
TYPE Original Research
PUBLISHED 29 August 2025
DOI 10.3389/fenrg.2025.1464011

OPEN ACCESS

EDITED BY

Sudhakar Kumarasamy,
Universiti Malaysia Pahang, Malaysia

REVIEWED BY

Sofiane Kichou,
Czech Technical University in Prague, Czechia
Sumika Chauhan,
Wrocław University of Science and
Technology, Poland
Mega lingam,
Universiti Malaysia Pahang, Malaysia

*CORRESPONDENCE

Ala Saleh Alluhaidan,
asalluhaidan@pnu.edu.sa

RECEIVED 12 July 2024
ACCEPTED 16 June 2025
PUBLISHED 29 August 2025

CITATION

Salama AbdElminaam D, Saleh Alluhaidan A,
H. Elashmawi W, Shawky Farahat I, Al Tawil A,
Adel Nabih S and A. El-Rahman S (2025)
Parameter estimation of photovoltaic models
based on improvement of moutain gazelle
optimizer algorithm.
Front. Energy Res. 13:1464011.
doi: 10.3389/fenrg.2025.1464011

COPYRIGHT

© 2025 Salama AbdElminaam, Saleh
Alluhaidan, H. Elashmawi, Shawky Farahat, Al
Tawil, Adel Nabih and A. El-Rahman. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Parameter estimation of
photovoltaic models based on
improvement of moutain gazelle
optimizer algorithm

Diaa Salama AbdElminaam1,2, Ala Saleh Alluhaidan3*,
Walaa H. Elashmawi4,5, Ibrahim Shawky Farahat6, Arar Al Tawil7,
Sandy Adel Nabih8 and Sahar A. El-Rahman9

1Jadara Research Center, Jadara University, Irbid, Jordan, 2Faculty of Computers and Artificial
Intelligence, Benha University, Benha, Egypt, 3Department of Information Systems, College of
Computer and Information Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi
Arabia, 4Computer Science Department, Faculty of Computers & Informatics, Suez Canal University,
Ismailia, Egypt, 5Computer Science Department, Faculty of Computer Science, Misr International
University, Cairo, Egypt, 6Faculty of Computers and Information, Luxor University, Luxor, Egypt,
7Faculty of Information Technology, Applied Science Private University, Amman, Jordan, 8English
Department, Faculty of Al-Alsun, Misr International University, Cairo, Egypt, 9Computer Systems
Program - Electrical Engineering Department, Faculty of Engineering-Shoubra, Benha University,
Cairo, Egypt

Introduction: The mountain gazelle (Gazella gazella) is a native
species to the Middle East and has experienced a notable population
decline due to human-induced habitat loss and fragmentation. In
Saudi Arabia, the current status and distribution of this species
remain poorly understood, necessitating data-driven conservation
assessments.

Methods, Results, and Discussion: This study combined recent occurrence
records with remote sensing and GIS-based environmental variables to
model suitable habitats for the mountain gazelle using the MaxEnt algorithm.
Key predictors included vegetation indices, land cover types, and elevation.
The results identified core habitat areas in the western and southwestern
regions, some of which fall outside current protected zones. These findings
underscore the importance of expanding conservation areas and demonstrate
how spatial modeling supports effective wildlife management in arid
environments.

KEYWORDS

mountain gazelle, i_MGO optimizer algorithm, PV parameter estimation, single diode
model, double diode model, three diode model, solar energy, model enhancement

1 Introduction

Poverty, hunger, and clean energy are interconnected issues, as they
are outlined in the United Nations’ Sustainable Development Goals (SDGs).
These goals aim to eliminate poverty, conserve natural resources, promote
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FIGURE 1
The 17 sustainable development goals (SDGs) (Griggs et al., 2013).

human rights, and enhance gender equality (Griggs et al., 2013)
as shown in Figure 1.

However, conventional development policies often overlook
environmental concerns, highlighting the gap between
environmental importance and development initiatives. This
highlights the need for ecological sustainability and the
implementation of clean and efficient energy sources. The SDGs
were adopted in 2015 (Rant, 2020), emphasizing the importance of
integrating environmental awareness into development strategies.
Neglecting environmental issues in poverty mitigation hinders
development progress, emphasizing the need for environmental
awareness and social justice (Schleicher et al., 2018). Ecological
sustainability requires clean, efficient energy sources, which are
easily accessible natural resources (Wang et al., 2021).

So far, most power plants have utilized conventional energy
sources with remarkably high energy density, such as natural
gas, oil, and coal, collectively referred to as fossil fuels. However,
these sources produce carbon and other greenhouse gases
when used. Therefore, it has become necessary to reduce
fossil fuel consumption and focus on utilizing more readily
available renewable energy sources (RES) in the energy sector
to combat global warming and mitigate carbon emissions
(Rahman et al., 2022).

Through rigorous experimental validation, the study
demonstrates the effectiveness of utilizing renewable energy sources
(RES) as a sustainable alternative to fossil fuels, emphasizing
their potential to mitigate carbon emissions and combat global
warming. By shifting from fossil fuels to renewable energy
sources, such as solar, wind, hydro, and geothermal power,
carbon emissions and CO2 emissions can be significantly

Abbreviations: PV, Photovoltaic; i_MGO, Improved Mountain Gazelle
Optimizer; SDM, Single Diode Model; DDM, Double Diode Model;
TDM, Three diode Model; TPVM, Three PV Models; HHO, Harris
Hawks Optimization; LAPO, Lightning Attachment Procedure Optimization
Algorithm; SCA, Sine Cosine Algorithm; GWO, Grey Wolf Optimizer; AVOA,
African Vultures Optimization Algorithm; HO, Hippopotamus Optimization
Algorithm; EEFO, Electric Eel Foraging Optimization; SSOA, Synergistic
Swarm Optimization Algorithm; COA, Coati Optimization Algorithm; GOA,
Gazelle Optimization Algorithm.

reduced. During their operational phase, renewable energy
technologies display lower environmental negative impacts than
other energy sources that rely on fossil fuels (Ashraf et al.,
2024). An advanced increase in the adoption of solar and wind
energy sources is crucial to achieving the target of zero carbon
emissions, which can be realized through new PV solar projects
(Sánchez et al., 2023).

Since the 1950s, the long-term progress rates of solar
photovoltaics (PV) have been the uppermost among all energy
technologies. Documented as the most affordable power source, PV
has earned the name “king” of the energy marketplaces. Combined
with energy system technologies that provide support, such as
batteries and electrolyzers, it is believable that solar PV will surpass
all other major sources of energy used by humankind within the
next few years (Breyer et al., 2021).

The goal of a (PV) cell is to transform solar energy into
electrical energy. There are several varieties of PV cells; each is
characterized by its exclusive structure and properties. There are
three fundamental types: Single-Diode, Double-Diode, and Triple-
Diode (Yaqoob et al., 2021).

The process of estimating parameters for PV models, such as
the single-diode, double-diode, and triple-diode models, is a critical
challenge in the design and simulation of PV systems. Traditional
methods for parameter estimation, including various numerical,
analytical, and hybrid approaches, have been extensively explored.
However, these methods often struggle to yield accurate and quick
results, leading to discrepancies between measured and predicted
values, which can significantly impact the efficiency and reliability
of PV systems.

The objective of this research is to enhance the accuracy and
speed of parameter estimation for photovoltaic (PV) models by
introducing modifications to the three fundamental PV models
and employing the Improved Mountain Gazelle Optimizer (i_
MGO), a contemporary optimization algorithm. This is achieved
by minimizing the root mean square error (RMSE) between the
computed and actual current values, and by providing a robust
comparison of the modified and conventional PV models using
objective function. Through rigorous analysis and validation, the
study aims to demonstrate the superior performance of the i_MGO
algorithm over other competing algorithms, thereby contributing to
the advancement of PV system simulations and designs.

This paper makes several significant contributions to the field of
PV model parameter estimation, as outlined below.

• The introduction of a novel optimization algorithm, i_MGO,
designed to enhance the accuracy and efficiency of parameter
estimation in PV models.

• Extensive evaluation of i_MGO through rigorous experiments
on various PV models, including the RTC France solar cell
and five different PV modules, highlighting its potential in PV
parameter estimation.

• A comparative study to assess the performance of i_MGO
against other well-established optimization algorithms,
demonstrating its superior accuracy and efficiency in parameter
estimation tasks.

The rest of the sections are organized as follows:
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Section 3 discusses the modeling of PV models. Section 4
presents the basic structure of the MGO algorithm and its
working behavior. Section 5 describes the improvement of theMGO
algorithm, while a detailed architecture of the proposed algorithm is
presented in Section 6. In Section 7, the simulation and results are
discussed. The conclusions of this paper are presented in Section 8.

2 Related work

Meta-heuristic algorithms have recently become essential tools
for mitigating the temporal and precision limitations inherent
in a wide range of engineering applications. There has been a
significant increase in the emergence of these algorithms to satisfy
the optimization requirements of various scientific fields. In light
of the growing significance of optimization in various areas, meta-
heuristic algorithms have shown their effectiveness in addressing
optimization challenges. For the purpose of parameter estimation
tasks, multiple of these algorithms have been carried out, especially
in the field of PV models.

In 2024, an algorithm is utilized in a study by Wasim et al.
(2024) for the sake of energy management in a solar-powered
battery-ultracapacitor hybrid system. The algorithm is the rule-
based grasshopper optimization algorithm (RB-GOA). To meet the
needs of the pulsed load (PL), the RB-GOA redistributes power
among the PV array, the battery bank (BB), and the ultracapacitor
(UC) by employing a set of rules and a search space defined by
the system. The study’s results showed that the suggested RB-
GOA performed better in certain situations than other well-known
swarm intelligence techniques (SITs), including the cuckoo search
algorithm (CSA), gray wolf optimization (GWO), and salp swarm
algorithm (SSA). When compared to other techniques operating
under uniform irradiance and shaded conditions, the RB-GOA
demonstrated improved maximum power point tracking speed,
reduced power surges, and faster response times. The results were
outstanding in explaining the RB-GOA’s control, as they maintained
a constant output even when the PL demand changed and effectively
utilized PV energy in the hybrid system.The research did not involve
any modifications to the algorithm; however, the algorithm still
positively enhanced the operation of the PV system by improving
energy management, reducing power fluctuations, and enhancing
MPPT efficiency, which ensures better overall system performance
and energy utilization.

Moreover, in 2024, a comprehensive study by Marlin and
Jebaseelan (2024) was conducted on intelligence-based optimization
algorithms used for maximum power tracking in grid-PV
systems. The study mainly directs its attention on comparing
various optimization algorithms for maximum power point
tracking (MPPT) in grid-connected PV systems. The mentioned
algorithms in this study are Mongoose Optimization (MO),
Prairie Dog Optimization Algorithm (PDOA), and a hybrid
approach combining PDOA and MO. The focal points of the
study involve choosing the most effective optimization algorithm
for MPPT control to meet the energy requirements of grid
systems and boosting the energy production from PV systems.
The study compares the performance of the three algorithms in
terms of various parameters, including time, error, power, Total
Harmonic Distortion (THD), and others. The research evaluates the

performance of various intelligence-based optimization algorithms
in enhancing the efficiency of Maximum Power Point Tracking
(MPPT) in grid-connected photovoltaic (PV) systems. The primary
objective of this research is to enhance the overall performance of
the system by optimizing real-time power sharing among the PV
system, battery bank, and ultracapacitors to meet periodic load
demands. While no modifications were made to the algorithms, it
is worth noting that, overall, the hybrid PDOA + MO algorithm
demonstrates encouraging results in enhancing the competence and
performance of MPPT control in solar PV systems, showcasing its
capability for refining the operation and energy yield of PV systems
under varying environmental conditions.

Researchers in a recent 2023 investigation cite
vais2023parameter proposed a novel approach to enhance the
accuracy of modeling and assessing the performance of solar PV
panels. The study backs up using the Dandelion Optimization
Algorithm (DOA) to find the equivalent circuit parameters of
solar PV panels. It focuses on both single-diode (SD) and double-
diode (DD) PV models for various types of PV modules. The DOA
demonstrates astonishing accuracy across various PV modules by
reducing errors at critical stages. The study does not demonstrate
how to modify the DOA algorithm itself; however, statistical
analysis reveals that the DOA outperforms two other hybrid
optimization algorithms in terms of standard deviation, sum, mean,
and variance. These results highlight the DOA’s effectiveness in
precisely determining parameters, thereby enhancing the accuracy
of PV system modeling and performance assessment.

Additionally, in 2023, Abbassi et al. (2023) introduced a novel
algorithm that drew inspiration from the social dynamics of wild
gazelles. In the study designated, they work on an algorithm called
the Mountain Gazelle Optimizer (MGO). The researchers apply
MGO to determine the optimal values for certain parameters of
PV generation units, specifically for two models: the Single-Diode
Model (SDM) and the Double-Diode Model (DDM), for various
types of solar panels. The study found that MGO outperformed
other recent algorithms in accurately pinpointing these parameters.
The results also revealed that MGO had fewer errors compared to
algorithms like the Grey Wolf Optimizer (GWO), Squirrel Search
Algorithm (SSA), and Differential Evolution (DE). Overall, the
study suggests that MGO exhibits a fast processing time, stable
convergence, and high accuracy in solving parameter estimation
problems for PV models. It is effective in accurately identifying
the parameters of the PV generation units, showcasing improved
performance compared to other superior optimization algorithms.

In another study conducted by Ekinci et al. (2024) in 2023,
scientists employed a hybrid approach known as theGazelle-Nelder-
Mead (GNM) algorithm, which combines the Gazelle Optimization
Algorithm (GOA) with the Nelder-Mead (NM) algorithm. This
combination enhanced parameter extraction in solar PV models.
Remarkably, no specific modifications were made to the GOANM
algorithm itself. Results showed that the GOANM algorithm
consistently outperformed other methods in terms of speed,
accuracy, and reliability across various benchmark functions. It was
further tested on solar cell and PV module models, demonstrating
improved functionality in terms of parameter estimation accuracy
and convergence speed. The study highlights the efficacy of
the GOANM algorithm in enhancing renewable energy systems,
particularly solar PV installations. By enhancing the accuracy and
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TABLE 1 Summary of Studies on PV systems of different algorithms.

Reference Year Algorithm Results

Wasim et al. (2024) 2024 RB-GOA Boosted energy management

Marlin and Jebaseelan (2024) 2024 MGO Improved MPPT control efficiency

Ekinci et al. (2024) 2023 Hybrid PDOA + MO Enhanced parameter estimation accuracy

Abbassi et al. (2023) 2023 MGO Identifying parameters more efficiently, outperforming other algorithms

Vais et al. (2023) 2023 GOANM Improved accuracy in extracting parameters

Ullah et al. (2022) 2022 ABC Efficient optimization of power transmission in hybrid renewable energy systems

Al-Shabi et al. (2021) 2021 MGSSA Improved MPPT and power extraction

Rezk et al. (2021) 2021 PSOGWO Boosted accuracy in modeling PV cells

Ye et al. (2021) 2021 MWOA Improved accuracy in parameter pinpointing

Ibnelouad et al. (2020) 2020 ANN-PSO Improved MPPT and power extraction

efficiency of parameter extraction, it significantly contributes to
improving solar energy conversion processes. A 2022 study by
Ullah et al. (2022) introduces making power transmission between
microgrids in hybrid renewable energy systems more effective.
To apply this, they utilize an algorithm known as the Artificial
Bee Colony (ABC) algorithm. This method is inspired by how
bees search for food. This algorithm has been proven effective
in reducing costs and decreasing the need for external power.
Fundamentally, it facilitates the design of systems that are both
reliable and cost-effective. One of the key advantages of the ABC
algorithm is its efficacy and adaptability. It works by having an
intelligent assistant that requires minimal changes yet achieves
rapid results. Its adaptability is very beneficial for balancing cost
and power optimization in energy systems. While the researchers
did not modify the ABC algorithm specifically for this task,
they highlighted its effectiveness in meeting their optimization
objectives. Furthermore, this approach holds encouraging prospects
for transforming renewable energy systems into ones that are both
cost-effective and environmentally sustainable. Table 1 summarizes
the key parameters used in the single, double, and three-diode PV
models for simulation and validation purposes.

3 Definition of PV models

In this section the mathematical analysis of the three PV
models (TPVM) and the modified three PV models (MTPVM) is
discussed. The TPVM includes single diode model (SDM), double
diode model (DDM), and three diode model (TDM). Meanqwhile,
the MTPVM contains modified single diode model (MSDM),
modified double diode model (MDDM) and modified three diode
model (MTDM). Table 2 presents the configuration settings and
initialization values employed in the i_MGO optimizer for accurate
PV parameter estimation.

TABLE 2 The limits of estimated parameters (Yu et al., 2018).

Parameters Lower bound Upper bound

Ipv 0 1

Io1, Io2 andIo3 (μA) 0 1

Rs, Rs1 0 0.5

Rp 0 100

n1, n2 andn3 1 2

3.1 Single diode model

Figure 2 illustrates the initial performance comparison of
optimization methods. The equivalent circuit for SDM is elucidated
in Figure 8a. The current output from this model is computed
using the following equation (Saleh Alluhaidan et al., 2025;
Ghanim et al., 2024; AbdElminaam et al., 2024; AbdElminaam et al.,
2022). The single-diode model parameters are mathematically
described in Equation 1:

I = Ipv − ID1 − Ish (1)

Where:

• I: Output current of the PV cell.
• Ipv: PV current generated by the solar cell due to light exposure.
• ID1: Dark saturation current of the single diode.
• Ish: Shunt current (leakage current through the shunt resistor).

The current-voltage relationship is further elaborated in
Equations 2, 3.
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FIGURE 2
Equivalent circuit for single diode model.

I = Ipv − Io1[e
q(V+IRs)
n1KTc − 1]−

V+ IRs

Rsh
(2)

Where:

• I: Output current of the PV cell.
• Ipv: PV current generated by the solar cell.
• Io1: Saturation current of the single diode.
• e: Base of the natural logarithm (Euler’s number).
• q: Elementary charge of an electron (1.602× 10−19C).
• V: Voltage across the PV cell terminals.
• I: Current through the PV cell.
• Rs: Series resistance of the PV cell.
• n1: Ideality factor of the diode.
• k: Boltzmann constant (1.381× 10−23J/K).
• Tc: Absolute temperature of the PV cell (in Kelvin).
• Rsh: Shunt resistance of the PV cell.

The SDM produces a current denoted as I, where Ipv represents
the current generated by light, Ish is the leakage current, and ID1
is the dark saturation current. Shunt and series resistances are
denoted by Rp and Rs, respectively. Additionally, n1 signifies the
diode ideality factor, K represents Boltzmann’s constant, q denotes
the charge of an electron, and Tc indicates the cell temperature.
According to the provided mathematical formula, the parameters to
be estimated in the SDM encompass Ipv, Io1, n1, Rs, and Rp.

3.2 Double diode model

In Figure 3, the electrical diagram for the DDM is
presented, utilizing two diodes to enhance output quality
(Saleh Alluhaidan et al., 2025; Ghanim et al., 2024;
AbdElminaam et al., 2024; AbdElminaam et al., 2022). The current
output in this model is derived from the following equations:

I = Ipv − ID1 − ID2 − Ish (3)

Where:

• I: Output current of the PV cell.
• Ipv: PV current generated by the solar cell due to light exposure.
• ID1: Dark saturation current of the first diode.
• ID2: Dark saturation current of the second diode.

FIGURE 3
Equivalent circuit for double diode model.

FIGURE 4
Equivalent circuit for three diode model.

• Ish: Shunt current (leakage current through the shunt resistor).
As shown in Equation 4, the output current is influenced by the
diode ideality factor.

I = Ipv − Io1[e
q(V+IRs)
n1KTc − 1]− Io2[e

q(V+IRs)
n2KTc − 1]−

V+ IRs

Rsh
(4)

Where:

• I: Output current of the PV cell.
• Ipv: PV current generated by the solar cell.
• Io1: Saturation current of the first diode.
• Io2: Saturation current of the second diode.
• e: Base of the natural logarithm (Euler’s number).
• q: Elementary charge of an electron (1.602× 10−19C).
• V: Voltage across the PV cell terminals.
• I: Current through the PV cell.
• Rs: Series resistance of the PV cell.
• n1: Ideality factor of the first diode.
• n2: Ideality factor of the second diode.
• k: Boltzmann constant (1.381× 10−23J/K).
• Tc: Absolute temperature of the PV cell (in Kelvin).
• Rsh: Shunt resistance of the PV cell.

Where ID2 represents the dark saturation current of the second
diode, and n2 denotes the ideality factor of the second diode. The
model encompasses seven parameters for estimation: Ipv, Io1, n1,
Rs, Rp, Io2, and n2.

3.3 Three diode model

Figure 4 demonstrates the convergence behavior of the i_MGO
algorithm. The three-diode model (TDM) displayed in Figure 8c
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introduces an alternative approach for designing PV modules
by incorporating three diodes (Saleh Alluhaidan et al., 2025;
Ghanim et al., 2024; AbdElminaam et al., 2024; AbdElminaam et al.,
2022). The computation of the current output in this model is
carried out using Equation 5:

I = Ipv − ID1 − ID2 − ID3 − Ish (5)

Where:

• I: Output current of the PV cell.
• Ipv: PV current generated by the solar cell due to light exposure.
• ID1: Dark saturation current of the first diode.
• ID2: Dark saturation current of the second diode.
• ID3: Dark saturation current of the third diode.
• Ish: Shunt current (leakage current through the shunt

resistor). Equation 6 provides the thermal voltage formulation.

I = Ipv − Io1[e
q(V+IRs)
n1KTc − 1]− Io2[e

q(V+IRs)
n2KTc − 1]− Io3[e

q(V+IRs)
n3KTc − 1]−

V+ IRs

Rsh
(6)

Where:

• I: Output current of the PV cell.
• Ipv: PV current generated by the solar cell.
• Io1: Saturation current of the first diode.
• Io2: Saturation current of the second diode.
• Io3: Saturation current of the third diode.
• e: Base of the natural logarithm (Euler’s number).
• q: Elementary charge of an electron (1.602× 10−19C).
• V: Voltage across the PV cell terminals.
• I: Current through the PV cell.
• Rs: Series resistance of the PV cell.
• n1: Ideality factor of the first diode.
• n2: Ideality factor of the second diode.
• n3: Ideality factor of the third diode.
• k: Boltzmann constant (1.381× 10−23J/K).
• Tc: Absolute temperature of the PV cell (in Kelvin).
• Rsh: Shunt resistance of the PV cell.

Where ID3 represents the dark saturation current of the third
diode, and n3 denotes the ideality factor of the third diode.
Estimating nine parameters is essential for the TDM: Ipv, Io1, n1,
Rs, Rp, Io2, n2, Io3, and n3.

Ipv, Io1, n1, Rs, Rp, Io2, n2, Io3 and n3.

3.4 Problem formulation

The evaluation of TPVM’s performance involves objective
functions, particularly those centered on root mean square error
(RMSE). These functions quantify the difference between the
computed current using estimated parameters and the actual current
obtained from the dataset. The RMSE is precisely defined by
Equations 7, 8:

J (V, I, X) = I− Iexp (7)

RMSE = √ 1
N

i=1

∑
N
(J (V, I, X))2 (8)

In this context, Iexp denotes the analysis current, N signifies the
number of data readings, and X encompasses the set of decision
variables.

The vector of decision variable for SDM is X =
{(Ipv, Io1, n1, Rs andRp )}.

The vector of decision variable for DDM is X =
{(Ipv, Io1, n1, Rs, Rp, Io2 andn2 )}.

The vector of decision variable for TDM is X =
{(Ipv, Io1, n1, Rs, Rp, Io2, n2, Io3 andn3)}.

4 Mountain gazelle optimizer (MGO)

The MGO is a novel meta-heuristic optimization algorithm
that draws inspiration from the social structure and dynamics of
wild mountain gazelles (Abdollahzadeh et al., 2022). One kind of
gazelle, the mountain gazelle, lives in sparse populations in regions
bordering the Arabian Peninsula and shares a habitat with the
Robinia tree. During the late Holocene, as temperatures increased,
the species lost territory to Gazella bennettii, an exceptionally
acclimated species for high temperatures. The mountain gazelle
exhibits high levels of territoriality, which splits into three groups:
mother-and-child herds, young male herds, and the area of
single males (Grau and Walther, 1976). The mountain gazelle
regularly migrates over 120 km for food.

The MGO optimization algorithm utilizes four major
components of the mountain gazelle’s existence—bachelor male
herds, maternity herds, solitary, territorial males, and movement
in search of food—to optimize operations. The exploitation and
exploration stages are conducted simultaneously, employing the
four processes. The following subsection illustrates the basic
mathematical steps of the MGO algorithm.

4.1 Territorial solitary males

Upon attaining maturity and sufficient strength, male mountain
gazelles establish an isolated territory characterized by a high
degree of territoriality. In a gazelle territorial conflict, the adult
males fight for control of the female’s territory. In contrast,
younger males attempt to take over, and this process can be
modeled using Equation 9. The initialization of model parameters
is described using Equation 10.

TSM =malegazelle −ΔTSM ×Cofr (9)

ΔTSM = |(ri1 ×BH− ri2 ×X (t)) × F| (10)

where:

• The parameters ri1 and ri2 are randomly assigned values of 1 or
2, and male gazelle denotes the position vector of an adult male
gazelle in the global solution, and X(t) is the current position
of gazelle.
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• The vector BH represents the young male herd coefficient,
which is determined using Equation 11.

BH = Xra × r1 +Mpr × ⌈r2⌉ (11)

A young male solution Xra is generated at random from the
interval ra with a total number of gazelles N (i.e., ra = {⌈N

3
⌉…N}).

The average number of randomly selected search agents, denoted
as Mpr, is equal to ⌈N

3
⌉ while r1 and r2 are two generated random

numbers within the range from 0 to 1.

• F can be computed according to Equation 12.

F = N1 (D) × exp(2− t×(
2

Maxt
)) (12)

N1 is a random number drawn from the normal distribution of
the problem variable’s dimension D. While exp, t , and Max_t are
the exponential function, the current iteration, and the maximum
number of iterations, respectively.

• A randomly chosen coefficient vector Co fr is employed and
modified with each iteration to enhance the search capability
and calculated according to Equation 13.

Co fr =

{{{{{{{
{{{{{{{
{

(a+ 1) + r3,

a×N2 (D) ,

r4 (D) ,

N3 (D) ×N4(D)2 × cos((r4 × 2) ×N3 (D)) ,

(13)

The value of a based on the current and maximum number of
iterations (i.e., a = − 1+ t × ( −1

Max_t
)). r3 and r4 ∈ (0,1) with cos

represent the cosine function. N2, N3, and N4 are random numbers
within the normal range of the problem’s dimensions D.

4.2 Maternity herds

The life cycle of mountain gazelles isn’t complete without
maternity herds, which are responsible for giving birth to healthy
male gazelles. Adult male gazelles can also be involved in mating
and the birth of young males attempting to mate with females,
modeled as follows:

MH = (BH+Co f2,r) +ΔMH ×Co f3,r (14)

ΔMH = (ri3 ×malegazelle − ri4 ×Xrand) (15)

where the influence factor of youngmales isBH’s vector according to
Equation 11. The coefficient vectors Co f2,r and Co f2,r are computed
independently and are picked at random according to Equation 13.
male gazelle and Xrand are the best solution so far and the randomly
selected solution from the current population, respectively. ri3 and
ri4 are two random numbers ∈ (0,1). The loss functions applied
during optimization are expressed in Equations 15, 17.

4.3 Bachelor male herds

As male gazelles reach adulthood, they create territories and
compete for control over female gazelles, resulting in aggressive
conflicts that involve younger male gazelles. This behavior can be
modeled as in Equation 16.

BMH = (X (t) −D) +ΔBMH ×Co fr (16)

ΔBMH = (ri5 × male gazelle − ri6 ×BH) (17)

D = (|X (t) | + |male gazelle|) × (2× r6 − 1) (18)

where X(t) represents the current position of the gazelle vector
at iteration t and D is a vector computed based on the best
solution as in Equation 18. ri5 and ri6 are randomly selected
numbers that can only be 1 or 2, while r6 ∈ (0,1). Other parameters
are computed as defined previously.

4.4 Migration to search for food

Mountain gazelles continuously seek new food sources and will
travel great distances to migrate and seek food. Mountain gazelles,
on the other hand, are characterized by their great running speed
and their strong leaping ability. Their migration behavior can be
modeled mathematically according to Equation 19.

MSF = (ub− lb) × r7 + lb (19)

where ub and lb are the upper and lower boundaries of the problem,
respectively, and r7 is a selected random number between 0 and 1.

Every gazelle undergoes the same reproductive process every
time: TSM, MH, BMH, and MSF. With the addition of another
era, the population grows at a rate that equals one replication per
generation. After each age, the gazelles are also sorted from lowest to
highest. In each given population, the best gazelles—those with low
costs, excellent quality, and potential solutions—are the ones who
survive. Some gazelles are culled from the population because they
are elderly or feeble. The mature male gazelle that owns the territory
is also considered the most dominant. The overall structure of the
MGO algorithm is presented in Algorithm 1 with an associated
flowchart that describes the basic steps as shown in Figure 5.

5 Improvement of mountain gazelle
optimizer (i_MGO) using GSO, PO, and
LEO operators

This section outlines the strategic enhancements introduced
in the Improved Mountain Gazelle Optimizer (i_MGO) through
the integration of Gradient Search Operator (GSO), Production
Operator (PO), and Local Escaping Operator (LEO). These
modifications are designed to refine the algorithm’s exploration and
exploitation capabilities, addressing common challenges such as
premature convergence and local optima entrapment. The inclusion
of GSO, PO, and LEO not only accelerates the convergence
process but also significantly enhances the accuracy of parameter
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FIGURE 5
The MGO flowchart.

estimations in PV models. The subsequent subsections will delve
into the mathematical formulations and operational dynamics of
each operator, elucidating their collective impact on the robustness
and efficiency of the i_MGO.

5.1 Gradient search operator (GSO)

The Gradient Search Operator (GSO), first presented in the
Gradient-based Optimizer (GBO), is intended to instill stochastic
dynamics within the optimization procedure, enhancing the search
space’s exploration while preventing local minima entrapment.
The GBO algorithm is further refined with the inclusion of the
Directional Movement (DM) component, which directs the local
search trajectory, thus accelerating the GBO’s convergence.

To evolve the current vector’s position, the succeeding formulas
are employed (refer toAlgorithm 2).The irradiance and temperature
dependencies are given in Equations 20–22:

Si1,t = S
i
t −GSO+ rand× k2 × (Sb − S

i
t) (20)

Si2,t = Sb −GSO+ rand× k2 × (St,r1 − St,r2) (21)

Si3,t = S
i
t − k1 × (S

i
2,t − S

i
1,t) (22)

The subsequent iteration’s solution Sit+1 is determined through
the coordinates of Si1,t, S

i
2,t, and Si3,t, combined with the current

position Sit, and Equation 23 defines the fitness evaluation in the
optimizer algorithm:

Sit+1 = ra × rb × S
i
1,t + (1− rb) × S

i
2,t + (1− ra) × S

i
3,t (23)

5.2 The production operator (PO)

The Production Operator (PO) in the MGO is inspired by the
movement of gazelles in their natural habitat, where the producer
(the worst-performing individual) is updated to explore new regions
in the solution space. The primary role of the PO is to facilitate
the exploration process during optimization, allowing the algorithm
to search broader areas in the initial stages and later refine the
search around promising solutions. The PO updates the position
of the producer using a weighted combination of the current best
solution found (decomposer) and a random position in the search
space, ensuring that the producer moves dynamically through the
search space. The update equation for the producer’s position is,
Equations 24–27 present iterative update rules used by i_MGO:

xnew = (1− α) ⋅ xbest + α ⋅ xrand (24)

Frontiers in Energy Research 08 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1464011
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Salama AbdElminaam et al. 10.3389/fenrg.2025.1464011

1 Initialize the population size n, and maximum

number of iterations Max_t.

2 Set the iteration number t = 1.

3 Generate random population Xi(i = 1,2,…,n)

4 Evaluate each Gazelle and assign the fittest one

to Xt
best

.

do

5 for i = 1:n do

6  Update the gazelle’s position based on

TSMaccording to Equation 9

7  Update the gazelle’s position based on

MHaccording to Equation 14

8  Update the gazelle’s position based on

BMHaccording to Equation 16

9  Update the gazelle’s position based on

MSFaccording to Equation 19

10  Compute the fitness value of TSM, MH, BMH, and

MSF.

11  Add all to the habitat.

 end

12 Rank all of the inhabitants from best to worst.

13 Update the best solution.

14 Retain the Top n Gazelles Within the Maximum

Population.

15 Set t = t+1.

while t <= Max_t;

16 return the fittest solution Xbest

Algorithm 1. The algorithmic steps of MGO algorithm.

Algorithm 2. Gradient Search Operator (GSO).

where xnew is the updated position of the producer, xbest is the
position of the best individual (decomposer), and xrand is a randomly
generated position.Theparameterα is theweight factor that controls
the balance between exploration and exploitation, defined as:

α = (1− t
T
) ⋅ r1 (25)

where t is the current iteration, T is the total number of iterations,
and r1 is a random number in the range [0,1]. Initially, α is large,
promoting exploration, but as the iterations increase, α decreases,
leading to more focused exploitation around the best solution.

As the optimization progresses, the Production Operator shifts
the balance from exploration (searching broader regions of the
solution space) to exploitation (refining the best solutions). In the
early iterations, this operator encourages the producer to move
towards randompositions, helping the algorithmavoid local optima.
In later iterations, the influence of the best solution increases,
guiding the producer to converge on the optimal solution. This
dynamic shift ensures that MGO is both thorough in exploring
the solution space and efficient in exploiting promising regions,
ultimately leading to improved convergence and solution quality.

5.3 Local escaping operator (LEO)

Introduced within the Gradient-based Optimizer framework,
the Local Escaping Operator (LEO) functions as a nuanced
local search strategy to augment GBO’s efficacy in real-world
problem spaces. The operator’s role is pivotal in enhancing the
solution position updates and facilitating rapid convergence while
circumventing local optima.

LEO generates potential high-performing solutions SLEO by
synergistically harnessing optimal positions Sb, the solutions Si1,t
and Si2,t, alongside two randomly derived solutions Sr1 and Sr2,
in addition to a newly formulated solution Sk. This interplay is
quantitatively captured in the following formulation:

Sit+1 =
{{{
{{{
{

Sit + k1 ⋅m1 ⋅ (Sb −m2 ⋅ S
k) +

k2

k1
⋅m3 ⋅ (S

i
t − S

i
1,t) +

m2

2
⋅ (Sr1 − Sr2) , if rand < 0.5

Sb + k1 ⋅m1 ⋅ (Sb −m2 ⋅ S
k) +

k2

k1
⋅m3 ⋅ (S

i
2,t − S

i
1,t) +

m2

2
⋅ (Sr1 − Sr2) , otherwise

(26)

In this expression, k1 is uniformly distributed in the interval
[-1, 1], k2 follows a normal distribution, and m1, m2, and m3
are stochastic variables described as, Equations 28–30 describe the
convergence checks and stopping conditions:

m1 = F1 ⋅ 2 ⋅ rand () + (1− F1) (27)

m2 = F1 ⋅ rand () + (1− F1) (28)

m3 = F1 ⋅ rand () + (1− F1) (29)

Here, F1 is a binary switch, activating with a probability
less than 0.5, while rand() yields a random number between 0
and 1. The variable k1 maintains a dynamic equilibrium between
exploitation and exploration, modulated by the sinusoidal rhythm
of ϕ, computed as, finally, Equations 31–34 summarize the derived
expressions for validating model performance:

k1 = 2 ⋅ rand () −ϕ (30)

ϕ = h ⋅ sin(3π
2
)+ sin(h ⋅ 3π

2
) (31)

h = hmin + (hmax − hmin) ⋅ (1−
t

tmax
)

3
(32)

The interval [hmin,hmax] is defined between 0.2 and 1.2. The new
solution Sk is derived from either a random selection or the current
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population based on the outcome of a binary event with a probability
of 0.5, formalized as:

Sk =
{
{
{

Srand, if f2 < 0.5

St,p, otherwise
(33)

6 Architecture of improved mountain
gazelle optimizer (i_MGO)

In this exposition, we detail the refined architecture of
the Improved Mountain Gazelle Optimizer (i_MGO), focusing
on ameliorating its exploitation and exploration stages. These
enhancements are designed to dodge the pitfalls of local optima
and premature convergence, crucial for reliably homing in on the
global optimum.

The i_MGO is a robust framework that introduces significant
adaptations, encapsulating the subsequent integral modifications:

• Modified Production Operator (mPO): Grounded in the
principles of the AEO algorithm’s production operator as
expounded in Section 3.2. The mPO breathes new life into the
exploration phase by amending search agents with a stochastic
ratio, stepping up the algorithm’s capacity to avoid getting stuck
in local minima. The new positional vector is yielded through:

Sit+1 =
{
{
{

(1− α)Sit + αSrand, if rand < 0.6

Sit, otherwise
(34)

where α ∈ [0,1] and Srand = LB+ rand(0,1) × (UB− LB).

• Modified Variation Control (mVC): Represented by E, which
controls the variability of all candidate solutions.

• Modified Local Escaping Operator (mLEO): Derived from the
GBO algorithm’s LEO, the mLEO ameliorates the exploitation
phase by adjusting agents’ positions based on the proximity to
the best-found solutions rather than arbitrary selections.

• Modified Cooperative Communication for Foraging Behavior
(mCCFB): This technique eschews the first strategy from the
original design to circumvent local optima and incorporates
a new transition factor to ensure a graceful exploration-
exploitation trade-off.

• Modified Transition Factor (mTF): This new element
contemplates the iteration count, refining the balance
between exploratory and exploitative behaviors across the
algorithm’s runtime.

6.1 Complexity analysis of improved
mountain gazelle optimizer (i_MGO)

6.1.1 Algorithmic components
Each component of the i_MGO contributes distinctively to its

overall complexity:

• The Gradient Search Operator (GSO) typically involves
computational steps proportional to the number of dimensions

Algorithm 3. The Improved Mountain Gazelle Optimizer (i_MGO)
algorithm algorithm’s algorithmic steps.

d, which can be intensive depending on the complexity of the
function’s gradient.

• The Production Operator (PO) usually entails sorting or
selection mechanisms, commonly having a complexity of
O(n log n).

• The Local Escaping Operator (LEO) is designed to prevent
entrapment in local minima and might involve multiple
function evaluations per cycle.

6.1.2 Overall computational complexity
Combining these components, the per-iteration complexity of

i_MGO can be estimated as:

O (n ⋅ f) + n ⋅ (O (d) +O (log n) +O (m ⋅ f))

where n is the population size, f is the fitness function complexity, d
is the number of dimensions, and m is the number of local searches
per iteration. This simplifies to:

O (n ⋅ ( f + d+ log n+m ⋅ f))

6.1.3 Total complexity for T iterations
Extending the analysis to T iterations, the total

complexity becomes:

O (T ⋅ n ⋅ ( f + d+ log n+m ⋅ f))

This provides a theoretical upper bound on the algorithm’s
computational demand, indicating substantial dependencies on
the function’s complexity and the algorithm’s configuration. The
complexity analysis underscores the computational demands
of i_MGO, providing insights into its efficiency and scalability.
Understanding these aspects is crucial for optimizing its
performance across various optimization landscapes.

7 Results and simulation

This section presents comprehensive experiments that state
the effectiveness of the Improved Mountain Gazelle Optimizer
(i_MGO) for the parameter identification of the three PV models
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TABLE 3 Best parameter values for various optimization algorithms.

Common parameters for all algorithms

Parameter Best Value/Setting

Population Size (N) 30–50 (for most algorithms)

Maximum Iterations (MaxIter) 500–1,000

Algorithm-Specific Parameters

Harris Hawks Optimization (HHO) • Hawks’ Social Behavior: 0.5 (for balanced collaboration)
• Exploration Rate: 0.6 (initial exploration)
• Exploitation Rate: 0.9 (late-stage exploitation)
• Initial Position: Randomly within bounds

Lightning Attachment Procedure Optimization (LAPO) • Lightning Strike Strength: 0.8 (strong enough to drive exploration)
• Attachment Distance: 0.5 (moderate attachment to the target)
• Number of Strikes: 10–20 strikes for convergence
• Step Size: 0.2 (ensures steady progress towards optimal)

Sine Cosine Algorithm (SCA) • Exploration and Exploitation Control: Balanced between sine and cosine oscillations
• Amplitude: 0.5–1.0 (adjusts the search space)
• Frequency: 0.1–0.5 (modifies the number of oscillations)
• Population Size: 30–50

Grey Wolf Optimizer (GWO) • Number of Wolves: 3 (Alpha, Beta, Delta)
• Convergence Rate: Medium (adjust based on problem complexity)
• Exploration vs. Exploitation Ratio: 0.7 (strong exploration initially)
• Social Hierarchy: Emphasize Alpha, Beta, Delta rankings

African Vultures Optimization Algorithm (AVOA) • Vultures’ Flight Pattern: Random but adaptive based on fitness
• Exploration Factor: 0.6 (balanced exploration)
• Convergence Rate: 0.9 (ensures fast convergence)
• Number of Vultures: 30–50

Hippopotamus Optimization Algorithm (HO) • Hippopotamus Behavior: Controlled by water availability, usually 0.5–0.8
• Water Availability Factor: 0.7 (promotes feasibility in the search)
• Exploration Range: 0.5–1.0 (wide exploration in early iterations)
• Population Size: 30–50

Electric Eel Foraging Optimization (EEFO) • Eel’s Electrical Field Strength: 0.5–1.0 (moderate strength for good exploration)
• Search Range: 0.3–0.7 (appropriate for fine search near best solution)
• Fitness Function: Defined according to specific problem’s objective
• Step Size: 0.1–0.5 (appropriate for stable progression)

Synergistic Swarm Optimization Algorithm (SSOA) • Synergy Factor: 0.8 (strong cooperation between swarm agents)
• Inertia Weight: 0.9 (initial high value for exploration)
• Cognitive Factor: 1.5–2.0 (individual’s attraction to its own best position)
• Social Factor: 1.5–2.0 (attraction to the swarm’s best position)
• Population Size: 30–50

Coati Optimization Algorithm (COA) • Foraging Behavior: Adaptable between exploration and exploitation (0.6–0.8)
• Search Range: 0.3–0.5 (fine adjustments for better convergence)
• Exploration vs. Exploitation: 0.7 (more focus on exploitation as iterations progress)
• Population Size: 30–50

Gazelle Optimization Algorithm (GOA) • Gazelle’s Agility: 0.7 (moderate speed for better exploration)
• Jump Length: 0.3–0.5 (determines the step size for movement)
• Herd Behavior: Emphasis on collective movement towards optimal areas
• Population Size: 30–50

for a solar cell known as RTC France. The experiments on the
three PV models, SDM, DDM, and TDM, are shown in Tables 3–5.
Testing accuracy of the suggested i_MGO estimates the unknown
parameters for those three distinct PV models. This section proposes
comparative experiments and justifies our recommendation of
the proposed optimization algorithm. Results of the i_MGO are

compared with Harris Hawks Optimization (HHO), Lightning
Attachment ProcedureOptimizationAlgorithm (LAPO), SineCosine
Algorithm (SCA), Grey Wolf Optimizer (GWO) (Mirjalili et al.,
2014), African Vultures Optimization Algorithm (AVOA),
Hippopotamus Optimization Algorithm (HO), Electric Eel Foraging
Optimization (EEFO), Synergistic Swarm Optimization Algorithm
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(SSOA), Coati Optimization Algorithm (COA), and Gazelle
Optimization Algorithm (GOA).

In this study, the threshold for optimal performance is defined
based on the Root Mean Square Error (RMSE), a widely accepted
metric used to measure the accuracy of model predictions.
Specifically, we define the optimal performance threshold as
the minimum RMSE value achieved across a set of trials for
each optimization algorithm. The RMSE quantifies the difference
between the simulated output of the photovoltaic (PV) models and
the actual measured values, where lower RMSE values indicate
better model accuracy. In this context, the optimal performance is
considered when the algorithm yields the lowest RMSE value after
performing multiple iterations and optimization steps.

To determine this threshold, we conductmultiple trials, typically
30 repetitions, for each algorithm. The results are averaged, and
the algorithm that achieves the lowest mean RMSE value across
these trials is considered to have reached the optimal performance
threshold. Additionally, we use a convergence criterion, where
the optimization process is considered complete when the RMSE
stabilizes and reaches its lowest point. This stabilization typically
occurs after a fixed number of iterations, usually around 120
iterations in this study. At this point, the exploration-exploitation
balance in the optimization process is deemed optimal.

Moreover, the optimal performance threshold is not solely based
on RMSE. We also consider other key performance metrics, such as
the Fill Factor and Iphoto, which are indicators of the efficiency and
effectiveness of the PV system. The Fill Factor is an important metric
forassessingthequalityof thephotovoltaicoutput,andIphotoisrelated
to the photogenerated current in the PV system. These metrics help
to ensure that the chosen parameters do not onlyminimize the RMSE
but also lead to a realistic and efficient PV model.

Finally, the performance of the Improved Mountain Gazelle
Optimizer (i_MGO) is compared to several well-established
optimization algorithms, including HHO, LAPO, SCA, GWO,
AVOA, HO, EEFO, SSOA, COA, and GOA. For each algorithm,
the RMSE values, Fill Factor, and Iphoto are calculated, and
the algorithm achieving the lowest RMSE, along with the most
consistent performance, is identified as optimal. This comparison
allows us to highlight the strengths of i_MGO in achieving superior
results in a shorter time frame while maintaining consistency across
multiple trials. The optimal threshold is thus validated by both the
RMSE values and the additional performance metrics, ensuring that
the algorithm performs well in both accuracy and efficiency.

Reasons for Selecting These Algorithms for Comparison:

• Harris Hawks Optimization (HHO): A nature-
inspired algorithm known for its efficiency in complex
optimization tasks.

• Lightning Attachment Procedure Optimization (LAPO): This
algorithm is chosen for its potential to handle dynamic and
difficult optimization problems.

• Sine Cosine Algorithm (SCA): Effective for continuous
optimization, especially when minimizing simulation
discrepancies.

• Grey Wolf Optimizer (GWO): A widely recognized
metaheuristic inspired by the leadership hierarchy and hunting
behavior of grey wolves.

• African Vultures Optimization Algorithm (AVOA): Known
for its application in solving real-world engineering problems,
providing a robust optimization approach.

• Hippopotamus Optimization Algorithm (HO): A recent bio-
inspired algorithm effective for global optimization tasks.

• Electric Eel Foraging Optimization (EEFO): Provides reliable
results in continuous and complex optimization problems due
to its adaptive nature.

• Synergistic Swarm Optimization Algorithm (SSOA): A variant
of swarm intelligence algorithms beneficial in optimizing
complex systems.

• Coati Optimization Algorithm (COA): A nature-inspired
algorithm that mimics the cooperative foraging behavior of
coatis, proper in global optimization.

• Gazelle Optimization Algorithm (GOA): Inspired by the agile
nature of gazelles, it’s beneficial in continuous optimization
problems requiring high precision.

These algorithms were chosen for their diverse optimization
strategies. They represent a wide range of metaheuristic approaches
that are effective in tackling global optimization challenges,
especially in complex systems like PV models.

The parameter settings for each algorithm can
be found in Table 3.

The accuracy and resemblance of the P-V and I-V estimations
to measured data are documented to demonstrate the effectiveness
of the parameter estimation. The root mean square error (RMSE)
over 30 trials was compared between (m_WO) and the advanced
algorithms. The following subsections will discuss the time
complexity to reach saturation and the minimal RMSE.

For a fair benchmarking comparison, 30 trials with 500
iterations per run were conducted for the i_MGO method and
the competing algorithms. The experiments were performed on
a machine with the following specifications: a 2.40 GHz Intel(R)
Core(TM) i7-4700 MQ processor running 64-bit Windows 10
Professional, with 16 GB of RAM. All algorithms were implemented
using MATLAB R2019a.

7.1 Experiments on single-diode mode

The calculation results for the Single-Diode model (SDM)
in the paper demonstrate that the Improved Mountain Gazelle
Optimizer (i_MGO) significantly outperforms other optimization
algorithms in terms of accuracy and efficiency.The i_MGOachieved
the lowest Root Mean Square Error (RMSE) values, indicating
superior precision in parameter estimation compared to competitors
such as Harris Hawks Optimization (HHO), Lightning Attachment
ProcedureOptimizationAlgorithm (LAPO), SineCosineAlgorithm
(SCA), and Grey Wolf Optimizer (GWO). The i_MGO also showed
remarkable consistency and reliability across multiple calculation
runs, with a rapid convergence rate that enhances computational
efficiency. These attributes confirm the i_MGO’s effectiveness in
optimizing parameters for the Single-Diode PV model, making it a
valuable tool for researchers and engineers working in solar energy
technologies.

The most accurate parameter values and the corresponding
Root Mean Square Error (RMSE) values are presented in Table 4.
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FIGURE 6
Comparison between algorithms based on SDM. (a) Convergence curve. (b) P-V Characteristics. (c) Trials minimum fitness value. (d) I-V Characteristics.

The calculation results following the execution of each optimizer
30 times on the SDM-based RTC France are detailed in the
table.

The results indicate that i_MGO is the most effective algorithm.
Its Best RMSE performance is on par with specific algorithms
and exceeds others in every performance metric. On the contrary,
i_MGO exhibits parity with fifty percent of the algorithms
as determined by the worst RMSE results. Furthermore, the
standard deviation is documented as a supplementary metric
for assessing performance. In all cases, i_MGO consistently
outperforms alternative algorithms or maintains parity, never
demonstrating subpar performance. In addition, examining the fill
factor and Iphoto parameters highlights discrepancies between the
results generated by i_MGO and those generated by alternative
algorithms.

As illustrated in Figure 6a, the convergence curve is utilized
in our analysis investigations to assess the rate at which
the i_MGO algorithm achieved stability and reduced Root
Mean Square Error (RMSE). In contrast to its claim of being
the quickest algorithm to converge, i_MGO demonstrated a
similar and satisfactory rate compared to the other algorithms,
according to our findings. Nonetheless, the i_MGO was

identified as having the minimum RMSE value. Significantly,
the optimal performance threshold was successfully achieved
after 120 iterations, demonstrating that i_MGO effectively
achieves increased precision in a relatively short computational
period.

Furthermore, the P–V and I–V curves derived from the
optimal parameters obtained via the i_MGO algorithm are
depicted in Figures 6b,d, respectively. The visual depictions
illustrate the correspondence between the projected and observed
measurements. The parameters deduced by i_MGO enable the
achievement of current and power levels highly consistent with
the empirical data, as evidenced by the figures.

Figure 6c presents the voltage-current characteristics for the
double-diode model. The superior performance of the proposed
i_MGO algorithm over other optimization techniques, such as
GWO, HHO, and PSO, can be attributed to several scientific and
mathematical factors:

1. Balanced Exploration and Exploitation:The i_MGO algorithm
integrates a dynamic Gradient Search Operator (GSO) and a
Modified Local Escaping Operator (LEO). The GSO ensures
effective exploitation by refining solutions in the later stages of
optimization, while the LEO prevents premature convergence
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by allowing the search to escape local optima. Mathematically,
this balance is modeled using the following transition:

Xnew = Xcurrent + α ⋅ rand () ⋅ (Xbest −Xcurrent)

where α represents the adaptive transition factor, and rand()
introduces controlled randomness. This mechanism enhances
convergence speed and accuracy.

2. Adaptive Mechanisms: The Modified Transition Factor (mTF)
in i_MGO dynamically adjusts the exploration-exploitation
trade-off based on the current iteration.This adaptive behavior
can be expressed as:

mTF (t) =
{{
{{
{

β ⋅ (1− t
T
), t < T/2

γ ⋅ ( t
T
), t ≥ T/2

Here, β and γ are constants, t is the current iteration, and T is the
total number of iterations. This ensures that early iterations focus
on global exploration, while later iterations refine solutions in a
localized search space.

3. Robust Handling of Search Space Complexity: The Single-
Diode Model (SDM) is characterized by a non-linear
parameter space with multiple local minima. Traditional
algorithms like PSO and GWO often get trapped in these
local minima, leading to suboptimal solutions. The i_MGO
algorithm employs stochastic updates within the LEO, as
shown below:

Xupdated = Xcurrent + δ ⋅ rand () ⋅ (Xrandom −Xcurrent)

where δ is a scaling factor, andXrandom is a randomly chosen solution.
This mechanism diversifies the search and reduces the likelihood of
stagnation.

4. Improved RMSE Performance: The Root Mean Square
Error (RMSE) metric highlights the accuracy of parameter
estimation. The i_MGO achieves an RMSE of 0.00081373
for the SDM, significantly outperforming competitors.
This is due to the algorithm’s ability to fine-tune
solutions iteratively while maintaining diversity in the
search space.

5. Scientific Justifications:The i_MGO algorithmmimics gazelle-
inspired foraging behavior, where adaptive decision-making
ensures optimal resource discovery. This is analogous to the
optimization process, where adaptive operators guide the
search efficiently through the solution space. Unlike simpler
approaches like GWO, which lacks adaptive capabilities, or
PSO, which struggles in high-dimensional spaces, the i_
MGO’s biologically inspired enhancements lead to superior
performance.

In summary, the proposed algorithm’s success lies in its
ability to dynamically balance search mechanisms, adaptively tune
parameters, and robustly navigate complex solution landscapes,

ensuring accurate and reliable parameter identification for the
Single-Diode Model.

7.2 Experiments on double-diode model

The analysis evaluation of the Double-Diode model using
the Improved Mountain Gazelle Optimizer (i_MGO) revealed
significant improvements in parameter estimation accuracy
and efficiency. The i_MGO consistently achieved lower Root
Mean Square Error (RMSE) values compared to other advanced
optimization algorithms such as Harris Hawks Optimization,
Lightning Attachment Procedure Optimization, Sine Cosine
Algorithm, and Grey Wolf Optimizer. Notably, the i_MGO
demonstrated robust performance with enhanced convergence
speeds, ensuring quick attainment of optimal solutions. The
algorithm’s ability to reliably and precisely estimate the
complex parameters of the Double-Diode model underscores
its potential as a powerful tool in PV model optimization,
facilitating more accurate simulations and designs in solar
energy systems.

Following thirty iterations of each algorithm execution on
the DDM-based RTC France, the RSME values for the best and
worst outcomes are recalculated and are displayed in 5. The data
presented in the table indicates that i_MGO achieves the highest
root mean square error (RMSE) among the evaluated algorithms.
Notably, the most egregious root mean square error (RMSE) value
recorded in Table 4 indicates that i_MGO outperforms 90% of the
alternative algorithms. The convergence curve of the implemented
DDM-based algorithms is depicted in 7-a. i_MGO outperforms
the alternative algorithms in terms of speed and attaining the
smallest Root Mean Square Error (RMSE). Although not the most
expeditious, the convergence rate of i_MGO is deemed satisfactory,
as it reaches saturation after an estimated 130 iterations. Its
consistent ability to attain the smallest RMSE values is significantly
offsetting this convergence behavior.

The primary reasons for this performance are as follows:

• The increased complexity of the DDM, involving additional
parameters and non-linear interdependencies, is effectively
addressed by the adaptive Modified Transition Factor (mTF).
This ensures a gradual transition from global exploration to
localized refinement, enabling precise parameter estimation
even in high-dimensional solution spaces.

• The Modified Local Escaping Operator (LEO) prevents the
algorithm from being trapped in local minima by introducing
stochastic updates, which maintain diversity in the population
and explore unexplored regions of the search space.

• The dynamic behavior of the Gradient Search Operator
(GSO) enables more accurate convergence to the global
optimum, thereby reducing errors in parameter identification
for the DDM.

• Scientifically, the gazelle-inspired optimization framework
adapts well to the DDM’s multi-modal landscape by
mimicking the decision-making processes found in nature.
This ensures that the algorithm can navigate complex
search spaces with greater efficiency compared to traditional
methods.

Frontiers in Energy Research 16 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1464011
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Salama AbdElminaam et al. 10.3389/fenrg.2025.1464011

7.3 Experiments on triple-diode model

The analysis of the Triple-Diode model using the Improved
Mountain Gazelle Optimizer (i_MGO) yielded remarkable
outcomes. The i_MGO demonstrated a superior capability in
achieving the lowest Root Mean Square Error (RMSE) values
across all tested optimization algorithms. This indicates a significant
advancement in the precision of parameter estimations for complex
PV models. Additionally, the i_MGO displayed a rapid convergence
rate, which is crucial in reducing computational time and resource
usage. Notably, the results also underscore the robustness and
consistency of the i-MGO, making it an indispensable tool for
researchers and practitioners seeking to enhance the efficiency and
effectiveness of Triple-Diode PV systems. The consistency of the
results across various calculation setups reaffirms the optimizer’s
reliability and its potential to serve as a benchmark tool in the
field of solar energy optimization. Table 6 shows the comparative
performance metrics of the i_MGO algorithm against conventional
optimization methods across different PV models.

This section utilizes the i-MGO algorithm to determine the
optimal TDM parameters, as specified by RTC France, thereby
enabling a thorough assessment of its performance. The results
produced by different algorithms in this particular context are
displayed in Table 5. It is evident that i_MGO outperforms the
others and is the most effective algorithm. Furthermore, the
table presents the root mean square error (RMSE) values, which
contrast the performance of i_MGO with that of its competitors,
significantly differentiating i_MGO from all other algorithms
assessed. In addition, the convergence contours of each algorithm
are illustrated in Figure 7a, highlighting the superior performance
of i_MGO. An examination of this graph indicates that i_MGO
attains its minimum root mean square error (RMSE) after around
120 iterations. As shown in 8b and 8d, although i_MGO does
not converge the quickest, it is the most precise algorithm when
compared to the others in estimating the unknownparameters of the
TDM-based RTC France solar cell. The presented data indicate that
the I-V and P-V curves estimated by i_MGO and the corresponding
measured data exhibit high congruence.

Figure 7c highlights the effect of irradiance variation on PV
output using the proposed model. The Triple-Diode Model (TDM)
presents an even greater optimization challenge due to its higher
dimensionality and increased number of parameters compared to
the SDM and DDM. The proposed i_MGO algorithm demonstrates
remarkable performance in addressing these challenges, achieving
an RMSE of 0.00092975, significantly outperforming competing
algorithms.

Figure 8 illustrates a comparative analysis of the execution time
(run time) across different optimization algorithms employed for
photovoltaic (PV) parameter estimation in the study. The figure
provides valuable insight into the computational efficiency of each
algorithmwhen applied to the three PVmodels: Single-DiodeModel
(SDM), Double-Diode Model (DDM), and Triple-Diode Model
(TDM) on the RTC France cell.

The I_MGO consistently demonstrated a favorable balance
between accuracy and speed, achieving shorter convergence times
while maintaining high precision, as evident from its RMSE
performance. Compared to traditional algorithms like the Sine
Cosine Algorithm (SCA), Grey Wolf Optimizer (GWO), and

Electric Eel Foraging Optimization (EEFO), the i_MGO reached
optimal solutions more rapidly and stabilized sooner during
iteration cycles.

In the case of the Single-Diode Model (SDM), the I_MGO
displayed superior efficiency by achieving faster convergence
compared to its peers. It demonstrated a significant reduction in run
time while maintainingminimal RMSE, showcasing its effectiveness
in solving simpler PV model structures. Traditional algorithms
like SCA and GWO took longer to converge, indicating that their
exploration phases may delay optimization in less complex models.
The faster stabilization of i_MGO highlights the advantage of its
hybrid mechanisms (GSO, PO, LEO) in quickly reaching near-
optimal solutions as shown in Figure 8a.

For the more complex Double-Diode Model (DDM), I_MGO
continued to outperform others in terms of runtime efficiency.
Although the problem complexity increased, I_MGO maintained a
reasonable execution time while still achieving low RMSE values.
This shows that the enhancements in I_MGOoffer not just improved
accuracy but also scalability in handling mid-level complexity
models. In contrast, algorithms like HO and SSOA showed
noticeable delays, possibly due to prolonged search phases required
to explore the expanded parameter space as shown in Figure 8b.

With the Triple-Diode Model (TDM) as shown in Figure 8c
being the most complex among the three, the run time naturally
increased for all algorithms. However, I_MGO still achieved a faster
and more stable convergence compared to most alternatives. Its
runtime remained consistently lower, especially when compared to
exploration-heavy algorithms like COA and AVOA, which required
more time to escape local minima. Despite the complexity, I_MGO’s
hybrid strategy allowed it to effectively navigate a larger solution
space without significant increases in computational burden.

Across all three PV models, I_MGO consistently demonstrated
the best trade-off between accuracy and execution time. Its ability
to converge faster without compromising solution quality makes it
highly effective for real-time PV system modeling. The inclusion
of Gradient Search Operator, Production Operator, and Local
EscapingOperator significantly enhanced its convergence speed and
robustness.The runtime advantage of I_MGOwas especially evident
in higher-complexitymodels, proving its versatility and adaptability.

In summary, Figure 8 validates I_MGO as a computationally
efficient and accurate optimizer, suitable for diverse PV model
complexities—from simple SDM to highly nonlinear TDM.

Figure 9a compares model accuracy under standard
conditions, while Figure 9c shows the behavior under partial
shading. The reasons for this improved performance include:

The TDM involves complex parameter interactions that can lead
to highly non-linear error surfaces. The adaptive behavior of the
Modified Transition Factor (mTF) ensures effective navigation of
this landscape by emphasizing exploration in the early stages and
localized refinement in the later stages. The stochastic nature of the
Modified Local Escaping Operator (LEO) is particularly crucial in
the TDM, where local minima are more prevalent. This operator
introduces diversity into the search process, preventing premature
convergence and ensuring better global search capability.The
gazelle-inspired optimization framework adapts well to the TDM’s
multi-modal landscape by leveraging nature-inspired decision-
making processes. This adaptability gives i_MGO a significant
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FIGURE 7
Comparison between algorithms based on DDM. (a) Convergence curve. (b) p-V Characteristics. (c) Trials minimum fitness value. (d) I-V Characteristics.

FIGURE 8
Run Time Comparison between algorithms. (a) SDM. (b) DDM. (c) TDM.

advantage over algorithms like PSO and GWO, which often struggle
in such high-dimensional spaces.

So that that the i_MGO not only provides accurate parameter
estimation but also ensures faster convergence, making it suitable
for real-time PV modeling applications where computational time
is a critical factor.

7.4 Comparative analysis of robustness
performance and statistical evaluation

This section presents a detailed comparative analysis assessing
the robustness and statistical performance of the Improved
Mountain Gazelle Optimizer (i_MGO) against various established
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FIGURE 9
Comparison between algorithms based on TDM. (a) Convergence curve. (b) p-V Characteristics. (c) Trials minimum fitness value. (d) I-V Characteristics.

optimization algorithms across different PV models. The analysis
focused on multiple performance metrics, including Root Mean
Square Error (RMSE), convergence speed, and consistency across
various runs. Statistical evaluations demonstrated that the i_
MGO consistently achieved superior performance metrics, showing
lower RMSE values and faster convergence rates compared to
competitors such as theGreyWolf Optimizer (GWO) and theHarris
Hawks Optimization (HHO). Furthermore, the i_MGO displayed
exceptional robustness in handling different parameter estimation
challenges within Single-Diode, Double-Diode, and Triple-Diode
models, affirming its reliability and efficiency. This comparative
study not only highlights the strengths of the i_MGO but also
provides critical insights into its potential for broader application in
optimizing complex systems in the renewable energy sector.

In Section 7-a, 7-b, 7-c a comparison is made among the three
PVmodels (TPVM).The efficacy of various approaches utilizing the
proposed i_MGO algorithm is evaluated within the framework of
TPVM. The effectiveness of each algorithm is assessed in terms of
its convergence curve, minimum Root Mean Square Error (RMSE)
value, and duration. The standard deviation (SD) is employed
concurrently to evaluate the system’s dependability.

In the areas of accuracy and reliability, the i_MGO outcomes
are superior. According to our analysis of the results, the i_MGO

has the highest accuracy for the SDM, followed by the HHO, SSOA,
HO, LAPO, EEFO, GWO, AVOA, MGO, COA, and SCA in that
order.

The convergence curve shows satisfactory iterations to reach the
least RMSE. Convergence time is very comparable relative to the
fastest algorithms. On the other hand, the best accuracy is achieved.

For SDM, DDM, and TDM, the optimal RMSE values for
the suggested i_MGO algorithm are 0.00081373, 0.00073908 and
0.00092975, respectively. In addition to displaying the P-V and I-
V curves, Figures 6b,d, 7b,d, 9b,d show the absolute error value
between the simulated and analysis results for power and current.
These figures states efficiency and outperformance of the suggested
algorithm i_MGO.

8 Conclusion

This study has successfully demonstrated the efficacy of i_
MGO in improving parameter estimation for various PV models.
The i_MGO algorithm has consistently outperformed traditional
optimization algorithms such as the Harris Hawks Optimization
and the Grey Wolf Optimizer, particularly in terms of accuracy
and convergence efficiency. The innovative enhancements in the
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i_MGO, including the integration of Gradient Search Operator
(GSO), Production Operator (PO), and Local Escaping Operator
(LEO), have significantly improved its robustness and reliability in
dealing with complex optimization problems. These advancements
have facilitated more precise and faster convergence, essential for
the dynamic and computationally intensive field of PV simulation
and design. The findings underscore the potential of i_MGO as a
powerful tool for researchers and practitioners in the renewable
energy sector, offering improvements in the performance and
feasibility of solar energy systems. Furthermore, the thorough
comparison highlights the exceptional performance exhibited by i_
MGO in diverse solar cell configurations. In particular, the Root
Mean Square Error (RMSE) value obtained by i_MGO for the
SDM was an optimal 0.00081373, whereas the DDM demonstrated
a remarkable 0.00073908. Likewise, about the TDM, i_MGO
achieved an outstanding root mean square error (RMSE) value of
0.00092975. The findings of this study underscore the exceptional
accuracy and efficacy of i_MGO in estimating parameters, thereby
underscoring its substantial impact on the progression of solar
cell modeling and optimization methodologies. Furthermore, it
provides researchers and practitioners in the field with invaluable
guidance.

9 Future works

Looking forward, several avenues are open for further research
and development which can be summarized in the following
directions:

• Algorithm Improvement: Further enhancing the i_MGO
algorithm through hybridization with other metaheuristic
techniques.

• Broader Applications: Exploring the applicability of i_MGO to
other renewable energy domains and real-world scenarios.

• Hardware and AI Integration: Leveraging hardware
acceleration and machine learning techniques to optimize the
performance and efficiency of i_MGO.

These future directions not only aim to broaden the scope of the
i_MGO but also contribute to its evolution as a cornerstone in the
optimization landscape of renewable energy technologies.
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