Nguyen and Huang (2020) proposed a
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cooperative LFC framework with multi-agent DRL, suitable for
maintaining stability across interconnected regions. García and
Torres (2022) enhanced scalability and efficiency by structuring a
hierarchical DRL approach, improving frequency regulation in
large-scale systems. Li and Zhou (2024) developed a DRL-based
LFC with fault tolerance to withstand cyber-physical disruptions,
emphasizing security in interconnected digital power systems.

In the intricate domain of microgrid load frequency control,
modern approaches demand both technical and economic
resilience, underscoring the importance of Graph
Convolutional Networks combined with Proximal Policy
Optimization (GCNN-PPO) for robust performance. To
address these challenges, a novel Learning-Driven Load
Frequency Control (LD-LFC) method is proposed, designed to
stabilize frequency amid renewable energy integration, enhance
grid efficiency, and reduce operational costs.

The GCNN-PPO algorithm speeds up the decision-making
operation in the electricity system. Using graph convolutional
networks and proximal policy optimization (PPO) increases the
learning agent’s capacity to quickly comprehend and interpret grid
state information. Using GCNs, you can better comprehend
connections and social dynamics. Because of this, the assistant
training director has a wiser, wiser, and more accurate decision
on mass frequency management options. This novel idea is helpful
in a complex, spread-out energy grid. Knowing how many pieces of
society connect and depend on one another is crucial for everything
to run smoothly and effectively.

Simulations of LD-LFC and GCNN-PPO on the China Southern
Grid microgrid model illustrated frequency stability enhancements
under load and renewable variability, showing promise in
renewable-dominant systems. Key contributions of this work are
the LD-LFC’s dynamic adaptation to renewable-induced
disturbances and the GCNN-PPO algorithm’s advanced handling
of grid-state data, reinforcing stability in complex power networks.

The innovative points of this article are as follows.

1) Introduction of the Learning-Driven Load Frequency Control
(LD-LFC) technique, which uses a variety of renewable energy
sources, including wind and solar, to quickly react to
unanticipated power changes. The LD-LFC approach
reduces running costs by maintaining the frequency of the
microgrid. This method uses solid files, considerably
improving its ability to handle power more efficiently and
effectively than traditional methods.

2) This engine simplifies the understanding and use of grid-state
information by connecting Graph Convolutional Networks
(GGNs) with a support learning tool. Because it comprehends
the organization and composition of the game, the
confirmation learning programme makes better, faster
choices. This new technique improves power system’s
ability to handle complex and scattered work.

The manuscript systematically guides the reader through its
research, starting with an explanation of the microgrid’s architecture
(Section 2), followed by the introduction of a novel frequency
control method (Section 3), empirical case study analysis (Section
4), and concluding with a synthesis of key findings and their
implications for microgrid management (Section 5).

2 Islanded microgrids

2.1 LD-LFC model for islanded microgrids

An innovative LFC model is introduced, building on the
framework outlined in reference (Chen). This model is
meticulously designed to reflect the intricate characteristics of
modern microgrids, incorporating diverse distributed energy
resources such as fuel cells, wind turbines, and diesel engines.
Figure 1 provides a comprehensive visual representation,
detailing the advanced transfer function and systematic modeling
approach. It also illustrates the complete LFC control model,
seamlessly integrating all the mentioned energy-generating units.
The detailed schematic in Figure 1 (Yin et al., 2019) captures the
dynamic interactions and responses of these units within the LFC
framework, offering profound insights into its performance and
operational intricacies. This schematic not only highlights the
energy generation capabilities of the system but also unpacks the
complexities of its operational dynamics, making it an essential
reference for understanding the LFC model’s functionality.

2.2 Unit modeling

2.2.1 Micro gas turbine load frequency
control modeling

A micro gas turbine is a compact thermal generator noted for
its high reliability and safety, along with efficient energy
conversion, low emissions, and eco-friendly qualities. It is
extensively utilized within microgrids, making it the primary
unit selected for analysis in this study. The dynamic
characteristic functions of the turbine’s fuel system and
turbine rotor system are detailed as Equations 1, 2:

fm1 � 1
1 + Tfs

(1)

fm2 � 1
1 + Tts

(2)

where Tf is the time constant of the fuel system, Tt is the time
constant of the bathtub system. Δf is the frequency deviation; ΔμMT

is the LFC signal sent from the controller to the gas turbine; ΔXMT is
the incremental change of the valve position of the fuel system; R is
the governor coefficient; ± δMT is the upper and lower limits of the
power creep constraint; ± μMT is the upper and lower limits of the
power incremental constraint; ΔPMT is the incremental increase of
the power output of the gas turbine. When ΔPMT � 0 , the output
power ofMT is equal to the rated power; whenΔPMT > 0 , the output
power of MT is greater than the rated power; when ΔPMT < 0 , the
output power of micro gas turbine is less than the rated power.

2.2.2 Load frequency control model for energy
storage systems

Research indicates that Battery Energy Storage Systems (BESS)
outperform other storage types, such as flywheel, superconducting
electromagnetic, and capacitor storage systems. Reference (Huang
and Lv, 2023) analyzed a BESS model for grid frequency regulation,
presenting a simulation model with a suitable structure that meets
both primary and secondary frequency regulation needs.
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Consequently, the BESS model in this paper adopts this battery
storage simulation framework. ΔPord−BESS is the value of power
output, a positive value indicates that the BESS is discharging to the
system, and a negative value indicates that it is charging from the
system. The BESS needs to satisfy the following constraints during
operation as Equations 3, 4.

0#Pc#ηPc
max (3)

0#Pd# 1 − η( )Pd
max (4)

where Pc and Pd represent the charging and discharging power of
the BESS, and η represents the charging and discharging state
variable of the BESS, which means charging when it is 1, and
discharging when it is 0. Qsc,min and Qsc,max are the upper and
lower boundaries of the limiting link, and its value determines
whether ΔPout can be output, when Qvoc exceeds the limit.

2.2.3 Electric vehicle load frequency control model
Electric Vehicles (EVs) offer advantages such as rapid response,

flexible dispatch, and combined source-storage capabilities, enabling
services like peak shaving, valley filling, and auxiliary frequency and
voltage regulation through Vehicle-to-Grid (V2G) technology.
Reference (Zhang et al., 2021) examined frequency control in

power systems with large-scale wind integration using a V2G
model, demonstrating that V2G effectively mitigates wind power
fluctuations, enhancing system frequency control and operational
efficiency. The mathematical model of EV participation in primary
frequency regulation is discussed in (Xu et al., 2017) as Equation 5:

ΔPm − ΔP1 � Ms +D( )Δf + KE

1 + sTE
Δf (5)

Due to the battery characteristics, frequent charging and
discharging operations of EV are not favorable to the health of
the battery, so a dead zone module is added to the model so that EV
does not participate in the frequency regulation task when the
system frequency fluctuates in a small range.

When the frequency deviation Δf#|fdz| as Equations 6, 7:

PEV � CEV
SOCe − SOC

tαt − tin
(6)

When the frequency deviation Δf# − fdz:

PEV � kdΔf kdΔf> − Pmax

−Pmax kdΔf< − Pmax
{ (7)

When the frequency deviation Δf> − fdz as Equation 8:

FIGURE 1
LD-LFC model.
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PEV � kdΔf kdΔf> − Pmax

−Pmax + kcΔf kdΔf# − Pmax
{ (8)

where fdz is the dead zone of frequency regulation, CEV is the rated
capacity of the EV; SOCe is the desired battery state of charge (State
of Charge, SOC) value of the EV.

2.3 Wind power modeling

Wind power generation is primarily influenced by wind speed,
noted for its intermittent and fluctuating nature. At present, the
Weibull distribution is commonly applied to model wind speed,
with its probability density function represented as Equations 9, 10:

f x; λ, k( ) � k

λ

x

λ
( )k−1

e−
x
λ( )k (9)

where x is the random variable; λ is the scale factor, and k is the
shape parameter.

When wind speed falls between the cut-in and cut-out
thresholds, the wind turbine’s output power varies with wind
speed as follows:

Put �
Pr
v3t − v3c
v3r − v3c

vc < vt < vr

Pr vr < vt < vf

⎧⎪⎪⎨⎪⎪⎩ (10)

where, vt is the wind speed at time t; vc is the fan cut-in wind speed,
vr is the rated wind speed of the fan, vf is the fan cut-out wind speed,
Pr is the rated output power of the fan.

2.4 Objective functions and constraints

The LD-LFC plan is a perfect strategy for enhancing some goals
in managing power systems, concentrating on keeping the right
frequency and saving cash. This method lowers production costs
while maintaining the desired frequency. It strikes a balance between
cost-effectiveness and operating stability. This method maintains
the desired frequency while lowering the program’s overall costs. It
strikes a balance between being reliable and affordable. The LD-LFC
structure carefully considers the laws governing power tools, the
weather, health rules, and technical needs. The possibilities it
suggests are both excellent and beneficial in this regard. Because
of its integrated approach, the LD-LFC approach is helpful and
appropriate for the changing needs of modern electric program
management. Because of this mixture approach, the LD-LFC tool is
significant and relevant to the evolving needs of modern electric
system administration. The objectives and constraints are shown
below as Equations 11, 12.

min∑T
t�1

Δf
∣∣∣∣ ∣∣∣∣ +∑T

t�1
∑n
i�1

αiΔP2
Gi + βiΔPGi + γi( ) (11)

∑n
i�1
ΔPin

i � ΔPorder−∑
ΔPorder−∑*ΔPin

i ≥ 0

ΔPi
min ≤ΔPin

i ≤ΔPi
max

ΔPGi t( ) − ΔPGi t + 1( )| |≤ΔPrate
i

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(12)

where ΔPorder-∑ is the total command, ΔPi
max and ΔPi

min are the
limits of the ith unit, ΔPi

in is the command of the ith unit.

3 GCNN -PPO algorithm based LD-LFC

3.1 Reinforcement learning and graph
neural networks

Reinforcement learning is a data-driven approach that addresses
the problem of controlling dynamic systems. Reinforcement
learning intelligences capture the dynamic properties of the
desired problem by continuously interacting with the simulation
environment, and then learn appropriate strategies guided by
reward values based on historical experience. The whole process
is usually modelled as anMDP. It use a quintupleM � (S, A, P, r, g)
to represent anMDP, where S is the set of states s(s ∈ S), A is the set
of actions a(a ∈ A). P is the state transfer probability, which
describes the dynamics of the system through a probability
distribution. P(st+1 | st, at) to describe the dynamics of the
system. r is the reward function (S × A → R) , which is used to
guide the intelligence to learn the correct strategy. γ ∈ (0, 1) is the
discount factor, which relates the reward to the time domain so that
the intelligence takes into account the future reward. The policy
gradient can be represented as Equation 13.

∇θJ θ( ) � Eκ~pπθ κ( ) ∑N
t�0
γt∇θ log πθ at | st( )Q st, at( )⎡⎣ ⎤⎦ (13)

The state action value function Q(st, at) in the above equation
can also be parameterized using a neural network with the following
as Equation 14:

Q st, at( ) � ∑N
t′�t

γt′−tr st′, at′( ) − V st( ) (14)

The state-value function in Equation 14 is usually expressed as
Equation 15.

Vπ st( ) � Eκ~pπ κ|st( ) ∑N
t′�t

γt′−tr st′, at′( )⎡⎢⎣ ⎤⎥⎦ (15)

Graph Neural Networks (GNNs) are a special class of neural
networks that can capture the relationships between different
nodes from graphically structured data. The core idea of GNNs is
to utilize a message passing mechanism to aggregate the features
of neighboring nodes. Most of the current GNNs models can be
viewed as a method for learning “substitution invariant
functions,” whose inputs are a feature matrix X and a
connection matrix A. X describes the features of each node xi,
whose dimension is the number of features of a node multiplied
by the number of nodes, while x′i denotes the next layer of features
after the neural network update, and A denotes the connectivity
between nodes. In this paper, we use the GCN proposed in the
(García and Torres, 2022) to characterize the information of G,
the core of which is the use of a function described by a graph
convolution operator f(X,A) for efficient information transfer.
Equation 12 describes the information transfer rule of GCN as
Equation 16.
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X′ � f X,A( ) � σ D−1
2AD−1

2XW( ) (16)

where Â � A + I (I is the unitmaterix), D̂ is the diagonal matrix of
Â, σ(·) is the activation function and W is the parameter matrix of
the fully connected layer. To summarize, GCN describes a
replacement-invariant propagation rule which updates the
features of a node by aggregating information from
neighboring nodes.

3.2 Markov decision process

In this section, the LD-LFC model of the power grid is described
as an MDP model where the state space, action space, reward
function and state transfer process are as follows.

3.2.1 Action space
The configuration of the action space is illustrated below as

Equation 17.

ΔPorder−∑/10[ ] (17)

where ΔPorder−∑ is the total command.

3.2.2 State space
The corresponding state space representation is shown below as

Equation 18.

Δf ∫t

0
Δfdt ΔPtotal

G[ ] (18)

where ΔPtotal
G is the total power output of the units.

3.2.3 Reward function
The microgrid management approach’s vehicle design considers

the total electricity produced and the president’s frequency
variation. This two-part view highlights the vehicle’s dedication
to improving process stability and cost-effectiveness. The election
job can demonstrate the controller’s performance in achieving these
goals. For some actions taken to promote the development of the
best power structure, rewards are offered as part of the reward
program. By maintaining precise control over energy production,
this energy reduces inefficient or insufficient function. The owner is
motivated to use energy sources best by imposing these restrictions.
The award work examines the device’s ability to reduce expenses
while keeping frequency versions at a minimum and considering
charges for its actions. The target maintains program stability and
funds because of this conduct. The agent may create cost-effective
and cost-effective ideas using this study tool as Equations 19, 20.

r � −μ2 Δf
∣∣∣∣ ∣∣∣∣ + μ3∑n

i�1
Ci (19)

A � 0 Δf
∣∣∣∣ ∣∣∣∣< 0.05HZ

−10 Δf
∣∣∣∣ ∣∣∣∣≥ 0.05HZ

{ (20)

The proposed control strategy is designed to mitigate frequency
fluctuations and reduce power production costs simultaneously. To
fulfill these objectives, the reward function r incorporates a penalty

mechanism A that discourages inefficient actions and fosters the
development of optimal policies. This equilibrium between reward
and penalty directs the agent to concentrate on enhancing both
system efficiency and cost-effectiveness, thereby guiding it toward
the most effective operational strategies.

3.2.4 State transfer process
At each time step t, the agent observes the current state st, then

performs the current action at according to st, and finally obtains a
reward value rt and the next state st+1 according to P. The goal of the
agent is to find a strategy that maximizes the cumulative expected
return ∑Nt�0γtr(st, at) through the above process.

3.3 Proximal policy optimization algorithm
based on GCNNs

Currently reinforcement learning methods can be categorized
into three groups: value-based methods, policy-based methods and
algorithms based on the AC framework. In this thesis, we use the
proximal policy optimization (PPO) algorithm designed based on
the AC framework (Li and Zhou, 2024), which has the advantage of
high stability of stochastic policies. The GCNN-PPO algorithm
proposed in this thesis adds a graph convolutional layer in front
of the Multi-Layer Perception (MLP) neural network, which
improves the ability of the PPO intelligences to perceive graph
data. Figure 2 illustrates the structure of the Actor network and
Critic network in the GCN-PPO algorithm. The Actor network
architecture we use consists of two graph convolutional layers and
three MLP layers, each of which is accompanied by a ReLU
activation function and uses a summation pooling function to
aggregate the output of the graph convolutional layers over
neighboring nodes and then passes it to the MLP layer to output
a policy. The architecture of the Critic network defining the value
function is more or less the same as the Actor network, the main
difference is that a global summation pooling function is added
behind its graph convolutional layer, which enables the value
function to aggregate the information from all the nodes in the
graph to compute an estimate for the whole network.

The PPO algorithm is an improvement on the trust domain
policy optimization. The TRPO algorithm uses the Kullback-Leibler
(KL) scatter-constrained policy network to make its updated policy
close to the old one, and its optimization objective and constraints
are shown in Equations 21, 22.

max θ Eπθ,t

πθ at | st( )
πθold at | st( )Âπθ,t[ ] � Eπθ,t rt θ( )Âπθ,t[ ] (21)

s.t.Eπθ ,t KL πθold · | st( ), πθ · | st( )[ ][ ]≤ δ (22)
where πθold is the old strategy before updating, θ is the strategy
parameter; KL scatter can also be called relative entropy, which is
used to measure the difference between the probability distributions,
δ denotes the confidence level, which is used to limit the updating
magnitude of the strategy; Eπθ ,t[·] is the expectation, which denotes
empirical average over a finite number of samples, Âπθ denotes the
estimation of the dominance function for the t-decision step under
the strategy πθ. Since the computational cost of calculating the KL
scatter in each strategy update is very high, the PPO algorithm uses a
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truncation function instead of the KL scatter constraint, which
ensures the algorithmic stability of TRPO and reduces the
computational cost. The objective function of PPO using the
truncation function can be expressed as follows.

LCLPP θ( ) � Eπθ,t min rt θ( )Âπθ ,t, clip rt θ( ), 1 − ε, 1 + ε( )Âπθ,t[ ] (23)

where clip ( ) is a truncation function to control the change of old
and new policies within [1 − ε, 1 + ε], and ε is a truncation constant
to set the range of policy update. When the estimation of the
dominance function is negative, it means that the current
strategy is negative, and the probability of its occurrence should
be reduced (bounded by 1 − ε). When the estimation of the
dominance function is positive, it represents that the current
strategy is positive, then its probability should be increased
within a certain range (bounded by 1 + ε).

3.4 LFC solving process based on
GCNN-PPO algorithm

The Actor network is a policy function that maps the state st to
the action at, and its parameter θ is usually updated with the
gradient according to Equation 23 where ∇θJ(θ) adjusts the
policy distribution to directions with larger reward values. In

order to improve the efficiency of the data and prevent the
strategy from changing too much, we introduce the truncation
function and use Equation 23 to update the parameters θ and
θold. The Âπ0 ,t is the dominance function whose expression is
Equation 24.

Âπθ ,t � r st, at( ) + γV st+1( ) − V st( ) (24)
Equation 24 also represents the timing difference error, which
indicates that the advantage of executing action at in state st is
greater than the expected reward value for all actions. The advantage
of executing action st is greater than the expected reward value for all
actions. Since r(st, at) is an instant reward, Equation 23 can be
parameterized as a Critic network to update its parameters
incrementally, so the parameter of the dominant function μ can
be updated by minimizing L(μ) in Equation 25 or Equation 26.

L μ( ) � E V st( ) − yt( )2( ) (25)
yt � r st, at( ) + γV st+1( ) (26)

At the beginning of training, the parameters θ and θold for the
Actor network and μ for the Critic network are randomly initialized,
where the parameters θold for the old strategy are copied from the
new strategy. During the training process, we took 1 day of
interaction between the intelligences and the power system
environment as a round T, and since we used historical data

FIGURE 2
Farmwork of GCNN -PPO algorithm.
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with an interval of 3 min, we took each interaction as a time
step. Within each round T, the intelligent first interacts with the
environment for 480 steps to form a set of old strategies, and within
each update step t, the Actor makes a corresponding action at based
on the current state st, then gets a reward rt and transfers the state to
st+1. The dominance estimate is then computed using Equation 27,
and the parameters of the Actor network θ are updated by Equation
27 when the Actor completes the interaction of the T step.

θ ← θ − φθ∇θL θ( ) (27)
where φθ is the learning rate of Actor network; meanwhile, it can use
the historical experience collected within the step of Tmany times to
update the parameter θ. Similarly, the parameters of Critic network
can be updated by Equation 28.

μ ← μ − φμ∇μL μ( ) (28)

whereφμ is the learning rate of the Critic network. After each roundT is
updated, the parameters of the policy network are assigned to the old
policy. In the GCNN-PPO algorithm proposed in this paper, during
training, the agent executes the MDP based on the historical operation
data and the constant interaction of the power distribution system, and
the parameters of the Actor network and the Critic’s network are
constantly updated in the process, and the parameters of the network
are saved at the end of each round of training, and then the real-time

execution of the LFC is carried out based on the trained Actor model.
The flow of the GCNN-PPO algorithm is shown in Figure 3.

4 Case studies

In the field of advanced power system control methods, this study
performs an extensive evaluation of a novel approach using
comprehensive simulation exercises for an isolated urban microgrid.
The research rigorously assesses the effectiveness of the LD-LFC
developed using the Graph Convolutional Neural Networks -
Proximal Policy Optimization (GCNN-PPO) algorithm. The
research rigorously assesses the effectiveness of the LD-LFC
developed using the Graph Convolutional Neural Networks -
Proximal Policy Optimization (GCNN-PPO) algorithm. Established
control algorithms, including Proximal policy optimization (PPO)
algorithm-based LD-LFC (Nian and Sun, 2021), Proximal policy
optimization (PPO) algorithm-based LD-LFC (Nguyen and Huang,
2020), Soft actor critic (SAC) algorithm-based LD-LFC (García and
Torres, 2022), Trust Region Policy Optimization-based LD-LFC (Li and
Zhou, 2024), Twin Delayed Deep Deterministic Policy Gradient
algorithm-based LD-LFC, Deep Deterministic Policy Gradient
(DDPG) algorithm-based LD-LFC, Takagi Sugeno (TS) fuzzy PI
controller. Distributed Distribal Deterministic Policy Gradients

FIGURE 3
GCNN-PPO flows.
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(D4PG) (Yan and Xu, 2020), Asynchronous Actor-Critic Agents (A3C)
(Yin et al., 2019), Twin Delayed Deep Deterministic Policy Gradient
(TD3) (Zhao and Lu, 2021), Deep Deterministic Policy Gradient
(DDPG), Double Deep Q-Network (DDQN) (Zhang H. et al.,
2019), Deep Q-Network (DQN) (Nian and Sun, 2021), Distributed
Model Predictive Control (DMPC) (Chen), Model Predictive Control
(MPC) (Su et al., 2021), Fuzzy Fractional Order Proportional Integral
(Fuzzy-FOPI) (Zhang et al., 2021), Fuzzy Proportional Integral (Fuzzy-
PI) (Zhang H. et al., 2019), and Particle Swarm Optimization
Proportional Integral (PSO-PI) (Zhang et al., 2022) for LFC purposes.

4.1 Case 1: step disturbance

The LFC model is tested under various disturbance scenarios,
including wind, photovoltaic energy, and irregular load changes. A

7,200-s (2-h) simulation period is set to capture both transient and
steady-state responses, as well as the impact of the LFC on the
environment.

Table 1 demonstrates the effectiveness of the GCNN-PPO
approach, showing significant reductions in frequency deviation
(19.5%–83.1%) and generation costs (0.0018%–0.098%). These
results highlight the method’s ability to enhance both efficiency
and cost control in power generation. Figure 4 further illustrates the
early-stage use of the method. Illustrates the early-stage use of a
prioritized replay mechanism, which strengthens system resilience
and facilitates quicker learning, enabling GCNN-PPO consistently
outperforms other methods by minimizing average frequency
deviation and reducing generation unit overload. GCNN-PPO
consistently outperforms other methods by minimizing average
frequency deviation and reducing generation unit overshoot,
showcasing superior stability and robustness in managing power
system fluctuations. Contrast, the DDPG method falls short in
developing an optimal LFC strategy due to its reliance on a basic
replay system, lacking the sophistication of Although DDPG reduces
frequency deviation, its control becomes erratic under disturbances,
reflecting its insufficient robustness strategies. Although DDPG reduces
frequency deviation, its control becomes erratic under disturbances,
reflecting its insufficient robustness strategies. GCNN-PPO, however,
integrates cost reduction into its control design, effectively lowering
operational expenses and ensuring more consistent and stable
generation costs. Fuzzy logic-based algorithms also struggle to
balance frequency deviation and cost optimization in microgrids,
especially during varied disturbances. Optimization in microgrids,
often resulting in inconsistent frequency regulation, particularly
under specific disturbances, as seen in the second In conclusion,
GCNN-PPO sets a new benchmark with its reliable performance
across different disturbances, delivering the In conclusion, GCNN-
PPO sets a new benchmark with its reliable performance across
different disturbances, delivering the fastest frequency response and
minimal overshoot, leading to the lowest average frequency deviation
and optimized generation costs. Establishes GCNN-PPO as a top choice
for power generation optimization.

4.2 Case 2: step disturbance and renewable
disturbance

To simulate the unpredictability of EVs, wind turbines, and PV
systems, these elements are modeled as random load disturbances,
ensuring the system’s frequency regulation remains intact.

The table presents a comprehensive comparison of control
algorithms, highlighting their impact on generation
costs—defined as the total regulatory expenses for all generators
over a 24-h period. The SGCNN-PPO algorithm achieves frequency
deviations that are 1.36–1.99 times lower than those of other
methods, reducing generation costs by 0.0513%–0.0655%.
Similarly, the GCNN-PPO algorithm demonstrates superior
performance, attaining frequency deviations 1.61 to 1.71 times
lower than other approaches and decreasing generation costs by
0.0422%–0.0633%, according to distribution network data.

This efficiency underscores GCNN-PPO’s ability to balance cost
reduction with operational effectiveness. Its strengths in economic
performance, adaptability, and optimization provide a distinct

TABLE 1 Statistical results.

Control
algorithm

Average frequency
deviation (HZ)

Power
generation

cost ()

GCNN-PPO 0.003304 2695.76

PPO 0.003861 2698.51

TRPO 0.004494 2698.57

SAC 0.003541 2698.44

TD3 0.003951 2698.31

DDPG 0.003623 2698.35

DDQN 0.003748 2698.22

DQN 0.004084 2698.17

DMPC 0.004104 2698.24

MPC 0.004894 2697.97

Fuzzy-FOPI 0.004516 2698.04

Fuzzy-PI 0.004151 2698.17

PSO-PI 0.008480 2696.56

GCNN-PPO 0.013048 5417.27

PPO 0.015325 5422.72

TRPO 0.017690 5422.86

SAC 0.013969 5422.59

TD3 0.015588 5422.32

DDPG 0.014311 5422.42

DDQN 0.014830 5422.16

DQN 0.016140 5422.07

DMPC 0.016193 5422.19

MPC 0.019347 5421.66

Fuzzy-FOPI 0.017877 5421.80

Fuzzy-PI 0.016380 5422.06

PSO-PI 0.033769 5418.87
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advantage. This sets the website apart from other practices because it
automatically adjusts its options in response to changing
circumstances. Numerous changes, including rapid shifts,
effortless waves, and random ups and downs, have demonstrated
its robust and flexible ability.

Test results demonstrate that GCNN-PPO is adaptable, simple
to learn, and powerful. This reduces mysterious issues and improves
strength transmission network monitoring. Its inventive approach
and careful use make it a good choice for treating complex problems
daily. In conclusion, GCNN-PPO increases flexibility and
development while lowering electricity and production costs. Its
ability to handle various issues demonstrates how it strengthens and
facilitates active, complex present system.

5 Conclusion

This paper introduces a new LD-LFC approach that simplifies
frequency handling. Additionally, it improves management
performance and reduces savings. The basis of this approach is
the GCNN-PPO algorithm, which improves and evaluates pack
frequency control. As it adjusts to method changes, the GCNN- PPO
page learns more quickly and quickly, helping to increase overall
outcomes by concentrating on essential learning experiences.

The LD-LFC approach andGCNN-PPO site were used to properly
test the island microgrid model from China’s South Grid. This creative
strategy outperforms earlier variants. Boosts frequency, improves
accuracy and prevents interpretation when needed. Also, this
method had the most reasonable average difference in frequency,
which can keep the software firm when conditions change. The LD-
LFC view improved performance while reducing production costs,
demonstrating its performance and benefits.

Perhaps most notably, the LD-LFC method managed to reduce
generation costs while achieving these performance improvements,
showcasing its potential for both operational efficiency and cost-
effectiveness.
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