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Focusing on the low-carbon economic operation of an integrated energy system
(IES), this paper proposes a novel energy-carbon pricing and energymanagement
method to promote carbon emission reductions in the IES based on the carbon
emission flow theory and reinforcement learning (RL) approach. Firstly, an
energy-carbon integrated pricing model is proposed. The proposed pricing
method charges prosumers by tracing the embedded carbon emissions of
energy usages, and establishes an energy-carbon-prices relationship between
the power grid, IES and prosumers. Secondly, an energy management model
considering the energy-carbon integrated pricing strategy is established based
on the Markov decision processes (MDP), including prosumers energy
consumption cost model and energy service provider (ESP) profit model.
Then, a solving method based on the RL approach is proposed. Finally,
numerical results show that the proposed method can improve operation
economy and reduce carbon emissions of IES. When carbon price
accompanying electricity and thermal is considered in the process of pricing
and energy management, the profit of ESP can be improved and the cost of
prosumers can be reduced, and the total carbon emission of IES can be reduced
by 5.75% compared with not considering carbon price.
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1 Introduction

In response to the challenges of global climate changes, the world is actively promoting
low-carbon and clean energy systems. China is committed to achieve the carbon peak by
2030 and carbon neutral by 2060 (Liu and Niu, 2021). IES can exploit synergies among
different energy forms (Li et al., 2023), which has been extensively recognized as an efficient
way of reducing carbon emissions by promoting renewable energy absorption and energy
cascading utilization (Su et al., 2021; Wei et al., 2021). In order to realize the low-carbon
economic operation of the IES, it is necessary to consider carbon trading, carbon quota at
the level of system operation optimization to reduce carbon emissions (Huang et al., 2022a).
In addition, considering carbon emission factors in the energy interaction, especially in the
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energy pricing, is also an effective method to reduce carbon
emissions from energy production and consumption (Huang
Zhang, 2018; Wang et al., 2020a).

Carbon emissions can be incorporated into the system operation
as the additional cost in the objective function or maximum
allowable emissions in constraints. Based on this, there have been
some studies on the low-carbon economic operation and energy
management of IES. Literature Wang et al. (2020a) proposes a two-
stage scheduling model to investigate environmental benefits of
consumers participating in both electricity and carbon emission
trading markets. LiteratureWang et al. (2020b) proposes a two-stage
low-carbon operation planning model based on a bilateral trading
mechanism to mitigate carbon emissions. In Literature Gu et al.
(2020), a bi-level optimal low-carbon economic dispatch model for
an industrial park is proposed to optimize energy conversion
equipment, and set reasonable energy selling prices. In Literature
Xiang et al. (2021), a low-carbon economic dispatch model for
electricity-gas systems is proposed, in which the impacts of the
different low-carbon technologies on system economy and carbon
emission are investigated. In Literature Yao et al. (2012), a
computational framework for integrating wind power
uncertainties and carbon prices in economic dispatch model is
developed to solve the revised dispatch strategy. To realize the
low-carbon economic operation, a ladder-type carbon trading is
introduced Cui et al. (2021a). In Literature Cui et al. (2021b), the
carbon capture technology is used to the low-carbon dispatch of the
IES, in which the price-based demand response is considered.
Literature Chen et al. (2021) proposes a two-stage low-carbon
optimal scheduling model for combined heat and power (CHP)
systems considering the carbon emission flow theory and demand
responses based on the carbon prices for reducing carbon emissions.
Literature Shen (2024) addresses this real-world challenge by
utilizing evolutionary game theory to model the strategic
interactions between these stakeholders under a low-carbon
trading mechanism.

In addition, the consumption-based carbon emission
accounting is able to clarify the carbon emissions responsibility,
and the carbon emissions responsibility of consumers can be
calculated based on the energy consumption and corresponding
carbon emission flows. In different energy networks, the carbon
emission flows distribution may be significantly, which leads to
different attributed carbon emission responsibilities of consumers
(Peters, 2008; Li et al., 2013). In Literature Chen et al. (2018), the
carbon responsibility of the power system is shared on the
generation side and load side, and the problem is modeled as a
cost sharing problem based on the cooperative game. Combining the
carbon emission analysis and the power flow calculation, the
theoretical architecture of carbon emission flow analysis of the
power system is preliminarily formed (Zhou et al., 2012). In
Literature Zhang et al. (2022), the impacts of various energy
flows on the carbon emissions is explored in a case study.
Literature Sun et al. (2017) presents a transmission expansion
planning model considering the consumption-based carbon
emission accounting. In addition, some literatures have studied
the carbon emission pricing based on the calculation of the
carbon emission flows. Literature Cheng et al. (2019) studies the
low-carbon operation of multiple energy systems by coordinating
the transmission-level and distribution-level via the energy-carbon

integrated prices. Literature Moreira et al. (2010) analysis the social
welfare of the Iberian electricity market considering the carbon
emission prices.

From the above literatures (The comparisons of details between
this article and previous research are depicted in Supplementary
Appendix A), it can be concluded that most of the existing methods
to account for carbon emissions in the power system are the
generation-based. However, this generation-based carbon
emission accounting may lead to unbalanced responsibilities and
benefits between the generation units and consumers, especially in
the IES that have electricity-thermal energy exchanges. In addition,
although the existing research on the energy pricing and low-carbon
operation of IES considers the carbon emission factors in modeling,
it does not connect the transmission relationship and carbon
emission responsibility in the IES with the multi-energy
interaction process between ESP and users. To deal with the
above-mentioned challenges, the energy-carbon flow relationship
and energy-carbon pricing strategy between ESP and prosumers in
the IES need to be modeled and analyzed in detail, and the solution
method of this complex pricing model is proposed. To this end, we
propose an energy-carbon integrated pricing and energy
management method of the IES based on the RL. The main
contributions are as follows:

1) An energy-carbon integrated pricing model is proposed. The
carbon emission intensity (CEI) index is applied to quantify the
carbon emission intensity of different energy node in the IES.
The energy-carbon integrated prices model is established to
study the energy-carbon-prices relationship between the power
grid, CHP energy service provider (CHP-ESP) and prosumers.

2) A dynamic pricing method based on the RL of the IES
composed of the CHP-ESP and prosumers is proposed.
Considering the energy supply revenue of the CHP-ESP
and the energy cost of prosumers, the energy transaction
process is simulated by the Q-Learning algorithm based on
the energy-carbon integrated pricing model. This further
determines the energy pricing strategy of the CHP-ESP,
optimal energy consumption strategy of prosumers and
system operation strategy.

The remainder of this paper is organized as follows. Section 2
introduces the system architecture and pricing model. The energy
management model is proposed in Section 3. The reinforcement
learning methodology is used to solve model in Section 4. Section 5
presents case study results. Finally, conclusions are given
in Section 6.

2 System architecture and
pricing model

2.1 System architecture

This paper focuses on the IES with CHP and prosumers, and the
system structure is shown in Figure 1.

CHP-ESP is the operator of the IES, which controls CHP and
can provide electric energy and thermal energy for prosumers in the
system. The CHP is equipped with a CHP energy management
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system (CHP-EMS), which can dispatch the electricity and thermal
generations. The prosumer has a certain proportion of controllable
loads, which makes it have the load adjustment ability. In addition,
prosumer is equipped with the photovoltaic generation (PV) and
prosumer energy management system (PEMS), which can dispatch
the electricity energy consumption, thermal energy consumption
and electricity energy transaction traded with the IES. In order to
enhance the system stability, the IES is connected with the power
grid to meet the electricity demand. When there is excess electricity
in the IES, the excess electricity will be sent back to the power grid.

2.2 Energy-carbon flow integrated model

This section mainly studies the relationship between the energy
flows and carbon flows, and establishes an energy-carbon integrated

model. In general, the electricity input from the power grid to IES is
mixture electricity of coal-fired generators, WT, PV and
hydropower. Here, it is assumed that there is no carbon emission
in WT, PV and hydropower generation. Figure 2 shows the energy-
carbon flow relationship among the power grid, CHP-ESP
and prosumer.

Based on the energy-carbon relationship, carbon emission
intensity theory and proportional sharing assumption theory
(Cheng et al., 2019), this paper proposes the CEI index to reflect
the carbon emission intensity of each energy node. The CEI index
represents the average carbon emissions related to the injected
energy flow during a certain time period, which is equal to the
weighted average of the carbon intensities of all injected energy flows
(Zhang et al., 2022). Given t∈ T ≡ {t:t = 1,2,/,T}, where T is the
number of time slots of the energy operation. The CEI index models
are shown as:

FIGURE 1
System structure of IES.

FIGURE 2
Energy-carbon flow relationship of IES.
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ρEC+grid,t �
ρEcoalPcoal,t

Pcoal,t + Ppv,t + Pwt,t + Phy,t
,∀t

ρEC−grid,t �
ρECIES,tP

−
egrid,t

P−
egrid,t

� ρECIES,t,∀t

ρECIES,t �
1 + ∂( )−1ρecCHP,tP

chp
t + ρECgrid,tP

+
egrid,t

Pchp
t + P+

egrid,t − P−
egrid,t

,∀t

ρTCIES,t � 1 − 1 + ∂( )−1[ ] ρecCHP,t∂P
chp
t

∂Pchp
t

� 1 − 1 + ∂( )−1[ ]ρecCHP,∀t

ρecCHP,t � ρgas
Pchp
t

ηchp × LHVgas
,∀t

ρECpro,t �
ρECIES,tP

net,eload
t

Pnet,eload
t

� ρECIES,t,∀t

ρTCpro,t �
ρTCIES,tP

tload
t

Ptload
t

� ρTCIES,t,∀t

here, Pcoal,t is the power of coal power units in power grid, kW; Ppv,t

is the power of PV in power grid, kW; Pwt,t is the power of WT in
power grid, kW; Phy,t is the power of hydropower in power grid, kW;
ρEC+grid,t is the CEI index of the power grid when selling electricity, kg/
kWh; ρEC+grid,t is the CEI index of the power grid when buying
electricity from the IES, kg/kWh; ρECIES,t is the electrical CEI index
of the IES, kg/kWh; ρTCIES,t is the thermal NCI index of the IES, kg/
kWh; ρECpro,t is the electrical CEI index of prosumers, kg/kWh; ρTCpro,t is
the thermal CEI index of prosumers, kg/kWh; ρEcoal is the CEI index
of coal power units, kg/kWh; ρecCHP,t is the CEI index of the CHP, kg/
kWh; ρgas is the CEI index of the natural gas, kg/m3; P−

egrid,t is the
CHP-ESP selling electricity power to the power grid, kW; P+

egrid,t is
the CHP-ESP buying electricity power from the power grid, kW;
Pchp
t is output power of the CHP, kW; ηchp is the operational

efficiency of the CHP; ∂ is the thermal-electricity ratio of the
CHP; LHVgas is the low calorific value of the natural gas;
Pnet,eload
t is the net electrical loads of prosumers, kW; Ppv

t is PV
output power of prosumers, kW; Ptload

t is the thermal loads of
prosumers, kW.

Therefore, the energy-carbon integrated prices of the electricity
and thermal can be obtained by combining CHP-ESP energy prices
and carbon price according to the method in Zhang et al. (2022),
Cheng et al. (2019), and Kang et al. (2012). The prices models are
shown as:

pEC
sell,t � pE

sell,t + kρECESP,t,∀t

pEC
Fit,t � pEC

Fit,t + kρEC−grid,t,∀t

pEC
pro,t � pE

pro,t + kρECpro,t,∀t

pTC
pro,t � pT

pro,t + kρTCpro,t,∀t

here, pEC
sell,t is the electricity-carbon integrated selling price of the

power grid, CNY/kWh; pEC
Fit,t is the feed-in tariff with carbon of the

power grid, CNY/kWh; pE
Fit,t is the feed-in tariff without the carbon

price of the power grid, CNY/kWh; pE
sell,t is the electricity selling

price without the carbon price of the power grid, CNY/kWh; pEC
pro,t,

pTC
pro,t are the CHP-ESP energy-carbon integrated selling price of the

electricity and thermal, CNY/kWh; pE
pro,t, p

T
pro,t are the CHP-ESP

energy selling price without the carbon price of the electricity and
thermal, CNY/kWh; k is the carbon price, CNY/kg.

3 Energy management model

3.1 Prosumers model

3.1.1 Electrical and thermal loads model
The electrical loads of prosumers can be classified as critical

and adjustable loads according to priorities (Yuan et al., 2021; Liu
et al., 2019; Wang et al., 2021). n∈N ≡ {n:n = 1,2,/,N}, N is
the number of prosumers. The electrical loads models are
shown as:

Padj,eload
n,t � Eadj,eload

n,t 1 + ξEt
pEC
pro,t − pEC

sell,t

pEC
sell,t

( ),∀t,∀n
Pnet,eload
n,t � Peload′

n,t − Padj,eload
n,t − Ppv

n,t,∀t,∀n

here, Padj,eload
n,t is the adjustable electrical loads of prosumer n, kW;

Eadj,eload
n,t is the upper limit of the adjustable electrical loads, kW; ξEt is

the electric elasticity coefficient of prosumer n; Pnet,eload
n,t is the net

electrical loads of prosumer n, kW; Peload′
n,t is the original electrical

loads of prosumer n, kW; Ppv
n,t is PV output power of

prosumer n, kW.
The thermal loads of prosumers can be classified as critical and

adjustable loads according to priorities (Liu et al., 2019; Wang et al.,
2021). The thermal loads models are shown as:

Padj,tload
n,t � Eadj,tload

n,t 1 + ξTt
pTC
pro,t − pTC

sell,t

pTC
sell,t

( ),∀t,∀n
Ptload
n,t � Ptload′

n,t − padj,tload
n,t ,∀t,∀n

here, Padj,tload
n,t is the adjustable thermal loads of prosumer n, kW;

Eadj,tload
n,t is the upper limit of the adjustable thermal loads, kW; ξTt is

the thermal elasticity coefficient of prosumer n; Ptload
n,t is the thermal

loads of prosumer n, kW; Ptload′
n,t is the original thermal loads of

prosumer n, kW.

3.1.2 Satisfaction loss and energy cost model
The cost of prosumers consists of the satisfaction loss cost and

energy cost. The satisfaction loss cost function indicates the loss
value of the energy consumption utility (Wang H. et al., 2020;
Cheng et al., 2021). The objective functions of prosumers are
shown in Equations 1–3:

UE
n,t �

1
2
λEn Padj,eload

n,t( )2 + μEnP
adj,eload
n,t ,∀t,∀n (1)

UT
n,t �

1
2
λTn Padj,tload

n,t( )2 + μTnP
adj,tload
n,t ,∀t,∀n (2)

Fpro
n,t � min pTC

pro,n,tP
tload
n,t + pEC

pro,n,tP
net,eload
n,t + UE

n,t + UT
n,t( ),∀t,∀n (3)

here, Fpro
n,t is the cost of prosumer n;UE

n,t andU
T
n,t are the satisfaction

loss for electric and thermal loads; λEn and μ
E
n are the satisfaction loss

coefficient of electric loads; λTn and μTn indicate the satisfaction loss
coefficient of thermal loads.

3.2 Energy service provider model

In this study, the CHP-ESP is the link between the power grid
and prosumers. It participates in the energy market transactions and
supplies electricity and thermal energy to prosumers by scheduling
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energy supply units. Hence, the objective of the CHP-ESP is to
perform dynamic pricing that maximizes its profits (Huang et al.,
2022b). The objective functions of CHP-ESP are shown in
Equations 4–6:

Fesp
t � max pTC

pro,n,tP
tload
n,t + pEC

pro,n,tP
net,eload
n,t − Cope,t + Cen,t( ),∀t (4)

Cen,t � pEC
Fit,tP

−
egrid,t − pEC

sell,tP
+
egrid,t,∀t (5)

Cope,t � pfuelP
chp
t

ηchp × LHVgas
+ pchpP

chp
t ,∀t (6)

here, Fesp
t is the profit of CHP-ESP;Cope,t,Cen,t are the operation cost

and energy cost of the CHP-ESP, CNY; pfuel is the natural gas price,
CNY/m3; pchp is the operation cost coefficient of the CHP,
CNY/kW.

3.3 Objective function and constraints

3.3.1 Objective function
The energy transaction process between the CHP-ESP and

prosumers is similar to a price game behavior, and the benefits
generated by both sides should be considered in the pricing
decision-making process. In this paper, we consider both
the CHP-ESP’s profit and prosumers’ cost as follows (Lu
et al., 2018).

F � min ∑N
n�1

∑T�24
t�1

rFpro
n,t − 1 − r( )Fesp

t[ ]Δt
here, r ∈ [0, 1] is the weighting factor of relative importance between
the CHP-ESP’s profit and prosumers’ cost.

3.3.2 Constraint conditions
In order to ensure the smooth energy interaction between the

CHP-ESP and prosumers and the safe operation of the CHP-ESP,
the following constraints must be met (Huang et al., 2022b; Wang
et al., 2019). The constraints include the power balance constraint
(Equations 7, 8), the equipment operation constraint (Equation
9), the load constraint (Equations 10, 11 (Liu et al., 2016)) and
the price constraint (Equations 12, 13). The constraints are
shown as:

ηchpP
chp
t + P+

egrid,t − P−
egrid,t � ∑N

n�1
Pnet,eload
n,t ,∀t (7)

αηchpP
chp
t � ∑N

n�1
Ptload
n,t ,∀t (8)

0≤Pchp
t ≤Pchp,∀t (9)

minPnet,eload
n,ave ≤Pnet,eload

n,t ≤maxPnet,eload
n,ave ,∀t,∀n (10)

minPtload
n,ave ≤Ptload

n,t ≤maxPtload
n,ave ,∀t,∀n (11)

pE
Fit,t ≤pE

pro,t ≤pE
sell,t,∀t (12)

0≤pT
pro,t ≤p

T
sell,t,∀t (13)

here, Pchp is the maximum operation power of the CHP, kW;
Pnet,eload
n,ave is the average net electrical loads of prosumers, kW;

Pnet,tload
n,ave is the average net thermal loads of prosumers, kW; pT

sell,t

is the thermal selling price in the thermal market, CNY/kWh.

4 Reinforcement learningmethodology

At present, the energy management method of energy system is
mostly combined with optimization algorithm or heuristic
algorithm in terms of algorithm. The calculation efficiency of
optimization algorithm is high, but it is difficult to escape from
local optimization when dealing with nonlinear, nonconvex or
discontinuous problem. Heuristic algorithm can get the
corresponding optimal solution or Pareto frontier under given
conditions, but it has many restrictions, long calculation time
and insufficient generalization learning ability (Cheng et al.,
2022; Cheng et al., 2020).

Reinforcement learning based on MDP theory is an important
machine learning method with strong autonomous learning ability
and adaptability. RL is a method to make sequential decisions in an
unknown environment. It can change the strategy in real time based
on online learning from past experience. In RL approach, the agent
interacts with the environment, and constantly learns adaptively
through “trial and error” to find the optimal strategy. RL method
does not need the distribution knowledge of uncertain factors in the
system, and it is a potential method to solve the optimization
problem with uncertain factors. It has been introduced into the
operation optimization and energy management of smart grid,
buildings and so on as a potential solution (Wang et al., 2021; Lu
et al., 2021; Zhong et al., 2021).

4.1 Markov simulation system model

In this paper, the energy-carbon integrated pricing and energy
management problem is modeled as a discrete finite horizon MDP
because it is a decision-making problem in a stochastic environment.
The MDP process consists of four basic elements, namely the state,
action, reward and discount rate. The reward and action taken only
depend on the current energy information, but have nothing to do
with the historical data. Therefore, this problem can be modeled as a
finite MDP with the CHP-ESP as the agent (Lu et al., 2018; Lu et al.,
2021; Zhong et al., 2021). Figure 3 shows the agent-environment
interactive mode.

We formulate the energy-carbon integrated pricing as a discrete
finite MDP model. The MDP models established are shown in
Equations 14–18:

St � Pnet,eload
n,t , Peload′

n,t , Ptload
n,t , Ptload′

n,t[ ] (14)
At � pEC

pro,t, p
TC
pro,t[ ] (15)

Rt � F (16)
R s, a, s*( ) � E Rt | St � s, At � a, St+1 � s*[ ] (17)

Gt � ∑∞
k�o

γkRt+k+1 � γ0Rt+1 + γ1Rt+2 + γ2Rt+3 + .... (18)

here, St is the state at time t;At is the action at time t; Rt is the current
reward; Gt is the future reward; γ is the discount rate, γ ∈ [0, 1],
when γ � 0, the agent only cares about the current profit
maximization; When γ � 1, in the case of relatively stable
environment, any action will bring the benefits, but it may lead
to endless explorations. In most experiments, γ � 0.9 is set to
balance the current reward with the future reward by adjusting
the discount rate.
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4.2 Solution method based on Q-Learning

Then this MDP problem is solved by adopting the Q-learning
method, which solves the problem of sequence decision in unknown
environment by mapping selection probability from the state to
action. Table 1 shows the flowchart of Q-learning algorithm.

If the agent chooses strategy π at the moment, then π(a | s) is the
probability of At � a when St � s; Write the value function of the
state s under strategy π as Vπ(s), that is, from the state s, the
probability expected value of the reward obtained by the agent when
making decisions according to the strategy π. The strategy model is
shown in Equation 19:

Vπ s( ) � Eπ Gt | St � s[ ] � Eπ ∑∞
k�o

γkRt+k+1

∣∣∣∣∣∣∣∣∣ St � s⎡⎣ ⎤⎦ (19)

Similarly, the value of action a taken by the strategy π in the state
s can be recorded as qπ(s, a).Then according to the strategy π, from
the state s, after action a is executed, the expected returns of all
possible decision sequences can be obtained. The state model is
shown in Equation 20:

qπ s, a( ) � Eπ Gt | St � s, At � s[ ] � Eπ ∑∞
k�o

γkRt+k+1

∣∣∣∣∣∣∣∣∣ St � s, At � s⎡⎣ ⎤⎦
(20)

Then, the bellman equation is introduced to represent an
iterative relationship of correlation between the current state
value and future state value.

Vπ s( ) � Eπ Gt | St � s[ ]
� Eπ γ0Rt+1 + E γ1Rt+2 + γ2Rt+3 + ....[ ] ∣∣∣∣ St � s[ ]
� Eπ r + γVπ s*( )[ ] (21)

And the iterative relationship of the correlation between the
current action and future action can be obtained. Here, r is the
current reward.

qπ s, a( ) � Eπ Gt | St � s, At � s[ ]
� Eπ γ0Rt+1 + E γ1Rt+2 + γ2Rt+3 + ....[ ] ∣∣∣∣ St � s, At � s[ ]
� Eπ r + γqπ s*, a*( )[ ] (22)

The q value composed of “state-action” forms the Q-table, which
shows the Q-value of all actions in all states. In several iterations, the
Q-value will tend to converge. On the basis of the Equations 21, 22,
the Q-learning algorithm is used to obtain maximum Q-value, thus
obtaining the optimal strategy π*(s | a). The optimal strategy model
is shown in Equation 23:

π* s a|( ) � 1, a � arg max
a∈A

q* s, a( )
0, other

⎧⎨⎩ (23)

Based on the Q-learning algorithm, the simulation will be run with
iterations from which the optimal prices are computed, i.e., at the
beginning of a day, the CHP-ESP receives the wholesale electricity
price from the power grid, the load demand from prosumers and other
parameters defined in the scenario. Then the CHP-ESP calculates the
Q-value (CHP-ESP prices), and finally obtains the maximumQ-value.

5 Case study

5.1 Basic data

In this section, an IES is used as an example to test the energy
management and energy-carbon integrated pricing method
proposed in this paper. The test system consists of 1 CHP-ESP

FIGURE 3
Agent-Environment interactive mode.

TABLE 1 Flowchart of the Q-learning algorithm.

Algorithm: Q-learning algorithm for the pricing decision

① Start initializing Q-table

② Determine the current status St and select an action At

③ Observe the state at the next moment St+1

④ Calculate the reward value and update the Q-table

⑤ If Satisfy the convergence conditions
End If
Else Does not satisfy the convergence condition t = t+1 and return to step ②

⑥ Until iterative condition is satisfied
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FIGURE 4
Predicted power curve of electric loads.

FIGURE 5
Predicted power curve of the thermal loads.
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and three prosumers, and the system structure is shown in Figure 1,
and it is assumed that the electricity supply of the power grid in this
case is only coal-fired power units.

The entire time cycle is divided into 24 time slots representing the
24 h of a day, thus the optimization time scale t is 1 h. The load data
and PV data come from a typical day in winter (As shown in Figures
4–6). The feed-in tariff of the power grid without carbon is 0.35 CNY/
kWh. Table 2 shows the wholesale electricity price and electricity
elasticity coefficient, Table 3 shows the comfort parameters of three
prosumers (Lu et al., 2018; Guo et al., 2020). The wholesale thermal
price is 0.3 CNY/kWh, and the thermal elasticity coefficient is −0.3.
The CEI index of natural gas is 1.96 kg/m3, the CEI index of coal
power units is 0.85 kg/kWh, the low calorific value of natural gas is
9.78 kWh/m3, the operational efficiency of the CHP is 0.92, and the
thermal-electricity ratio of the CHP is 1.35. The simulation is
conducted using the software with python-programmed code, and
a 2.9 GHz, i5-10400 CPU, 16 GB RAM windows PC hardware.

5.2 Simulation results

This section presents the simulation results to assess the
performance of the proposed energy-carbon integrated pricing
model according to the Q-learning algorithm.

Figure 7 shows the feed-in tariff of power grid. Figures 8, 9 show
the electricity-carbon price of the power grid and CHP-ESP
respectively. Figure 10 shows the electricity energy consumption

FIGURE 6
Predicted power curve of the PV.

TABLE 2 Wholesale price and elasticity of the electricity.

Price type Off-peak Mid-peak On-peak

Time 1–7 a.m. 8–10 a.m.; 15–17 p.m.; 21–24 p.m. Other time

Price 0.38 CNY/kWh 0.86 CNY/kWh 1.45 CNY/kWh

Elasticity −0.3 −0.5 −0.7

TABLE 3 Satisfaction loss coefficients of three prosumers.

Parameters λEn μE
n λTn μT

n

Prosumer1 0.7 0.1 0.7 0.1

Prosumer2 0.5 0.1 0.4 0.1

Prosumer3 0.4 0.1 0.5 0.1
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of three prosumers. Figure 11 shows the thermal-carbon price of the
CHP-ESP, and Figure 12 shows the thermal energy consumption of
three prosumers.

It can be seen from Figure 8 that the electricity price with carbon
of the power grid is exactly the same as the electricity price without
carbon in some time periods, especially from 6: 00 to 13: 00. In the
above time period, the thermal load demand is large, which makes
CHP units a large amount of electricity while supplying thermal. At
the same time, the PV power in the IES is very rich. The above two
factors lead the CHP-ESP to transmit the abundant electricity to the
power grid. In other time periods, the CHP-ESP needs to purchase
electricity from the power grid due to insufficient PV output, and the

power grid accumulates a part of carbon cost on the basis of
electricity price according to the electric power delivered to the IES.

Comparing the electricity price strategies of the power grid and
CHP-ESP, we can find that the electricity-carbon price of the CHP-
ESP and power grid have the same trend. This is because the CHP-
ESP price strategy is produced under the joint constraints of the
power grid price and carbon emission intensity of the IES. For the
CHP-ESP, its pricing decision shows a change trend similar to the
power grid price. From 7: 00 to 13: 00, the PV power to which each
prosumer belongs can meet most of the power demand, and under
stimulation of electricity price, the prosumer will adjust the loads to
the maximum extent, which makes the net electricity loads of
prosumers relatively small in this time period. Therefore,
prosumers need to bear less carbon cost, and the electricity price
of the CHP-ESP with the carbon is similar to that without the
carbon. On the contrary, the PV power of prosumers is insufficient
in other periods, which leads to prosumers must rely on the CHP-
ESP to meet the electricity demand. The large amount of electricity
with the carbon purchased from the CHP-ESP eventually leads to
the extra carbon cost of prosumers.

In addition, as can be seen from Figure 10, the electric load
adjustment strategy of prosumers is also affected by the price with
the carbon factor. The electricity load adjustment amount of
prosumers in the period of the small net loads is obviously lower
than that in the period of large net loads. This is the result of efforts
for prosumers to minimize the electricity cost and carbon cost.

Because the CHP is the only thermal source in the system, the
carbon emission intensity generated is only related to the operation
state of the CHP. It can be seen from Figures 11, 12 that the CHP-
ESP will reduce the thermal price in the period when the thermal
load demand of prosumers is low, so as to prevent prosumers from
drastically reducing the thermal load due to the thermal cost.

Figure 13 shows the optimized scheduling strategy of the IES.
The CHP operates in the “thermal-lead mode,” and its operation
strategy is closely related to thermal loads. As the backup power
supply of the IES, the power grid can guarantee electric power
balance in the IES.

5.3 Discussion and analysis

5.3.1 Optimization result analysis
This section analyzes the optimization results of the CHP-ESP

and prosumers, and discusses the influence of carbon price changes
on the results. Figure 14 shows the convergence of the Q-value, and
Table 4 shows the optimization results under different
pricing modes.

By analyzing the data in Table 4, it can be found that compared
with the traditional method (Price without carbon), the pricing and
energy management model considering carbon emission factors can
get almost the same economic operation results, but it has obvious
advantages in carbon emission reduction, and the carbon emissions
are reduced by 5.75%. The simulation takes 150s with 100 iterations,
and converges to the optimal value at close to 67 iterations.

5.3.2 Sensitivity analysis
In order to further study the influence of carbon price changes

on the results, we simulates the changes of the average prices,

FIGURE 7
The feed-in tariff of the power grid.

FIGURE 8
Electricity-carbon price of the power grid.

FIGURE 9
Electricity-carbon price of the CHP-ESP.
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objective values and carbon emissions when the carbon price
increased from 0.049 CNY/kg to 0.099 CNY/kg. Figure 15 shows
the average prices for the different carbon prices, Figure 16 shows
the objective functions for different carbon prices.

When the carbon price is increasing, the average thermal-carbon
price increases in direct proportion to carbon prices. The electricity-
carbon price increased sharply at first, then slowly and gradually
stabilized at the later stage. When the growth rate of the carbon price

is small, prosumers can still tolerate price increase. However, with
the continuous increase of the carbon price, the electricity-carbon
price increase will gradually exceed the tolerance range of
prosumers, and prosumers will greatly reduce electricity demand,
which makes the CHP-ESP lower the electricity price to ensure the
electricity sales volume to meet expected minimum profit.

As can be seen from Figure 16 that the change trend of the CHP-
ESP profit with the carbon price is similar to that of the average

FIGURE 10
Electricity energy consumption of three prosumers.

FIGURE 11
Thermal-carbon price of the CHP-ESP.
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electricity-carbon price. This is because the main profit of the CHP-
ESP comes from supplying electricity and thermal energy to
prosumers, and the profit of prosumers is more affected by the
electricity-carbon price. In the early stage of the carbon price
increase, prosumers will adjust their loads to minimize the

energy cost. However, with the further increase of carbon price,
the load adjustments of prosumers will reach the upper limit. At this
time, prosumers will be in a weak position, unable to offset the
substantial increase in energy costs caused by the increase of carbon
price. At the same time, the load adjustments due to the price

FIGURE 12
Thermal energy consumption of three prosumers.

FIGURE 13
Optimized scheduling strategy of the IES.

Frontiers in Energy Research frontiersin.org11

Zhang et al. 10.3389/fenrg.2024.1522514

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1522514


increase will also damage the utility of the prosumers. Therefore, the
cost of prosumers shows a trend of increasing slowly and then
increasing sharply.

5.3.3 Robustness analysis of results
In the RLmodel established in this paper, the interaction process

between CHP-ESP and prosumers, in which CHP-ESP is the leader
to formulate the price strategy and prosumers are the followers to
respond to the price strategy and optimize the energy consumption,

which conforms to the Stackelberg game mechanis. Therefore, this
section simulates the energy management method and energy-
carbon pricing strategy based on Stackelberg game, and compare
the results from two aspects of optimization results and algorithm
performance to enhance the robustness of the results. The modeling
and proving process of Stackelberg game model refer to literature
(Huang et al., 2022b; Wang and Hu, 2023), and the distributed
solving algorithm based on genetic algorithm established in
literature (Wang and Hu, 2023) is adopted for model solving,

FIGURE 14
Convergence of the Q-value.

TABLE 4 Optimization results under different pricing modes.

Objective function value Price with the carbon Price without the carbon

Profit of the CHP-ESP 15880.06 CNY 15869.65 CNY

Cost of prosumers 57530.68 CNY 57628.11 CNY

Q-value 20825.31 20879.23

Total carbon emissions 6,969.96 kg 7,395.66 kg

FIGURE 15
Average price for different carbon prices.
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and other optimization parameters adopt the parameters set in this
paper. Table 5 shows the comparison of optimization results, and
Figure 17 shows the convergence curve of Stackelberg game.

From the data calculation in Table 5, compared with Stackelberg
game optimization, the total operating benefit of ESP and the total cost
of IES optimized by RL are increased by 86.8 CNY and 45.37 CNY

FIGURE 16
Objective functions for different carbon price.

FIGURE 17
Convergence curve of Stackelberg game.

TABLE 5 Comparison of optimization results.

Indicators used for comparison Method proposed in this paper Method based on Stackelberg game

Profit of the CHP-ESP 15880.06 CNY 15793.26 CNY

Cost of prosumers 57530.68 CNY 57485.31 CNY

Time taken to get the optimal solution 150 s 315 s

Iterations taken to get the optimal solution 67 85
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respectively, which shows that the two methods have very close
performance in objective function optimization. However, combined
with Table 5 and Figure 17, it can be seen that the RL method
established in this paper can complete the optimization iteration
faster and get the optimal solution compared with the Stackelberg
game. In the process of energy management numerical calculation, it
can save calculation time and cost, and this advantage will be more
obvious in the future when larger-scale systems are optimized.

6 Conclusion

In this paper, an energy-carbon integrated pricing and energy
management method of IES based on the RL approach is proposed,
the proposedmethod establishes an energy-carbon-prices relationship
between the power grid, IES and prosumers by tracing the embedded
carbon emissions of energy consumption chains. In addition, the
energy-carbon integrated pricing and energy management model is
solved by the Q-learning algorithm to determine the optimal energy
pricing strategy, prosumers energy consumption strategy and system
operation strategy. Case study based on two scenarios of with and
without the carbon price shows that the proposedmethod has obvious
advantages in the carbon emission reduction and effectively facilitates
the low-carbon operation of the IES. The carbon emissions in the
operation of the IES are reduced by 5.75% with the incorporation of
the carbon price.

The model established in this paper can enrich the multi-agent
energy interaction and pricingmethod of IES from the theoretical level,
and support IES to participate in the energy interaction in the energy-
carbon market from the application level to realize the low-carbon
economic operation. However, the thermal energy supply of the IES in
this paper is provided by IES itself, without considering the thermal
interaction with the external thermal market. When the IES interacts
with the external thermal market, it will increase the complexity of
carbon emission calculation, these will be considered in future research.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material, further inquiries can be directed
to the corresponding author.

Author contributions

HZ: Conceptualization, Funding acquisition, Investigation,
Software, Writing–original draft, Writing–review and editing. XS:

Writing–original draft, Writing–review and editing. HL:
Methodology, Writing–original draft. EL: Software,
Writing–original draft. YZ: Writing–original draft. KL:
Writing–original draft. TL: Writing–original draft. MX:
Writing–original draft.

Funding

The author(s) declare that financial support was received
for the research, authorship, and/or publication of this
article. This work is supported by Yunnan postdoctoral
fund project, research and application demonstration of key
technologies of flexible and efficient collaboration of new
multi-energy systems in border and cross-border areas
(YNKJXM202110177).

Conflict of interest

Authors HZ and EL were employed by Electric Power Research
Institute of Yunnan Electric Power Grid Co., Ltd. Authors XS, HL,
KL, TL, and MX were employed by CSG Electric Power Research
Institute Co. Author YZ was employed by Yunnan Power
Grid Co., Ltd.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fenrg.2024.1522514/
full#supplementary-material

References

Chen, L., Sun, M., Zhou, Y., Ella, Z., Fang, C., and Fen, D. (2018). Method of carbon
obligation allocation between generation side and demand side of power system.
Automation Electr. Power Syst. 42 (19), 106–111. doi:10.7500/AEPS20171113004

Chen, H., Mao, W., Zhang, R., and Yu, W. (2021). Low-carbon optimal scheduling
of a power system source-load considering coordination based on carbon emission
flow theory. Power Syst. Prot. Control 49 (10), 1–11. doi:10.19783/j.cnki.pspc.
200932

Cheng, Y., Zhang, N., Zhang, B., Kang, C., and Feng, M. (2019). Low-carbon
operation of multiple energy systems based on energy-carbon integrated prices.
IEEE Trans. Smart Grid (99), 1. doi:10.1109/TSG.2019.2935736

Cheng, L., Liu, G., Huang, H., Wang, X., Chen, Y., Zhang, J., et al. (2020). Equilibrium
analysis of general N -population multi-strategy games for generation-side long-term
bidding: an evolutionary game perspective. J. Clean. Prod. 276, 124123. doi:10.1016/j.
jclepro.2020.124123

Frontiers in Energy Research frontiersin.org14

Zhang et al. 10.3389/fenrg.2024.1522514

https://www.frontiersin.org/articles/10.3389/fenrg.2024.1522514/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenrg.2024.1522514/full#supplementary-material
https://doi.org/10.7500/AEPS20171113004
https://doi.org/10.19783/j.cnki.pspc.200932
https://doi.org/10.19783/j.cnki.pspc.200932
https://doi.org/10.1109/TSG.2019.2935736
https://doi.org/10.1016/j.jclepro.2020.124123
https://doi.org/10.1016/j.jclepro.2020.124123
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1522514


Cheng, L., Yin, L., Wang, J., Teng, S., Chen, Y., Liu, G., et al. (2021). Behavioral
decision-making in power demand-side response management: a multi-population
evolutionary game dynamics perspective. Int. J. Electr. Power and Energy Syst. 129,
106743. doi:10.1016/j.ijepes.2020.106743

Cheng, L., Chen, Y., and Liu, G. (2022). 2PnS-EG: a general two-population n-strategy
evolutionary game for strategic long-term bidding in a deregulated market under
different market clearing mechanisms. Int. J. Electr. Power and Energy Syst. 142, 108182.
doi:10.1016/j.ijepes.2022.108182

Cui, Y., Zeng, P., Zhong, W., Cui, L., Zeng, P., and Zhao, Y. (2021a). Low-carbon
economic dispatch of electricity-gas-heat integrated energy system based on ladder-type
carbon trading. Electr. Power Autom. Equip. 41 (03), 10–17. doi:10.16081/j.epae.
202011030

Cui, Y., Zeng, P., Wang, Z., Wang, M., Zhang, J., and Zhao, Y. (2021b). Low-carbon
economic dispatch of electricity-gas-heat integrated energy system with carbon capture
equipment considering price-based demand response. Power Syst. Technol. 45 (02),
447–459. doi:10.13335/j.1000-3673.pst.2020.0100a

Gu, H., Li, Y., Yu, J., Wu, C., Song, T., and Xu, J. (2020). Bi-level optimal low-
carbon economic dispatch for an industrial park with consideration of multi-
energy price incentives. Appl. Energy 262, 114276. doi:10.1016/j.apenergy.2019.
114276

Guo, W., Liu, P., and Shu, X. (2020). Optimal dispatching of electric-thermal
interconnected virtual power plant considering market trading mechanism. J. Clean.
Prod. 279 (54), 123446. doi:10.1016/j.jclepro.2020.123446

Huang, Y., and Zhang, Y. (2018). Energy use and carbon emissions efficiency study of
Chinese regions based on price factor. Pol. J. Environ. Stud. 27 (5), 2059–2069. doi:10.
15244/pjoes/78152

Huang, Y., Wang, Y., and Liu, N. (2022a). Low-carbon economic dispatch and
energy sharing method of multiple Integrated Energy Systems from the perspective
of System of Systems. Energy 244 (Part A), 122717. doi:10.1016/j.energy.2021.
122717

Huang, Y., Wang, Y., and Liu, N. (2022b). A two-stage energy management for heat-
electricity integrated energy system considering dynamic pricing of Stackelberg game
and operation strategy optimization. Energy 244, 122576. doi:10.1016/j.energy.2021.
122576

Kang, C., Zhou, T., Chen, Q., Xu, Q., Xia, Q., and Ji, Z. (2012). Carbon emission flow
in networks. Sci. Rep. 2, 479. doi:10.1038/srep00479

Li, B., Song, Y., and Hu, Z. (2013). Carbon flow tracing method for assessment of
demand side carbon emissions obligation. IEEE Trans.4 (4), 1100–1107. doi:10.1109/
tste.2013.2268642

Li, K., Mu, Y., Yang, F., Wang, H., and Zhang, C. (2023). A novel short-term multi-
energy load forecasting method for integrated energy system based on feature
separation-fusion technology and improved CNN. Appl. Energy 351, 121823. doi:10.
1016/j.apenergy.2023.121823

Liu, Y., and Niu, D. (2021). Coupling and coordination analysis of thermal power
carbon emission efficiency under the background of clean energy substitution.
Sustainability 13. doi:10.3390/su132313221

Liu, N., Wang, C., and Lei, J. (2016). Power energy sharing and Demand Response
model for cluster of PV prosumers under market environment. Automation Electr.
Power Syst. 44 (16), 49–56. doi:10.7500/AEPS20160120002

Liu, P., Ding, T., Zou, Z., and Yang, Y. (2019). Integrated demand response for a load
serving entity in multi-energy market considering network constraints. Appl. Energy
250, 512–529. doi:10.1016/j.apenergy.2019.05.003

Lu, R., Hong, S., and Zhang, X. (2018). A Dynamic pricing demand response
algorithm for smart grid: reinforcement learning approach. Appl. Energy 220,
220–230. doi:10.1016/j.apenergy.2018.03.072

Lu, T., Chen, X., Mcelroy, M. B., Nielsen, C. P., Wu, Q., and Ai, Q. (2021). A
reinforcement learning-based decision system for electricity pricing plan selection by
smart grid end users. IEEE Trans. Smart Grid 12 (3), 2176–2187. doi:10.1109/tsg.2020.
3027728

Moreira, A., Oliveira, S., and Pereira, J. (2010). Social welfare analysis of the iberian
electricity market accounting for carbon emission prices. Iet Generation Transm. and
Distribution 4 (2), 231–243. doi:10.1049/iet-gtd.2009.0105

Peters, G. P. (2008). From production-based to consumption-based national emission
inventories. Ecol. Econ. 65 (1), 13–23. doi:10.1016/j.ecolecon.2007.10.014

Shen, T. (2024). Spontaneous Formation of evolutionary game strategies for long-
term carbon emission reduction based on low-carbon trading mechanism.Mathematics
12, 12193109. doi:10.3390/math12193109

Su, J., Chiang, H., Zeng, Y., and Zhou, N. (2021). Toward complete characterization of
the steady-state security region for the electricity-gas integrated energy system. IEEE
Trans. Smart Grid 12 (4), 3004–3015. doi:10.1109/tsg.2021.3065501

Sun, Y., Kang, C., Xia, Q., Chen, Q., Zhang, N., and Cheng, Y. (2017). Analysis of
transmission expansion planning considering consumption-based carbon emission
accounting. Appl. Energy 193, 232–242. doi:10.1016/j.apenergy.2017.02.035

Wang, Y., Wang, Y., Huang, Y., Yang, J., Ma, Y., Yu, H., et al. (2019). Operation
optimization of regional integrated energy system based on the modeling of electricity-
thermal-natural gas network. Appl. Energy 251, 113410. doi:10.1016/j.apenergy.2019.
113410

Wang, Y., Qiu, J., Tao, Y., and Zhao, J. (2020a). Carbon-Oriented operational
planning in coupled electricity and emission trading markets. IEEE Trans. Power
Syst. 35 (4), 3145–3157. doi:10.1109/tpwrs.2020.2966663

Wang, Y., Qiu, J., Tao, Y., Zhang, X., and Wang, G. (2020b). Low-carbon oriented
optimal energy dispatch in coupled natural gas and electricity systems. Appl. Energy 280,
115948. doi:10.1016/j.apenergy.2020.115948

Wang, H., Li, K., Zhang, C., and Ma, X. (2020c). Distributed coordinative optimal
operation of community integrated energy system based on Stackelberg game. Proc.
CSEE 40 (17), 5435–5445. doi:10.13334/j.0258-8013.pcsee.200141

Wang, X., Wang, S., Zhang, Q., Shaomin, W., and Liwei, F. (2021). A multi-energy
load prediction model based on deep multi-task learning and ensemble approach for
regional integrated energy systems. Int. J. Electr. Power and Energy Syst. 126 (9), 106583.
doi:10.1016/j.ijepes.2020.106583

Wang, Y., and Hu, J. (2023). Two-stage energy management method of integrated
energy system considering pre-transaction behavior of energy service provider and
users. Energy 271, 127065. doi:10.1016/j.energy.2023.127065

Wei, X., Zhang, X., Sun, Y., and Qiu, J. (2021). Carbon emission flow oriented optimal
planning of electricity-hydrogen integrated energy system with hydrogen vehicles. IEEE
Trans. Industry Appl. (99), 1. doi:10.1109/TIA.2021.3095246

Xiang, Y., Wu, G., Shen, X., Ma, Y., Gou, J., Xu, W., et al. (2021). Low-carbon
economic dispatch of electricity-gas systems. Energy 226, 120267. doi:10.1016/j.energy.
2021.120267

Yao, F., Dong, Z., Meng, K., Xu, Z., Iu, H. H. C., and Wong, K. P. (2012). Quantum-
inspired particle swarm optimization for power system operations considering wind
power uncertainty and carbon tax in Australia. IEEE Trans. Industrial Inf. 8 (4),
880–888. doi:10.1109/tii.2012.2210431

Yuan, G., Gao, Y., and Ye, B. (2021). Optimal dispatching strategy and real-time
pricing for multi-regional integrated energy systems based on demand response. Renew.
Energy 179, 1424–1446. doi:10.1016/j.renene.2021.07.036

Zhang, H., Sun, W., Li, W., and Ma, G. (2022). A carbon flow tracing and carbon
accounting method for exploring CO2 emissions of the iron and steel industry: an
integrated material-energy-carbon hub. Appl. Energy 309, 118485. doi:10.1016/j.
apenergy.2021.118485

Zhong, S., Wang, X., Zhao, J., Li, W., Li, H., Wang, Y., et al. (2021). Deep
reinforcement learning framework for dynamic pricing demand response of
regenerative electric heating. Appl. Energy 288, 116623. doi:10.1016/j.apenergy.2021.
116623

Zhou, T., Kang, C., Xu, G., and Chen, Q. (2012). Preliminary theoretical investigation
on power system carbon emission flow. Automation Electr. Power Syst. 36 (07),
38–43+85. doi:10.3969/j.issn.1000-1026.2012.07.008

Frontiers in Energy Research frontiersin.org15

Zhang et al. 10.3389/fenrg.2024.1522514

https://doi.org/10.1016/j.ijepes.2020.106743
https://doi.org/10.1016/j.ijepes.2022.108182
https://doi.org/10.16081/j.epae.202011030
https://doi.org/10.16081/j.epae.202011030
https://doi.org/10.13335/j.1000-3673.pst.2020.0100a
https://doi.org/10.1016/j.apenergy.2019.114276
https://doi.org/10.1016/j.apenergy.2019.114276
https://doi.org/10.1016/j.jclepro.2020.123446
https://doi.org/10.15244/pjoes/78152
https://doi.org/10.15244/pjoes/78152
https://doi.org/10.1016/j.energy.2021.122717
https://doi.org/10.1016/j.energy.2021.122717
https://doi.org/10.1016/j.energy.2021.122576
https://doi.org/10.1016/j.energy.2021.122576
https://doi.org/10.1038/srep00479
https://doi.org/10.1109/tste.2013.2268642
https://doi.org/10.1109/tste.2013.2268642
https://doi.org/10.1016/j.apenergy.2023.121823
https://doi.org/10.1016/j.apenergy.2023.121823
https://doi.org/10.3390/su132313221
https://doi.org/10.7500/AEPS20160120002
https://doi.org/10.1016/j.apenergy.2019.05.003
https://doi.org/10.1016/j.apenergy.2018.03.072
https://doi.org/10.1109/tsg.2020.3027728
https://doi.org/10.1109/tsg.2020.3027728
https://doi.org/10.1049/iet-gtd.2009.0105
https://doi.org/10.1016/j.ecolecon.2007.10.014
https://doi.org/10.3390/math12193109
https://doi.org/10.1109/tsg.2021.3065501
https://doi.org/10.1016/j.apenergy.2017.02.035
https://doi.org/10.1016/j.apenergy.2019.113410
https://doi.org/10.1016/j.apenergy.2019.113410
https://doi.org/10.1109/tpwrs.2020.2966663
https://doi.org/10.1016/j.apenergy.2020.115948
https://doi.org/10.13334/j.0258-8013.pcsee.200141
https://doi.org/10.1016/j.ijepes.2020.106583
https://doi.org/10.1016/j.energy.2023.127065
https://doi.org/10.1109/TIA.2021.3095246
https://doi.org/10.1016/j.energy.2021.120267
https://doi.org/10.1016/j.energy.2021.120267
https://doi.org/10.1109/tii.2012.2210431
https://doi.org/10.1016/j.renene.2021.07.036
https://doi.org/10.1016/j.apenergy.2021.118485
https://doi.org/10.1016/j.apenergy.2021.118485
https://doi.org/10.1016/j.apenergy.2021.116623
https://doi.org/10.1016/j.apenergy.2021.116623
https://doi.org/10.3969/j.issn.1000-1026.2012.07.008
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2024.1522514


Nomenclature
IES Integrated Energy System

MDP Markov decision processes

ESP Energy Service Provider

CEI Carbon Emission Intensity

CHP Combined Heat and Power

EMS Energy Management System

PEMS Prosumer Energy Management System

ρEC+grid,t The CEI index of the power grid when selling electricity, kg/kWh

ρEC−grid,t The CEI index of the power grid when buying electricity from the IES,
kg/kWh

ρECIES,t The electrical CEI index of the IES, kg/kWh

ρTCIES,t The thermal NCI index of the IES, kg/kWh

ρECpro,t The electrical CEI index of prosumers, kg/kWh

ρTCpro,t The thermal CEI index of prosumers, kg/kWh

ρEcoal The CEI index of the coal power units, kg/kWh

ρecCHP The CEI index of the CHP, kg/kWh

ρgas The CEI index of the natural gas, kg/m3

P−
egrid,t The power of the CHP-ESP selling electricity to the power grid, kW

P+
egrid,t The power of the CHP-ESP buying electricity from the power grid, kW

Pchp
t The power of the CHP, kW

ηchp Operational efficiency of the CHP

∂ The thermal-electricity ratio of the CHP

LHVgas Low calorific value of the natural gas

Pnet,eload
t The net electrical loads of prosumers, kW

Ppv
t PV output power of prosumers, kW

Ptload
t The thermal loads of prosumers, kW

pECsell,t The electricity-carbon integrated selling price of the power grid,
CNY/kWh

pEsell,t The electricity selling price without the carbon price of the power grid,
CNY/kWh

pECpro,t The CHP-ESP energy-carbon integrated selling price of the electricity,
CNY/kWh

pTCpro,t The CHP-ESP energy-carbon integrated selling price of the thermal,
CNY/kWh

pEpro,t The CHP-ESP energy selling price without the carbon price of the
electricity, CNY/kWh

pTpro,t The CHP-ESP energy selling price without the carbon price of the thermal,
CNY/kWh

k The carbon price, CNY/kg

Padj,eload
n,t Adjustable electrical loads of prosumer n, kW

Eadj,eload
n,t The upper limit of adjustable electrical loads, kW

ξEt Electric elasticity coefficient of prosumers

Peload′
n,t The original electrical loads of prosumers n, kW

Padj,tload
n,t Adjustable thermal loads of prosumer n, kW

ξTt Thermal elasticity coefficient of prosumers

Eadj,tload
n,t The upper limit of adjustable electrical loads, kW

Ptload
n,t Thermal loads of prosumer n after adjustment, kW

Ptload′
n,t Original thermal loads of prosumer n, kW

Fpro
n,t The objective function of prosumer n

UE
n,t Utility loss for electric load of prosumer n

UT
n,t Utility loss for thermal load of prosumer n

λEn , μ
E
n The loss coefficient of electric load utility for prosumer n

λTn , μ
T
n The loss coefficient of thermal load utility for prosumer n

Fesp
t The objective function of the CHP-ESP

pEFit,t The feed-in tariff of the power grid without the carbon price, CNY/kWh

pECFit,t The feed-in tariff of the power grid with the carbon price, CNY/kWh

pf uel The natural gas price, CNY/m3
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