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The rapid and effective islanding detection and disconnection of the microgrid
are significant for preventing equipment from failure and safeguarding
humanity’s safety. To address the drawbacks of active methods and passive
methods, an intelligent islanding detection strategy based on parameter-
optimized variational mode decomposition (VMD) and deep learning was
developed. Firstly, the proposed adaptive variational mode decomposition
(AVMD) strategy improves the optimal mode number and penalty term of
VMD by utilizing the relative entropy between the original signal and the
intrinsic mode functions (IMFs). Then, the Teager energy operator (TEO) further
extracts sequence features to track the instantaneous energy of the IMFs. Finally,
the AVMD-TEO-MPE -based features are used to train the one-dimensional
convolutional neural network (1D-CNN) as a deep learning classifier. Simulation
results indicate that the proposed method can effectively differentiate the
islanding state under different working conditions with a testing accuracy
level of 100% within a maximal detection time of 46.402 ms. It is also noise
resistant to a degree. Comparative analysis confirms that the proposed method
outperforms the existing method in distinguishing between islanding and non-
islanding events.

KEYWORDS

islanding detection, relative entropy, variational mode decomposition, teager energy
operator, multi-scale permutation entropy, convolutional neural network

1 Introduction

With the growing demand for global energy and the emissions of traditional fossil fuels,
more and more countries have contributed to tackling climate change and energy demand
by reducing their carbon footprints and moving towards carbon neutrality (Wang et al.,
2022). China released a new development philosophy. The document includes creating
a green, low-carbon, and circular economy, improving energy efficiency, increasing the
share of non-fossil energy consumption, lowering carbon dioxide emissions, adjusting
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FIGURE 1
Islanding scenario.

energy structures, and bolstering the development of new energy.
Renewable energy sources such as solar and wind are being
widely utilized to achieve the goals of peaking carbon dioxide
emissions by 2023 and achieving carbon neutrality by 2060.
Microgrids consisting of renewable energy power plants, energy
storage and loads are widely implemented in China’s large-scale
power systems due to their flexible power supply (Liu et al.,
2024a). Compared to traditional grid interconnections, microgrids
improve operating efficiency while reducing the additional costs
and losses associated with new transmission lines. The power
system is gradually transitioning to a low-carbon model. However,
the rapid development of renewable energy sources presents
significant challenges to the safety and stability of microgrids.
Specifically, the chaotic, stochastic and intermittent nature of
renewable energy sources like solar and wind pose technical
challenges for control and protection, posing potential threats
to power system reliability (Aljafari et al., 2024). Due to the
characteristics of distributed energy described above, when the
power system stops supplying power due to lines or tripping, the
distributed power generation cannot detect its own island state in
time and continues to transmit power to the grid, turning into an
electrical island system, thus forming an unplanned island. Figure 1
depicts a typical example of the islanding scenario, including a
synchronous generator and inverter-based distribution generation
such as wind turbines and photovoltaic units, and tidal power
generation. Once the CB1/CB2/CB3/CB4/CB5 is opened, the
islanding scenario is formed.

The unintentional islanding effect is when a grid fails due to
overhaul or accidental failure and the distributed power generation
system entering the grid cannot be detected and separated from
the grid in time, resulting in a phenomenon where the load supply
of an independent, integrated distributed power system (Yan et al.,
2022).The undetected effect complicates power restoration, reduces
power quality, threatens other distributed generators, and even
poses a threat to humanity. During power system maintenance or
outages, the islanding effect may cause the distributed power plant
to continue supplying power, posing safety risks to maintenance
personnel. When the power system is restored, the islanding
condition may result in significant voltage and phase differences
between the distributed power plant and the grid, potentially causing

a large inrush current that could damage equipment. So, islanding
detection is a non-trivial task and faces unprecedented challenges.
The current GB/T33593-2017 and IEEE standards require that
the distributed generators be separated from the grid within 2s,
once the islanding scenario is formed. All islanding detection
techniques strive toward swift detection with a minimal non-
detection zone (NDZ) and zero spurious detections (Sankar and
Sunitha, 2021). Therefore, studying an islanding detection method
with high accuracy, short detection time, and low application cost
for the microgrid is important.

Islanding detection methods can be categorized into local,
remote, and signal processing (Raza et al., 2015).

As depicted in Figure 2. The local method is further classified as
passive and active.The activemethod injects deliberate disturbances
to influence the output frequency of current or voltage andmonitors
the islanding state. Some of the common active methods are
active frequency drift (AFD) (Liu et al., 2021), Sandia voltage
shift (SCS) (Erick et al., 2020), impedance measurement (IM)
(Jia et al., 2019), and sliding mode frequency shift (SMFS) (Zhang
and Wai, 2022). A small NDZ, fast detection, and low error
detection rate are advantages of the active method. However,
external disturbance injection would cause both the complexity of
the system, power quality, and noise problems. The passive method
is based on system parameters at the point of common coupling
(PCC). It detects the islanding state by comparing deviations
from specified fault thresholds. Some examples of the passive
method include the over/under frequency and voltage (O/U F&V)
(Zeineldin and Kirtley, 2009), the rate of change of frequency/power
(ROCOF/P) (Alam et al., 2019), and total harmonic detection
(THD) (Wang et al., 2020). The issue of the active method affecting
microgrid power quality is eliminated. However, it has a large
NDZ in a power mismatch situation. The remote method is the
communication link between the utility grid and the distributed
generation system. The communication-based methods used in
literature are the power line communication (PLC) (Miller et al.,
2021), transfer trip scheme (TTS) (Mahela et al., 2021), and
supervisory control and data acquisition (SCADA) (Zhaoxia et al.,
2017). Compared with the local method, it achieves the purpose of a
small NDZ and a rapid detection time. However, it is impractical
for application because of the high-cost sensors, computational
burden, and complexity. Signal processing can extract the input
signal’s hidden features, lowering the NDZ of the passive method.
However, the threshold varies significantly depending on the
working conditions, making it difficult to determine the islanding
state, and signal processing may not be able to eliminate the
NDZ as the distributed power generation system becomes more
complex. Various signal processing methods have been established
for feature extraction. Some of these include Fourier transform
(FT) (Baloch and Muhammad, 2021), wavelet transform (WT)
(Allan and Morsi, 2021), S-transform (ST) (Papia et al., 2022), TT-
transform (TTT) (Mohanty et al., 2012), Hilbert Huang transform
(HHT) (Huang et al., 1971), empirical mode decomposition
(EMD) (Khosravi et al., 2021) and variational mode decomposition
(VMD) methods (Admasie et al., 2019). However, EMD is an
algorithm in the feature extraction stage with modal aliasing, which
leads to incomplete and inaccurate feature representation, which in
turn affects the detection accuracy. Although the traditional method
can basically and effectively carry out island detection, there are still
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FIGURE 2
Classification of islanding detection methods.

some problems, such as long detection time, the large amount of
calculation, and insufficient detection accuracy and accuracy.

With the rapid development ofmachine learning (ML) and deep
learning (DL) technology, intelligent islanding detection methods
based on signal processing, ML, and DL have emerged as a new
research avenue in light of the drawbacks of the above traditional
detection methods (Dutta et al., 2018). The first step in intelligent
islanding detection is to extract important features of the three-
phase signal using signal preprocessing. In the second step, the
signal preprocessing-based features are fed into ML and DL, which
are then trained as classifiers. Some ML and DL schemes are
most commonly presented in the literature which are based on
support vector machines (SVM) (Bitaraf et al., 2012), decision
tree (DT) (Lidula and Rajapakse, 2012), random forest (RF)
(Dutta et al., 2021), AdaBoost (Baloch and Muhammad, 2021),
K-nearest neighbor (KNN) (Patnaik et al., 2021), artificial neural
network (ANN) (Kumar, 2021), perceptron neural network (PNN)
(Maresch et al., 2021), deep neural network (DNN) (Kong et al.,
2018), convolutional neural network (CNN) (Reddy et al., 2021)
(Aljafari et al., 2024) (Xu et al., 2024), and long short-term memory
(LSTM) (Xu et al., 2024). For quick and accurate islanding detection,
in (Kim et al., 2020), two schemes are proposed of which one is
based on discrete WT with ANN, and another one is based on
ST with ANN. Those methods are more reliable and accurate. The
authors used VMD and subspace KNN (SSKNN) to detect islanding
events in (Patnaik et al., 2021). However, the dilution effect of
different distributed power generation should be considered. The
LSTM network has been used for islanding detection in (Özcanlı
and Mustafa, 2022), (Bukhari et al., 2021), (Abdelsalam A. A. et al.,
2020), which is used as the feature extractor and classifier, resulting

in an accuracy detection that suffers from the LSTM structure.
In (Admasie et al., 2020), the gray wolf optimized ANN model
is trained as a deep learning classifier to classify islanding states
by inputting the HHT-based features. However, the drawbacks
are the effects of noise resistance (Özcanlı and Mustafa, 2022).
used long and short-term neural networks as feature extractors
and classifiers to extract PCC point voltage and current harmonic
distortion features, and to train and detect them, this method has
higher accuracy and lower loss, but it does not take into account
that when islanding occurs at the instant of the converter output
active and reactive power changes are very small, and the changes
in the PCC point voltage and frequency in the islanding mode are
very small, which results in difficulties in detecting the islanding
state (Abdelsalam AA. et al., 2020). analyzes the symmetrical
components in the second harmonic of voltage and current signals
as inputs to a long-term and short term neural network to identify
islanding events. Table 1 shows a detailed comparative analysis of the
literature in recent years and strongly related literature in intelligent
islanding detection. Among deep learning algorithms, 1D-CNN
is widely used in power systems due to its excellent detection
accuracy (Reddy et al., 2021). carries out island detection using
1D-CNN method, and the experimental results show that it is
able to effectively discriminate between islanded and non-islanded
states, which verifies the feasibility of 1D-CNN in the problem
of island detection (Aljafari et al., 2024). uses 1D-CNN deep
learning technique in PV grid-connected system fault detection, and
combines it with IoT technology, and results show that 1D-CNN is
able to effectively fault detection accuracy (Xu et al., 2024). improves
1D-CNN for acoustic processing scenarios and effectively improves
the accuracy of detection by introducing an attention mechanism.
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These studies have shown that 1D-CNN is technically superior in
many aspects of power system condition detection and sound signal
processing, with advantage of wide applicability and high accuracy.

Based on these previous studies till 2021 in islanding detection,
this paper introduces the concept of adaptive variational mode
decomposition (AVMD) and presents a novel intelligent islanding
detection based on AVMD, Teager energy operator (TEO),
multi-scale permutation entropy (MPE), and one-dimensional
convolutional neural network (1D-CNN). A binary classification
model is established for intelligent recognition of islanding and
non-islanding states. This model introduces relative entropy to
optimize VMD parameters and represents the features of three-
phase voltage and inverter output current using VMD. Meanwhile,
to accurately track the instantaneous fluctuation of intrinsic mode
functions (IMFs), the TEO is introduced to highlight the features of
islanding, and the MPE reflects the complexity of islanding features
at different scales. Finally, the AVMD-TEO-MPE-based features are
used as the input of the 1D-CNNnetwork to classify islanding events
and non-islanding events. The algorithm’s performance is verified
by indicators such as noise immunity, detection time, accuracy,
precision, recall, and F1-score. The suggested intelligent islanding
detection approach can effectively classify the islanding state under
various working settings, and it has certain noise robustness,
according to the simulation results. It solves the problems of long
detection time and insufficient accuracy of traditional islanding
detection methods.

The main contributions of this research work can be outlined
as follows.

1. A parameter-optimized VMD algorithm, namely, AVMD, is
proposed. More accurate islanding feature information can be
obtained by adopting the relative entropy to obtain the optimal
parameters of VMD.

2. A new islanding feature extraction based on AVMD-
TEO-MPE is proposed, which can effectively extract the
features of islanding and grid disturbance. By comparison,
the method outperforms the WT, EMD, and VMD
methods in feature extraction. The comparative results are
discussed in Section 5.3.

3. The 1D-CNN trained as a deep learning classifier by inputting
the AVMD-TEO-MPE-based features is first implemented to
learn the features and classify islanding and grid disturbance,
which is needless of a threshold value. The 1D-CNN method
improves the classification effect comparedwith LSTM,BP, and
SVM.The comparative results are discussed in Section 5.3.

4. The inverter control strategy-based model is simulated in
MATLAB/SIMULINK. The proposed method can also be
implemented on synchronous-based microgrids. Five case
studies are presented to assess the performance of the
proposed methodology in detecting the islanding. Such case
studies include tripping a circuit breaker at PCC with the
loaded quality factor quality factors of 1 and 2.5, all types
of short-circuit faults at PCC, local load mutation, and
capacitor mutation.

5. The proposedmethod can effectively differentiate the islanding
state with a training accuracy level of 99.8% and a testing
accuracy level of 100% within a maximal detection time
of 46.402 m.

6. Compared to the active method, the proposed method does
not disturb the quality of the power provided of the microgrid.
The problem whereby the remote method needs high-cost
sensors, computational burden, and complexity is avoided.

The structure of the study is as follows. Section 2 introduces
the technology of islanding feature extraction of the microgrid; the
basic theory of the AVMD is discussed in Section 2.1; the analysis
of the islanding features of the AVMD-TEO-MPE is discussed in
Sections 2.2, 2.3. Section 3 provides the details of the methodology
presented in the paper. In Section 4, the simulation process used
in the proposed method is presented, and the test system and data
generation are discussed in Section 4.1. Section 4.2 introduces the
experiment of 1D-CNN network parameters. Section 5 illustrates
the performance analysis of the methodology. Finally, Section 6
summarizes the theory proposed in this paper.

2 Technology of islanding feature
extraction

2.1 AVMD

2.1.1 Preprocessing of modal parameters
Given the different types of faults in the system, all three-

phase signals should be considered when analyzing the islanding
faults of the microgrid. Meanwhile, Equation 1 calculates the modal
component of the voltage signal at PCC, and the converter outputs
the current signal to reduce the analysis time of each phase and the
computer memory (Ghanbari and Farjah, 2014).

{
{
{

Vm = q1Va + q2Vb + q3Vc

Im = p1Ia + p2Ib + p3Ic
(1)

WhereVm and Im aremodal components of voltage and current,
respectively. q and p are modal coefficients. The subscripts a, b, and
c refer to the a-phase, b-phase, and c-phase, respectively.

2.1.2 VMD
VMD proposed by Dragomiretskiy and Zosso is a signal

processing technique in 2014, which consists of Wiener filtering,
Hilbert transform, and frequency mixing as its fundamental
components (Achlerkar et al., 2018).TheVMDmathematical model
for islanding detection in this paper of the microgrid is as follows.
VMD decomposes the non-stationary input signal voltage Vm or
modal current Im into a series of IMFs with finite bandwidth and
time-varying amplitude and frequency according to Equation 2

uk(t) = ∑
k
Ak(t)cos(ϕk(t)) (2)

Where uk(t) is the modal function, Ak(t) is the instantaneous
amplitude, ϕk(t) is the phase. For an input signal f in this paper
is the voltage at PCC Vm or inverter output current Im, its
decomposition process is a constrained variational problem, which
can be expressed as Equation 3

{{{
{{{
{

min
{uk,wk}
{∑

k
‖∂t[(δ(t) +

j
πt
)∗ uk(t)]e−jwkt‖

2

2
}

s.t ∑
k
uk = f

(3)
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Where δ(t) is the Dirac distribution, ‖·‖22 is square of two norms,
uk = {u1,u2 …uk} is the set of all modes, wk = {w1,w2 …wk}
is center frequencies of all modes, k is mode number, ∂t and ∗

denote gradient operation and convolution, respectively.Thepenalty
term a and Lagrangian multipliers λ are introduced to solve the
constraint problem, which converts the constraint problem to the
corresponding unconstrained problem as shown in Equation 4.

L(uk,wk,λ) = a{∑
k
‖∂t[(δ(t) +

j
πt
)∗ uk(t)]e−jwkt‖

2

2
}

+‖f−∑
k
uk‖

2

2
+⟨λ, f−∑

k
uk⟩ (4)

To address the saddle point of the augmented Lagrangian
function in Equation 4, the alternate directionmethod ofmultipliers
is introduced to update uk, wk, and λ, as shown in Equations 5–7.

un+1k =
̂f(w) −∑

i<w
ûn+1i (w) −∑i>w

ûni + λ̂(w)/2

1+ 2a(w−wk)2
(5)

wn+1
k =
∫
∞

0
w|ûn+1k (w)|

2dw

∫
∞

0
|ûn+1k (w)|

2dw
(6)

λ̂n+1(w) = λ̂n(w) + τ(û(w) −∑
k
ûn+1k (w)) (7)

Where n is the number of iterations and is the noise tolerance.
Equations 5–7 are continued until the convergence of Equation 8.

∑
k

‖ûn+1k − û
n
k‖

2
2

‖ûnk‖
2 < ε (8)

Where ε > 0 is the tolerance of the convergence criterion.

2.1.3 VMD parameters optimization based on
relative entropy

VMD algorithm avoids EMD limits of sensitivity to noise and
sampling frequency. However, the mode number k and the penalty
term amust be manually set, failing to match the actual parameters.
When the preset parameters exceed the real parameters, over-
decomposition occurs and new modes are generated. When the
preset parameters are smaller than the actual parameters, important
modes are not decomposed completely, resulting in the loss of
important information. Due to the limitation of islanding detection
time, a parameter optimization method with simple thinking,
short time, and easy code writing is needed. VMD parameters
optimization based on relative entropy is proposed in this work.
Relative entropy, also known as Kullback-Leibler divergence, is a
metric that expresses the dissimilarity of two sets of probability
distributions (Yin et al., 2021). The greater the relative entropy, the
greater the difference between the two sets of data distributions.
The relative entropy between the original signal and each IMF is
calculated by Equation 9, and the mode number and penalty term
corresponding to the minimum relative entropy are determined to
be the optimal parameters.

DKL(p‖q) =
N

∑
i=1

p(xi) log
p(xi)
q(xi)

(9)

FIGURE 3
Flowchart of parameter optimized VMD.

Where p(xi) is the modal components of voltage or current,
q(xi) is the corresponding modal component IMFs, N is the
distribution length, xi is a discrete random variable. Figure 3
illustrates a flowchart of VMD parameters optimization based on
relative entropy. The specific steps for mode number k and penalty
term a are as follows.

Step 1: Initialization parameters k = 0 and a = 0.
Step 2: Determine a = 100 and set the range of k as 2–6; the initial

value is 2.
Step 3: Perform VMD and calculate the relative entropy

of each IMF.
Step 4: If minimum relative entropy occurs, go to step 5, otherwise,

k = k+1 and go to step 3.
Step 5: Obtain the optimal k value. Meanwhile, set the range of a

as 100–2000.
Step 6: Calculate the relative entropy of each IMF.
Step 7: If minimum relative entropy occurs, go to step 8, otherwise,

a = a+100 and go to step 6.
Step 8: Obtain the optimal k and a.

2.2 TEO and its islanding feature

The TEO, a nonlinear difference operator, can quickly capture
the instantaneous change of a signal, and its simple and fast
calculation process is widely used in signal demodulation analysis
(Deng et al., 2021). The IMFs obtained by AVMD of voltage at
PCC and inverter output current are transformed by the TEO to
obtain the frequency and amplitude information of islanding fault
signals, and extract the instantaneous information of the signals.
Therefore, the introduction of TEO into AVMD can improve the
analysis performance of island fault.The process of the TEO to solve
a continuous signal is shown in Equations 10, 11.

ψ[s(t)] = ̇s2(t) − s(t)s ̈ (t) (10)

Frontiers in Energy Research 06 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1445522
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Xia et al. 10.3389/fenrg.2025.1445522

{{{{{
{{{{{
{

f(t) = 1
4π

arccos[1−
ψ[s(t+ 1) − s(t− 1)]

2ψ[s(t)]
]

a(t) =
2ψ[s(t)]

√ψ[s(t+ 1) − s(t− 1)]

(11)

Where ψ[s(t)] is the instantaneous energy of the IMFs, ̇s(t) and
s ̈ (t) are ds(t)

dt
, d2s(t)

dt2
, respectively. t is time, f (t) is the frequency of the

IMFs, and a(t) is the amplitude of the IMFs. For the discrete signal
s(n), the corresponding TEO expression is shown in Equation 12.

ψ[s(n)] = s2(n) − s(n+ 1)s(n− 1) (12)

To validate the performance of the proposed algorithm in feature
extraction under different working conditions, taking the voltage as
an example to illustrate the feature extraction process of AVMD-
TEO.The loaded quality factor Qf is used to measure the resonance
capability of the local load, the greater the load quality factor, the
stronger the resonance capability of the local load, and can be
used to assess the reliability and robustness of detection methods
(Panigrahi et al., 2021), it is defined as Equation 13.

Q f = R√
C
L

(13)

Where Qf is the loaded quality factor, R, C, and L are resistance,
capacitance, and inductance. In the load quality factor Qf = 1,
the voltage at PCC does not fluctuate significantly. The resonance
capability of the local load is exactly equal to the system frequency
50Hz, and the power required by the local load is provided
totally by the inverter. In the circumstances, neither the O/U F&V
protection methods can effectively detect islanding events. The
feature waveforms with the load quality factor Qf = 1 are shown in
Figure 4when a circuit breaker at PCC suddenly trips at 0.8s.The test
system is difficult to detect islanding events under the most severe
conditions. Figure 4a displays the voltage curves at PCC, IMF1,
IMF2, and IMF3. The modal function extracted by AVMD does
not fluctuate significantly at 0.8s, which cannot accurately represent
the islanding feature. To detect the transient impact of the modal
function, the energy conversion is carried out at t = 0.8s, Qf = 1,
at this time, the active power and reactive power are equal, and
the most serious islanding event occurs, which can maximize the
detection of its effectiveness.The energy sequence is transformed by
TEO (as shown in Figure 4b) and obviously distorted at 0.8s.

Meanwhile, Figure 5 shows that under the loaded quality factor
Qf of 2.5, a circuit breaker at PCC suddenly trips at 0.8s. As
shown in Figure 5a, the voltage at PCC changes significantly when
the circuit breaker is disconnected at 0.8s, showing a three-phase
unbalanced state. Figure 5 shows that the AVMD-TEO can be well-
represented by islanding features.

As shown in Figure 6, a new parallel RLC load is added at
0.8s, its parameters are R = 0.64, C = 4.97mF, and L = 2.04 mH.
Since the inverter is working in a normal state, Figure 6 displays
that the load mutation’s features extracted by AVMD-TEO do not
fluctuate significantly. Figure 7 also shows feature waveformswhen a
PCC three-phase short circuit. The voltage shows an obvious three-
phase unbalanced state. Figure 7a shows that the modal functions
IMF2 and IMF3 decomposed by AVMD have a sudden fluctuation
at 0.8s. In order to highlight the fluctuation of IMF1, the energy
sequence is transformed by TEO, which can effectively represent the

FIGURE 4
Feature waveforms with load quality factor Qf = 1: (a) The voltage at
PCC and its IMFs; (b) TEO of IMF1.

islanding features, as shown in Figure 7b. Figure 8 shows the feature
waveforms with capacitor mutation.

2.3 MPE and its islanding feature

The MPE calculates the permutation entropy at different scales
from the energy sequences derived from TEO, which aims to
reflect the complexity of islanding features at different scales and
facilitate the extraction of islanding feature vectors. Firstly, the IMFs
components are coarse-grained to obtain multiple coarse-grained
sequences yj

(s), The multiple coarse-grained sequences yj
(s) are

transformed by increasing the length of IMFs, and the computation
process is shown in Equation 14.

y(s)j =
1
s

js

∑
i=(j−1)s+1

xi, j = 1,2⋯,[N/s] (14)

Where s is the scale factor, N is the length of IMFs
[N/s] denotes the round-off number. Y l

(s) was obtained by m-
dimensional reconstruction of coarse-grained sequence yj(s), which
is calculated as Equation 15.

Y(s)l = {y
(s)
l ,y
(s)
l+τ,⋯,y

(s)
l+(m−1)t} (15)

Where t is time-lag, l is reconstruction component l =
1,2, …, N-(m-1)t. Then the reconstructed components l are

Frontiers in Energy Research 07 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1445522
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Xia et al. 10.3389/fenrg.2025.1445522

FIGURE 5
Feature waveforms with load quality factor Qf = 2.5: (a) The voltage at
PCC and its IMFs; (b) TEO of IMF1.

FIGURE 6
Feature waveforms when local load suddenly changes: (a) The voltage
at PCC and its IMFs; (b) TEO of IMF1.

FIGURE 7
Feature waveforms when PCC fault conditions: (a) The voltage at PCC
and its IMFs; (b) TEO of IMF1.

FIGURE 8
Feature waveforms when capacitor mutation: (a) The voltage at PCC
and its IMFs; (b) TEO of IMF1.
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arranged in ascending order to obtain the sign sequence L(r) =
(j1,j2, …,jm), where r = 1,2, …,k, and k ≤ m! Calculating the
probability Pr for each symbol, and the permutation entropy of each

coarse-grained sequence is calculated, and MPE = −
R
∑
r=1

Pr ln Pr is
obtained. The islanding features are transformed by normalization,
as shown in Equation 16.

0 ≤MPE = −
R

∑
r=1

Pr ln Pr/ ln (m!) ≤ 1 (16)

According to the MPE definition, four important parameters
need to be set in this paper: an embedding dimensionm, scale factor
s, time-lag t, and length of IMFs N. In this paper, the length of IMFs
N is equal to 9,000. As shown in Figure 9a, when the scale factor s
is 12, the MPE value tends to be stable, so s is selected as 12. The
time-lag t has little influence on the calculation of time series and
is generally set to 1. When N = 9,000, s = 12, t = 1, the influences
of different embedding dimensions on MPE values are analyzed. It
can be seen from Figure 9b that if the m value is too large and the
MPE value is too small, the mutability of IMFs cannot be accurately
represented. On the contrary, the islanding information is close to
randomization. Therefore, we select N = 9,000, s = 12, t = 1, and m
= 6 in this paper to analyze the MPE of IMFs, as shown in Figure 9c.
The results show that AVMD-MPE can effectively characterize the
characteristics of islanding information.

3 Proposed intelligent research
methodology based on deep learning

3.1 1D-CNN

The features extracted by the AVMD-TEO-MPE change
significantly under different working conditions, which are also
affected by factors such as voltage fluctuations and harmonics. It
is difficult to detect the islanding status by setting the threshold.
Therefore, a strong pattern recognition algorithm is needed.
Convolutional Neural Network has been successfully applied in the
fields of natural language processing (Alawad et al., 2021), speech
recognition (Han et al., 2021), and image processing (Tian et al.,
2021), and has advantages in many engineering applications. The
input of a 1D-CNN is a one-dimensional vector, its convolution
kernel is also a one-dimensional structure, and each convolutional
layer and pooling layer outputs a one-dimensional vector. A typical
1D-CNN generally includes an input, convolutional, pooling, fully
connected, and output layer (Wang et al., 2021), as shown in
Figure 10. Meanwhile, some techniques are introduced into 1D-
CNN, such as batch normalization, dropout, etc. These techniques
help to increase the algorithm’s learning performance and operating
efficiency.

(1) The convolutional layer: the convolution kernel convolves the
input signal to extract the features of the local area and uses the
nonlinear activation function to reconstruct the output feature
in the convolutional layer.The output of each layer is the result
of the convolution of multiple input features. The advantage of
the convolution kernel is that it can obtain the characteristics
of rotation invariance, and its mathematical expressions are as
shown in Equations 17, 18.

yl+1i (j) = K
l
i ∗ x

l(j) + bli (17)

al+1i (j) = f(y
l+1
i (j)) =

exp (x) − exp (−x)
exp (x) + exp (−x)

(18)

Where xl(j) designates the jth local region at layer l. ∗ is a
convolution operation. yil+1(j) designates jth feature map of xl(j). K i

l

and bi
l designate the weights of the ith convolution kernel at layer

l and the bias of the ith convolution kernel at layer l, respectively.
In order to enhance the nonlinear ability of the input signal, the
convolutional layer combined with the back propagation learning
method adjusts the parameters to speed up the convergence.
Activation function after the convolutional layer is added. As shown
in Equation 18, f ( ·) is the tanh activation function.

(2) The pooling layer: effectively reducing the parameters of the
neural network and preventing over-fitting are the purposes
of the pooling layer. The max-pooling commonly used can
halve the sequence length. The max-pooling formula is
represented in Equation 19.

Pl+1i (j) = max
(j−1)W+1≤t≤jW

{qli(t)} (19)

Where qil(t) denotes the value of the tth output of a neuron in
the ith feature at layer l.W denotes the width of the pooling layer.

(3) The fully connected layer: the fully connected layer is
composed of multiple hidden layers, and each neuron is fully
linked to all the neurons in the previous layer, which can
further realize the abstraction and combination of global
features. Construct the output of the previous pooling layer
into a one-dimensional vector as the input of the fully
connected layer, described as Equation 20

zl+1(j) = f(
m

∑
i=1

n

∑
t=1

Wl
itja

l
i(t) + b

l
j) (20)

Where W itj
l and bi

l are the weights and bias of the fully
connected layer, respectively. ai

l(t) is the output of the previous layer
l.

(4) The output layer: the softmax classifier used for multi-
classification is used as the output layer. It is an
extension of logistic regression, and its expression is
represented in Equation 21.

Q(j) = softmax(zo(j)) = ez
o(j)

∑M
k=1

ez
o(k)

(21)

Where M is the number of categories, z0(j) is the logits of the
output of the jth neuron.

3.2 The proposed islanding detection
algorithm

A novel algorithm is proposed in this paper for the feature
extraction and classification of islanding detection. The AVMD-
TEO-MPE has the powerful capability of feature extraction in the
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FIGURE 9
The results of MPE: (a) the different scale factor s; (b) the different embedding dimensions m; (c) the different events.

power system. The feature extraction ensures that the extracted
features can accurately represent islanding information and improve
detection accuracy.The features extracted byAVMD-TEO-MPE can
be automatically processed by the alternating convolutional layer
and pooling layer in the 1D-CNN, and a fully connected layer
outputs feature learning results.

The proposed islanding detection algorithm includes the
establishment of a simulation model and the collection of the data
set, optimization of parameters, feature extraction, classification,
and identification. Figure 11 shows the entire structure of the
adaptive AVMD-TEO-MPE-based 1D-CNN islanding detection
algorithm. The details are listed as follows.

Step 1: Establishment of the simulation model and collection of
samples. Building amicrogridmodel inMATLAB/Simulink
based on a three-phase voltage source inverter. Meanwhile,
simulating the system operation under different islanding or
non-islanding conditions, such case studies include circuit
breaker tripping under different quality factors, all types of
short-circuit faults at PCC, local load change, and capacitor
mutation. Collecting voltage and current data.

Step 2: VMD parameters optimization based on relative entropy.
The range of mode number k is set to 2-6, and the
step size is 1. The inverter output current and voltage
at PCC are transformed by AVMD, generating a set of
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FIGURE 10
Structure of 1D-CNN.

IMFs. The relative entropy between the original signal and
each IMF was calculated, and the K corresponding to
the minimum relative entropy was determined to be the
optimal mode number. Meanwhile, the range of penalty
term a is set to 100–2000, and the step size is 100. The
relative entropy of each IMF is calculated accordingly, and
the one corresponding to the minimum relative entropy is
determined as the optimal penalty term.

Step 3: Feature extraction. According to Step 2, the optimal mode
number k is 3 and the penalty factor is 1,500. Selecting
IMF1, IMF2, IMF3. Meanwhile, the TEO further extracts
sequence features to track the instantaneous energy of the
IMF1, IMF2, and IMF3. MPE transforms the extracted
energy features.

Step 4: Classification and identification. The algorithm only
classifies and recognizes the islanding state and the
non-islanding state (“label 1″represents islanding, “label
0″represents non-islanding), and the number of output
layer nodes is set to 2. The energy feature extracted by
AVMD-TEO-MPE was randomly divided into training
and testing samples in the ratio of 7:3. The training
samples are used as the input of the 1D-CNN network.
After plenty of training and experimentation, attain the
optimal settings (Section 4.2). The test samples verify the
classification performance of the 1D-CNN network and
obtain the classification results. If the classification result
is an islanded state, then output the grid-connected circuit
breaker trip signal to interrupt the islanded state; if it is a
non-islanded state, then do not output the signal, and the
circuit breaker does not operate.

4 Simulation

4.1 Test system and data generation

The photovoltaic inverter control strategy-based model is
simulated on MATLAB/Simulink as drawn in Figure 12. As the
current source in the distributed power, the inverter adopts
single current loop control with a given output current, and the

modulation algorithm of the inverter adopts space vector pulse
width modulation technology (SVPWM), as shown in Figure 13.
A single synchronous reference frame software phase-locked loop
(SSRF-SPLL) outputs the sampled current frequency and voltage
vector. The output voltage and output power of the inverter-based
distributed power are 400V and 100kW, respectively. The inverter
output filter reactor is 0.3 mH, and the filter capacitor is 960 μF. The
grid line voltage is 270V.The details of the test system are as follows.

• Utility grid: Phase-to-phase voltage (Vrms) = 690V, Frequency
= 50Hz, Rated short circuit Mva = 3MVA.

• Transformer: Nominal power = 63Mva, Frequency = 50Hz, V1
Ph-Ph (Vrms) = 690V, V2 Ph-Ph (Vrms) = 270V.

• Three-phase parallel RLC branch: Resistance (R) = 0.64 Ω,
Capacitance (C) = 4.97 mF and Inductance (L) = 2.04 mH.

• R-L filter: R = 1× 10−3Ω, L = 0.15 mH.
• Universal Bridge: IGBT-Diode bridge, DC voltage = 400V.
• The inverter: Three-phase bridge topology, SVPWM
modulation algorithm.

• The test system can operate in island mode with a three-phase
circuit breaker opened or grid-connected mode with a three-
phase circuit breaker closed.

When the frequency of the parallel RLC load is exactly equal
to the grid voltage frequency, islanding event detection is the most
difficult. The parameters of the parallel RLC load are R = 0.64 Ω, C
= 4.97mF, and L = 2.04mH, its loaded quality factor is 1, frequency
is 50Hz, which verifies the performance of the algorithm under the
condition that the absorbed power of the load is equal to the output
power of the inverter.

The data sample is the basis of the training of the 1D-CNN,
so four case studies are presented to assess the performance of the
proposed methodology in detecting the islanding. Such case studies
include tripping a circuit breaker at PCC with the loaded quality
factors of 1 and 2.5, all types of short-circuit faults at PCC, local
load mutation, and capacitor mutation, as shown in Table 2. Based
on these previous different working conditions, the sampled data
within 9 m is selected for AVMD. The test system is implemented
in MATLAB/SIMULINK, and the proposed 1D-CNN network was
constructed in Python.

4.2 Experiment: 1D-CNN network
parameters

In order to truly unleash the classification and recognition
characteristics of the 1D-CNN network, the 1D-CNNwith different
network structures is tested to determine the best structure of
the network, as shown in Table 3. Taking serial number 1 as an
example, the 16s in the network structure 16s-2c-32s-2c means
that the first convolutional layer has 16 convolution kernels, and 2c
means that the size of the first pooling layer is 2. The convolution
kernel 10–10 indicates the size of the first and second convolution
layer convolution kernels. The size of variation of the network and
the number of input samples are the learning rate and batch size,
respectively.

Setting the convolution kernel as a single variable, and found
that when the convolution kernel is smaller, the accuracy is higher
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FIGURE 11
The architecture of the proposed islanding detection algorithm.

FIGURE 12
Simulink diagram of test system considered in this study.

compared with serial numbers 1–3. Setting the learning rate to
a single variable found that the lower the learning rate, the
lower the accuracy rate. Comparing serial numbers 7–15 shows
that the network structure has a greater impact on classification

and recognition. Only through a large number of experiments
and training can the appropriate experimental parameters be
determined, so that the classification and recognition characteristics
of the 1D-CNN network can be fully utilized. Meanwhile, Table 1
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FIGURE 13
Simulink diagram of the control.

TABLE 2 The type of data.

Event Description Number of samples

Islanding
Tripping a circuit breaker at PCC with Qf = 1 2000

Tripping a circuit breaker at PCC with Qf = 2.5 2000

Fault

LLLG fault 1,000

LLG fault 1,000

LG fault 1,000

Local load mutation Reducing the load 1,000

Capacitor mutation Reducing the capacitance 1,000

Total 9,000

shows that serial numbers 5 and 12 have equivalent network
structures, and their experimental test accuracy reaches 100%. Due
to the short test time of serial number 5, serial number 5 is selected
for this experiment’s 1D-CNN network structure parameters, and
the specific parameters are shown in Table 4.

The AVMD-TEO-MPE-based features are input into the
selected 1D-CNN network for islanding detection. Figure 14
shows the accuracy and loss of the 1D-CNN algorithm with a
training accuracy of 99.8% and a training loss value of 0.000068.
Meanwhile, the value of accuracy validation (val_accuracy) and
loss validation (val_loss) are excellent with a val_accuracy of
100% and val_loss value of 0.00017. The islanding detection
result and confusion matrix of the proposed method are shown
in Figures 15, 16. The main diagonal elements in the confusion
matrix can represent the number of correctly identified samples.
The proposed method can correctly classify test samples of 125,
which demonstrates the effectiveness of the proposed method for
islanding detection.

5 Performance analysis and discussion

5.1 Anti-noise performance

In order to analyze the robustness of the proposed strategy,
white Gaussian noise with different signal-to-noise ratios is used to
simulate the possible measurement inaccuracies or interference in
the real operation through the noise and to validate the effectiveness
of the proposed strategy under real conditions (Hussain et al.,
2023). By adding noise to the voltage signal at PCC to verify the
anti-noise performance of the islanding detection algorithm, the
Signal-to-noise ratio (SNR) describes the pollution degree of noise,
as shown in Equation 22.

SNR = 10 log10
psig
pnoi

(22)

Where Pnoi is noise signal power, Psig is the raw signal
power. The commonly used SNR is 40 dB in islanding detection
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TABLE 3 Test results of different 1D-CNN network structures.

Sr.No Network
structure

Convolution
kernel

Learning rate Epoch Batch_size Test accuracy/% Test time/s

1 16s-2c-32s-2c 10–10 0.01 50 50 99.2 0.0134

2 16s-2c-32s-2c 5–5 0.01 50 50 99.9 0.0122

3 16s-2c-32s-2c 8–5 0.01 100 50 99.7 0.0118

4 16s-2c-32s-2c 5–5 0.001 50 50 80 0.0124

5 16s-2c-32s-2c 5–5 0.01 150 50 100 0.0116

6 16s-2c-32s-2c 5–5 0.1 150 50 99.5 0.012

7 10s-2c-5s-2c 5–8 0.01 160 50 99.8 0.013

8 10s-2c-5s-2c 5–5 0.01 70 50 99.9 0.0194

9 15s-2c-10s-2c 8–8 0.01 5 30 99.8 0.019

10 15s-2c-10s-2c 10–8 0.1 500 30 99.9 0.0114

11 16s-2c-32s-2c 8–8 0.01 1,000 30 99.9 0.02

12 16s-2c-32s-2c 8–8 0.01 5 30 100 0.0187

13 12s-2c-10s-2c 5–8 0.1 300 30 99.9 0.0194

14 20s-2c-5s-2c 10–10 0.1 10 25 99.9 0.025

15 12s-2c-10s-2c 8–8 0.01 250 20 99.7 0.031

TABLE 4 Specific parameters of 1D-CNN.

Layer type Output size Specific parameters

Convolution1D layer 8 × 16 Convolution kernels are 16, kernel size is 8 × 8, stride is 1

MaxPooling1D layer 4 × 16 Pooling size is 2 × 1, stride is 2

Convolution1D layer 4 × 32 Convolution kernels is 32, kernel size is 8 × 8, stride is 1

Batch Normalization layer 4 × 32 Momentum is 0.99, epsilon is 0.001

MaxPooling1D layer 2 × 32 Pooling size is 2 × 1, stride is 2

Flatten layer 1 × 64 64 neurons

Dropout layer 1 × 64 Dropout is 0.3

Dense layer 1 × 60 60 neurons

Dense layer 1 × 2 2 neurons, activation function is softmax

(Ribeiro et al., 2013). Three new data sets with SNR of 30dB,
40dB, and 50 dB were generated by adding white Gaussian
noise, which were tested using the 1D-CNN classifier trained
on the noise-free data set. Table 5 shows that the test accuracy

of the proposed algorithm is 96.8% and 98.6% under 30 dB
and 50dB, and the method can work in a noisy environment.
In turn, it is proved that the proposed strategy has good
robustness.
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FIGURE 14
The accuracy and loss of the 1D-CNN algorithm: (a) the accuracy; (b) the loss.

FIGURE 15
Identification results of the proposed method.

5.2 Detection time

According to GB/T33593-2017, the maximum detection time of
islanding detection is not more than 2s. The detection time of the
proposed islanding detection algorithm consists of sampling time,
signal preprocessing time, feature extraction time, and test time.
The transient variation of the islanding fault is about 2.5–3 m, and
the sampling time of the simulation model is 1us. It takes about
9 m to capture 9,000 samples. In the signal preprocessing step, the
average time to complete the AVMD feature extraction task is 10 m,
the average time to complete the TEO and MPE detection tasks is
0.032 m and 2.77 m, respectively. Since the network does not need
to be trained again in subsequent experiments after the training is
completed, it takes about 24.6 m to classify in the test step of the
classifier. In summary, the detection time is about 9 + 10+0.032 +
2.77+24.6 = 46.402 m, which ismuch shorter than the time specified
in GB/T33593-2017.

5.3 Comparative performance analysis

A comparison is made from two perspectives (feature extraction
and classifier) to verify the effectiveness of the proposed islanding
detection method based on AVMD-TEO-MPE and 1D-CNN.

FIGURE 16
Confusion matrix of the proposed method.

TABLE 5 Algorithm Performance under noise interference.

SNR/dB Test accuracy/%

30 96.8

40 97.4

50 98.6

Meanwhile, this paper introduces the accuracy, precision, recall and
F1-score. The four criteria are described as

Acc = TP+TN
TP+ FP+TN+ FN

(23)

Where TP, TN, FN, and FP are true positive, true negative, false
negative, and false positive, respectively. Acc denotes the accuracy
of the classifier. It is the ratio of the number of all correctly classified
samples to the total number of samples, and is the most intuitive
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FIGURE 17
Comparison of the results of different feature extraction approaches.

FIGURE 18
Islanding detection results: (a) WT+1D-CNN; (b) EMD+1D-CNN; (c) AVMD+1D-CNN; (d) Proposed method.

performance indicator of a model’s predictive power.

Pr e = TP
TP+ FP

(24)

Pre is an indicator of precision, which measures the proportion
of samples with positive predictions that are truly positive.

Rec = TP
TP+ FN

(25)

Rec is the model recall, which measures the ability of the model
of find all positive samples.

F1 = 2 · Pre ·Rec
Pre+Rec

(26)

The F1 score is a reconciled average of Pre and Rec, which
is suitable for category imbalance scenarios and provides a more

accurate assessment ofmodel performancemetrics (Cui et al., 2025),
it is based on the actual alignment, not the projected quantity itself.

The feature extraction is used as a single variable to verify
the performance of AVMD-TEO-MPE, as shown in Figure 17. The
1D-CNN is trained and tested using the features extracted by
AVMD, the features extracted by EMD, the features extracted by
WT, and the proposed method, respectively. Islanding detection is
examined by calculating and analyzing the Acc, Pre, Rec, and F1
score as shown in Equations 23–26 respectively. The comparison
results demonstrate the superiority of AVMD by evaluating several
feature extraction algorithms. Meanwhile, the islanding detection
results are shown in Figure 18, and the confusion matrix of different
methods is illustrated in Figure 19. Due to the existence of category
imbalance in prediction, the F1 score, which is not affected by
category distribution, is mainly analysed. According to Figure 17, it
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FIGURE 19
Confusion matrix of different methods: (a) WT+1D-CNN confusion matrix; (b) EMD+1D-CNN confusion matrix; (c) AVMD+1D-CNN confusion matrix;
(d) Proposed method confusion matrix.

FIGURE 20
Comparison of the results of different classifier approaches.
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FIGURE 21
Comparison of the results different pure other algorithms.

can be seen that the F1 score under the proposed feature extraction
strategy is better than the rest of the strategies when the 1D-
CNN algorithm is also used, with an improvement of 12.9%, 1.0%,
and 2.9%, respectively, compared the remaining three extraction
methods.The superiority of the proposed feature extractionmethod
can be verified.

The classifier is implemented as a single-variable system as
illustrated in Figure 20. To validate the performance of our proposed
1D-CNN classifier, comprehensive comparative experiments
were conducted using Back Propagation (BP) neural networks,
SVM, LSTM, and the proposed method, all trained and tested
on feature vectors extracted through the AVMD-TEO-MPE
framework. Quantitative evaluations reveal significant performance
enhancements achieved by our proposed method across multiple
metrics. Specifically, the proposed method maintains complete
dominance in the F1-score (1.0) compared to LSTM’s 0.954. These
experimental results substantiate that our 1D-CNN-based approach
exhibits comprehensive advantages over traditional machine
learning methods (BP, SVM) and shows particular improvement
in precision metrics when compared with other deep learning
architectures like LSTM. The systematic classifier comparison
effectively highlights the technical superiority and practical value of
our proposed methodology.

Four groups of comparative experiments from the perspective
of pure neural networks are designed to illustrate the importance
of signal processing in feature extraction. The comparative results
are shown in Figure 21. The F1 score of the proposed strategy is
much higher than the rest of the deep learning algorithms due to
the incorporation of better performing feature extraction methods,
especially compared to the BP, SVM algorithms, the percentage of
improvement reaches 122.2% and 175.4%, and compared to the
more advanced LSTM and 1D-CNN methods, the percentage of
improvement also reaches 7.4% and 15.6%, respectively. It also
proves the superiority of the proposed algorithm.

6 Conclusion

This paper analyzes a detailed review of islanding detection
for the microgrid, especially intelligent islanding detection. The
concept of AVMD was extended to extract features from the three-
phase voltage and current signals. The AVMD-TEO-MPE-based
index is proposed for the microgrid for the measured electrical
characteristics. Exploiting the excellent properties of AVMD-Teager

energy operator-MSPE for characterizing transient changes in
power systems and the ability of 1D-CNN to extract the underlying
information. This method overcomes the passive method in the
load absorbed power and converter output power, completely
matching the detection of the blind spot that exists in the case of
large problems. At the same time, there is no impact on power
quality as no disturbance current is injected into the system. ,
Theoretical derivation and simulation show that the algorithm is
able to accurately detect islanded events and non-islanded events,
and effectively reduce the detection blind zone and detection time,
with a detection accuracy of up to 100%, 0.000068 of loss value
within maximal detection time 46.402 m, confirmed the validity of
the method proposed in this paper.

Additionally, due to the high training speed of 1D-CNN, the
microgrid applied to the technology proposed has the function of
quick online judgment and warning. Future work is to verify and
further study the application performance of the proposed method
in islanding detection based on the real distributed generation
system experimental platform to be built.
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