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Introduction: Carbon Dioxide Enhanced Oil Recovery (CO2-EOR) is a well-
established technology that has been deployed for over 2 decades, primarily
to boost oil recovery rates. Recently, however, CO2-EOR has gained attention as
a potential carbon mitigation strategy, given its ability to both enhance oil
recovery without requiring extensive new drilling and store CO2 in subsurface
formations. This dual function aligns with net-zero carbon goals, as CO2 is partly
trapped in the reservoir through solubility and hysteresis effects on relative
permeability. The performance of CO2-EOR, in terms of both oil recovery and
CO2 storage potential, depends on numerous factors, including reservoir
properties such as porosity, permeability, thickness, fluid composition, and
operating conditions like bottom-hole pressure and injection rates. Traditional
screening for CO2-EOR candidate reservoirs typically relies on experimental
work, simulation studies, and field analogs, all of which require significant time
and resources. However, a large dataset exists from prior CO2-EOR projects,
which could enable more efficient screening.

Methods: To leverage this data and capitalize on recent advancements in artificial
intelligence, we developed an integrated methodology to predict CO2-EOR
production profiles rapidly and accurately. Using Artificial Neural Networks
(ANN), we trained a proxy model (PM) with over 2,000 simulation cases based
on real-world CO2-EOR projects. Themodel’s novelty lies in its ability to generate

OPEN ACCESS

EDITED BY

Hussein Hoteit,
King Abdullah University of Science and
Technology, Saudi Arabia

REVIEWED BY

Alireza Kazemi,
Sultan Qaboos University, Oman
Yazhou Liu,
China University of Petroleum, Beijing, China

*CORRESPONDENCE

Amirmasoud Kalantari Dahaghi,
Masoud@ku.edu

RECEIVED 12 September 2024
ACCEPTED 03 February 2025
PUBLISHED 06 March 2025

CITATION

Emera R and Kalantari Dahaghi A (2025)
Maximizing conventional oil recovery and
carbon mitigation: an artificial intelligence-
driven assessment and optimization of carbon
dioxide enhanced oil recovery with physics-
based dimensionless type curves.
Front. Energy Res. 13:1478473.
doi: 10.3389/fenrg.2025.1478473

COPYRIGHT

© 2025 Emera and Kalantari Dahaghi. This is an
open-access article distributed under the terms
of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in
other forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in this
journal is cited, in accordance with accepted
academic practice. No use, distribution or
reproduction is permitted which does not
comply with these terms.

Abbreviations: AHM, Assisted History Match; AI, Artificial Intelligence; ANN, Artificial Neural Network;
BBD, Box Behnken Design; BHFP, Bottom Hole Flowing Pressure; BHP, Bottom Hole Pressure; CCUS,
Carbon Capture Utilization and Storage; CO2, Carbon dioxide; EOR, Enhanced Oil Recovery; GHG,
Greenhouse Gas; GOC, Gas Oil Contact; HCPVI Hydrocarbon, Pore Volume Injected; LSSVM, Least
Squares Support Vector Machines; MAE, Mean Absolute Error; MAPE, Mean Absolute Percentage Error;
MARS, Multivariate Adaptive Regression Splines; MMP, MinimumMiscibility Pressure; MSE, Mean Squared
Error; PM, Proxy Model; PVT, Pressure-Volume-Temperature; Qg, Gas Flow Rate; Qo, Oil Flow Rate; R2,
Correlation of Coefficient; ReLU, Rectified Linear Unit; RMSE, Root Mean Square Error; RP, Relative
Permeability; WAG, Water Alternate Gas; WOC, Water Oil Contact.

Frontiers in Energy Research frontiersin.org01

TYPE Original Research
PUBLISHED 06 March 2025
DOI 10.3389/fenrg.2025.1478473

https://www.frontiersin.org/articles/10.3389/fenrg.2025.1478473/full
https://www.frontiersin.org/articles/10.3389/fenrg.2025.1478473/full
https://www.frontiersin.org/articles/10.3389/fenrg.2025.1478473/full
https://www.frontiersin.org/articles/10.3389/fenrg.2025.1478473/full
https://www.frontiersin.org/articles/10.3389/fenrg.2025.1478473/full
https://www.frontiersin.org/articles/10.3389/fenrg.2025.1478473/full
https://www.frontiersin.org/articles/10.3389/fenrg.2025.1478473/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2025.1478473&domain=pdf&date_stamp=2025-03-06
mailto:Masoud@ku.edu
mailto:Masoud@ku.edu
https://doi.org/10.3389/fenrg.2025.1478473
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2025.1478473


dimensionless type curves and their derivatives, which can be matched with
production data to estimate average reservoir characteristics at later project stages.

Results and Discussions:Our results demonstrate that the proxy model achieves a
high level of accuracy, with a maximum Mean Absolute Error (MAE) of 0.012 and a
correlation coefficient of 0.99 between predicted and simulated results across
three output variables. Additionally, a sensitivity analysis revealed the significant
influence of parameters such as fluid composition, rock-fluid interaction, porosity,
permeability, and initial reservoir pressure on CO2-EOR production profiles. This
approach provides a rapid, cost-effective alternative to conventional methods,
allowing for quicker and more informed decision-making in CO2-EOR projects.

KEYWORDS

compositional dimensionless type curves, AI-based proxy model, CO2-EOR, CCUS, CO2-
EOR type curves

1 Introduction

CO2 flooding, an enhanced oil recovery technique with a history
spanning over 4 decades, holds promise for unlocking technically
recoverable oil reserves across various global basins (GHG, 2009).
Estimates suggest substantial reserves, with the Middle East alone
potentially harboring up to 451 billion barrels of technically
recoverable oil. In the United States, CO2 flooding projects
yielded around 300,000 barrels per day in 2012 (Dean et al.,
2018). Notably, when sourced from industrial emissions (referred
to as anthropogenic CO2), CO2 used in EOR can have positive
environmental implications. By capturing and injecting industrial
CO2 underground, it becomes sequestered within the reservoir,
mitigating its atmospheric presence and reducing its contribution
to the greenhouse effect. This integration has positioned CO2 EOR
within the framework of Carbon Capture Utilization and Storage
(CCUS). In the United States, CO2 EOR fields have the potential to
accommodate between 55 billion to 119 billion metric tons of CO2

under the “2019 View,” with projected oil production ranging from
84 billion to 181 billion barrels of stranded oil (NPC, 2019).

Various approaches to CO2-EOR are employed based on specific
reservoir conditions and operational constraints. Among these

methods, miscible or immiscible flooding stands out as the most
prevalent. In miscible flooding, CO2 is injected at pressures sufficient
to achieve full miscibility, effectively blending CO2 and oil into a
single liquid phase. For reservoirs characterized by extensive vertical
communication—exhibited by high permeability and continuity of
oil-bearing pore space in the vertical direction—a gravity-stabilized
miscible flood is often favored as the optimal operational mode, as
noted (Claridge, 1972).

Utilizing CO2 flooding for enhanced oil recovery relies on
specific criteria for identifying suitable reservoir candidates.
Scholars have put forth various sets of selection criteria over the
years. Initially introduced by Taber et al. (1997) (Taber et al., 1997)
and subsequently refined by (Aladasani and Bai, 2010), these criteria
have been further elucidated by (Yin, 2015) with a focus on US fields.
A comprehensive overview of these selection criteria, as outlined by
the aforementioned researchers, is presented in Table 1.

In recent years, numerous researchers have explored the
application of diverse machine learning algorithms in the design
of enhanced oil recovery (EOR) projects, with a particular emphasis
on CO2 flooding strategies. For instance, a deep learning classifier
has been employed to forecast the optimal EOR approach by
considering multiple factors, including lithology, reservoir

TABLE 1 CO2 selection criteria range (Yin, 2015).

Taber et al. (1997) Aladasani and Bai (2010) Gao and Pan (2010) Yin (2015)

Sandstone Carbonate

Porosity (%) 3–37 >12 7–295 4–23.7

Permeability (mD) >10 >10 >2

Gravity (°API) >22 28–45 >27 >27 >28

Viscosity (cp) <10 0–35 <10 <3 <6

Temperature (°F) 82–250 83–260 86–232

Depth (ft) 1,500–13,365 >2,500 1,150–11,950 3,000–11,100

Oil Saturation (%) >20 15–89 >20

Water Flooding
Recovery Factor

20%–50% OOIP

Net Thickness (ft) 15–268 (75–137)
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characteristics such as depth, porosity, and permeability, as well as
reservoir fluid properties like oil gravity and viscosity. Remarkably,
this classifier achieved an impressive accuracy level of up to 95%
(Kumar Pandey et al., 2023) Additionally, artificial neural network
(ANN) algorithms offer a means to investigate the behavior of pure
CO2 foam in porous media and its rheological properties, offering an
alternative to labor-intensive laboratory experiments in the context
of CO2 EOR and sequestration endeavors (Iskandarov et al., 2022).

Furthermore, machine learning techniques enable the
preliminary evaluation of CO2 storage in residual oil zone
reservoirs under various scenarios, such as continuous CO2

injection or WAG (water alternating gas), aiding in the
determination of CO2 storage capacity. Notably, the Multivariate
Adaptive Regression Splines (MARS) technique has demonstrated
superior accuracy in this context (Chen and Pawar, 2019).

Proxy models serve as efficient tools that swiftly provide
insights typically derived from extensive simulation studies.
These models are based on predefined parameter equations
and leverage hybrid machine learning algorithms such as least
squares support vector machines (LSSVM) and box-Behnken
design (BBD) to generate predictions, notably exhibiting
satisfactory results in forecasting oil recovery factors in CO2

injection scenarios (Ahmadi et al., 2018).
Carbon dioxide is recognized as one of the greenhouse gas

emissions (GHG). Reports indicate that between 2006 and 2015,
approximately 38 giga metric tons per year of CO2 were discharged
into the atmosphere from anthropogenic sources, encompassing
activities such as fossil fuel emissions and land-use changes. Despite
the capacity of ocean and terrestrial plants to act as sinks for CO2,
thereby reducing its atmospheric concentration, the rate of
emissions surpasses the sink’s capacity, resulting in an annual
accumulation of CO2 in the atmosphere at a rate of 2 parts per
million (ppm) (Le Quéré et al., 2016). Globally, nations have
committed to attaining carbon emission neutrality, with 90% of

them targeting 2050 as the deadline for this objective, while others
aim for 2060. Carbon Capture, Utilization, and Storage (CCUS)
emerges as a climate change mitigation strategy, involving the
capture of emitted CO2 from stationary sources and subsequent
distribution for either utilization or storage purposes (Tapia et al.,
2018). Geological storage of CO2 in subsurface formations
represents a viable pathway towards achieving net zero emissions
goals. Such storage can take various forms, including injection into
saline aquifers, depleted oil reservoirs, or CO2-EOR projects. Given
that only a fraction (50%–67%) of injected CO2 in EOR projects is
recoverable at the surface alongside produced oil, the remainder is
sequestered in the subsurface (Orr, 2018). CO2-EOR projects exhibit
37% lower emissions per barrel compared to other production
methods (Novak Mavar et al., 2021). Unlike other underground
CO2 storage projects, CO2 EOR projects are economically
advantageous as they enhance oil production, which can be
monetized for a net profit, while other injection projects rely
solely on government-provided tax reduction incentives (Novak
Mavar et al., 2021). An essential performance metric for evaluating
the success of CO2 storage in CO2 EOR is the estimation of the CO2

Retention Factor, defined as:

CO2 Retention% � CO2 Remaining at Subsurface

Cummulative CO2 Injected
× 100 (1)

In CO2-EOR projects across the United States, retention factors
vary between 28% and 98.7% for both continuous and WAG
injection methods, contingent upon reservoir parameters,
lithology, and the volume of hydrocarbon pore volume injected
(HCPVI). In miscible CO2 flooding endeavors, an increase in the
injected CO2 HCPVI correlates with a reduction in the retention
factor (Olea, 2015).

In this research, an initial compositional simulation model
served as the foundation. Eight synthetic fluid composition
templates and nine synthetic relative permeability templates were

FIGURE 1
Phase envelope of PVT templates.
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developed, encompassing a wide spectrum of data found in the
literature Figures 1, 2. Additionally, ranges for reservoir properties
such as porosity, permeability, and initial reservoir pressure were
defined based on published CO2-EOR projects. Then using Latin
hypercube sampling generated more than 2000 simulation cases.
The simulation results dataset is used to build the proxy model
which is then used to predict the results and generate dimensionless
type curves. The workflow of the research is shown in Figure 3.

2 Numerical reservoir simulation

The investigation utilized the tNavigator Compositional
module, a commercial software package. The fundamental
equation dictating flow within porous media is the Mass
Conservation equation for each component, as outlined by (Chen
et al., 2006) in Equation 2:

∂

∂t
∅c~i ρi( ) � −∇. ∑Np

α�1
ρi ciαuα −Diα∇ciα[ ]⎛⎝ ⎞⎠ + qi

i � 1, 2, . . . . . . . . . Nc

(2)

where:
c~i are the overall concentration phases,Np is the number of phases,

ρi mass density, qi is source/sink term, ciα and Diα are concentration
and diffusion-dispersion tensor of component i in phase α.

The base model comprises a box configuration encompassing
64,000 cells, all possessing identical vertical and horizontal
permeability within the reservoir. Porosity remains constant at a
single value as specified in Table 2. This model features two wells:
one functioning as a producer and the other as an injector. The
controlling mode for both is the Bottom hole Pressure. Injection
operations lasted for 30 years commenced on day 1 to uphold
pressure levels, with the bottom hole flowing pressure (BHFP) limit
set 1,470 psi to be higher than both the minimum miscibility
pressure (MMP) and the bubble point pressure, ensuring single-
phase flow within the reservoir and the bottom hole injection
pressure set to be 6,000 psi to ensure that it does not exceed
fracture pressure. The maximum production rate was set to be
5000 STB/D and maximum injection rate is 10,000 MSCF/D. Initial
conditions were established within the oil production zone, devoid
of free water or gas, situated above the oil-water contact, and below
the gas-oil contact Table 2. Using template one of the defined fluid
composition and relative permeability templates.

3 Dimensionless curves

Drawing upon the pioneering work of (Arps, 1945) in decline
curve analysis, the normalization of rates based on post-flow rates
has been applied in multiphase flow analysis as introduced by
(Fetkovich and Vienot, 1984), alongside other type-curves for
various assessments (Doublet and Blasingame, 1995). Blasingame
further delved into decline curve analysis in the context of secondary
recovery scenarios involving water influx and waterflood cases. In
the present study, we computed dimensionless oil rate using
Equation 3 and time using Equation 4, along with their first
derivative, serving as a diagnostic tool for reservoir properties.
The definition of dimensionless numbers aligns with that
employed by (Fetkovich, 1973).

3.1 Dimensionless rate

qD � 141.2 × q × μ × β

K × h × Pi − BHFP( ) ×
L

W
(3)

FIGURE 2
Water-oil relative permeability templates.

FIGURE 3
Water-oil relative permeability templates.
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3.2 Dimensionless time

tD � 0.00634 × K × t

∅ × μ × Ct × r2w
(4)

Where q is the production oil flow rate in STB/day, μ is the oil
viscosity in cp, β is the oil formation volume factor in bbl/STB, K is
the reservoir permeability, h is the reservoir thickness, Pi is the
reservoir initial pressure in Psi, BHFP is the bottom hole flowing
pressure in Psi, ∅ is the reservoir porosity, Ct is the total
compressibility in 1/psi, rw is the wellbore radius.

Calculating the first derivative of the dimensionless oil flow rate
using the Bourdetmethod as shown in Equation 5 (Bourdet et al., 1989):

dQd �
ΔQd1
ΔDt1

ΔDt2 + ΔQd2
ΔDt2

ΔDt1( )
ΔDt1 + ΔDt2

(5)

Where, ΔQd1 is the change of dimensionless oil rate, ΔDt1 is the
change of dimensionless time, 1 and 2 are at two consecutive points.

We noted several recurring patterns within the generated
dimensionless curves:.

1. In the later stages of production, three distinct regions emerge,
as illustrated in Figure 4:
⁃ Pre-decline: Initial stable production occurs at the maximum
allowable rate; preceding water or gas breakthrough, the
slope is nearly flat.

⁃ Decline: The onset of oil rate decline is marked by a trough in
the first derivative; alterations in reservoir and operational
parameters affect the width, depth, location of the trough,
and steepness of the slope on the curves.

⁃ Post-Decline: Once the production rate nears its minimum
value, minimal changes occur, resulting in the first derivative
slope being nearly flat.

2. The alteration in slope within the trough area is influenced by
changes in oil rate, gas rate, and water rate profiles. Typically,
following breakthrough, the gas rate continues to rise, whereas
the water rate increases initially before declining thereafter.
This transition often yields a secondary shallower trough as
depicted in Figures 5, 6.

3. The derived slopes pertain to the late-time production trough.
We specifically identified four slopes to capture variations,
though additional definitions are possible. The extent of the
trough vertically is governed by the lowest point in the
curvature, while its width encompasses both primary and
secondary troughs, estimated as the entire region between
two zero slopes, as depicted in Figure 4.

4 Parameters’ sensitivity

In this segment, a sensitivity analysis was performed on the
base model, where one parameter was altered at a time while
keeping all other reservoir variables constant. This aimed to
assess their influence on production. We examined the
repercussions of modifying reservoir properties in specific
range, including fluid composition on 8 templates, rock-fluid
interaction on 9 templates, porosity in the range of 0.05 and
0.385, permeability in the range of 2 and 980 mD, and initial
pressure in the range of 1,500 psi and 5,000 psi, alongside
operational factors like the bottomhole flowing pressure of the
producer well in the range of 1,470 psi and 4,764 psi. Diagnostic
plots employed for comparison encompassed dimensionless type
curves, oil recovery factor, and CO2 retention factor plotted
against the hydrocarbon pore volume injected, as well as oil,
gas, and CO2 molar production rates.

4.1 Fluid composition sensitivity

The recovery efficiency of CO2 flooding EOR is influenced by the
composition of the oil. Optimal displacement efficiency is attained at
a minimal miscibility pressure, which correlates inversely with the
weight percentage of hydrocarbons ranging from C5 to C30 (Holm
and Josendal, 1982). The presence of light components such as C2 to
C4 in reservoir oil does not significantly affect the recovery process,
as these gases tend to channel and bypass the miscible bank.
However, the inclusion of methane (C1) in reservoir oil
diminishes the overall recovery efficiency (Holm and
Josendal, 1974).

The suggested scope for employing CO2 miscible flooding in oil
reservoirs is for those with an API gravity exceeding 30. As the
gravity of reservoir oil rises, its viscosity diminishes, leading to a
more advantageous mobility ratio and improved sweeping
efficiency. Additionally, with increasing oil gravity, there is a
greater presence of intermediate components (C5-C20) which
undergo condensation or vaporization processes necessary for
achieving miscibility (Klins, 1984). Factors such as reservoir
temperature, critical properties, and bubble point pressure
influence the minimum miscibility pressure attained (Holm and
Josendal, 1982).

TABLE 2 Base model description.

Property Value

No. of blocks in the X direction 80

No. of blocks in the Y direction 80

No. of blocks in the Z direction 10

Step length in X direction dx (ft) 50

Step length in Y direction dy (ft) 50

Step length in Z direction dz (ft) 10

Porosity (Fraction) 0.12

Horizontal Permeability Kx = Ky (mD) 16

Vertical Permeability Kz (mD) 0.1* Kx

Datum depth (ft) 5,300

Datum Initial Pressure (Psi) 3,000

Water Oil Contact (WOC) (ft) 5,500

Gas Oil Contact GOC (ft) 0

Rock Compressibility (1/psi) 3.4 e−06
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Data extracted from literature on prominent CO2 flooding
projects revealed a variation in oil density ranging from 25 to
45 API, with prevalent values, concentrated within the 35 to
40 API range. Reservoir temperatures spanned from a minimum
of 83°F to a maximum of 267°F, while bubble point pressures
exhibited a range of 300–2200 PSI. Minimum Miscibility
Pressure values were observed to fluctuate between 900 and
4500 PSI, with the majority clustering within the 1,100 to
2,500 PSI range.

Subsequently, after compiling fluid composition data from
14 significant CO2 flooding sites, eight templates were generated
to represent the characteristics found in the literature. These
templates were then utilized in constructing simulation scenarios,
as depicted in Table 1 in supplemental material. The templates cover

a range of oil density from 21 to 109 API, bubble point pressures
spanning 103 to 2625 PSI, and MMP ranging from
1,090 to 3,460 PSI.

The employed PVT templates vary in composition and reservoir
temperatures, resulting in varied behaviors regarding oil recovery
and storage capacity were shown in Figure 7. Under consistent
conditions, we observed that Template_7 yielded the highest initial
oil rate, with a corresponding decrease in the initial oil rate
anticipated as the oil’s API gravity diminishes.

Template_8 and Template_3 exhibited deviations from this
pattern owing to additional characteristics influencing their
performance. Despite Template_8 having the highest API gravity,
which typically implies the highest recovery, its oil composition
features a notably high percentage of C1, elevating the bubble point

FIGURE 4
First derivative of dimensionless oil rate and oil rate versus dimensionless time (trough description).

FIGURE 5
First derivative of dimensionless oil rate and water rate versus
dimensionless time.

FIGURE 6
First derivative of dihmensionless oil rate and gas rate versus
dimensionless time.
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pressure to 2,625 psi. Given that the set bottom hole flowing pressure
is approximately 1,470 psi, lower than the bubble point, some oil
molecules may have vaporized into gas, thereby augmenting the gas-
oil ratio at the expense of oil rate production.

Template_3, despite having a lower API value compared to
Template_2 and Template_1, exhibited a higher initial oil rate.
This outcome may be attributed to its higher percentage of
intermediate components (C5-C20), which are conducive to the
multiple evaporation and condensation processes essential for
miscible recovery. In terms of recovery factor, while Template_
1 did not attain the highest initial oil rate, its production decline
occurred later, enabling the accumulation of a greater

cumulative oil total and consequently, the highest recovery
factor. Conversely, Template_6, characterized by the highest
C21+ component, yielded the lowest recovery factors. CO2

retention factors varied among templates; Template_
6 achieved the highest CO2 retention factor, with the
template featuring the lowest C1 content exhibiting the
lowest gas production. Template_7 recorded the lowest
CO2 retention.

Among the dimensionless oil rates, Template_7 exhibits the
highest value, reflecting its superior oil rate. Meanwhile,
Template_8 displays the deepest trough in the first derivative
of the oil rate.

FIGURE 7
PVT Templates Sensitivity Analysis, starting from the top left is Dimensionless Rate and its first Derivative vs dimensionless time, Recovery Factor vs
standard HCPVI, CO2 Retention Factor Vs HCPVI, Oil Rate, Gas Rate, and CO2 Production Moles Vs Time.
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4.2 Relative permeability sensitivity

Given that fluid flow within porous media involves multiple
phases—oil, gas, and water—alongside CO2 displacement of oil and
water in CO2 flooding scenarios, either immiscible or miscible,
where CO2 and oil blend into a single non-wetting phase, the
saturation of each phase fluctuates during production initiation.
Thus, relative permeability curves are indispensable for elucidating
the effective permeability of each phase. Various factors influence
the behavior of relative permeability curves, including rock
composition, wettability, pore size distribution, interfacial
tension, and phase viscosity. Relative permeability curves were

compiled from literature sources of common fields and
categorized into templates based on rock type, viscosity ratio (oil
to water), and interfacial tension. Twenty-one samples of relative
permeability curves from reservoir fields were utilized, undergoing
smoothing via Corey correlation. The parameters of the Corey
Correlation of the 9 templates are presented in the
Supplementary Table S2.

Under constant parameters, modifications to the utilized relative
permeability curve templates lead to alterations in production behavior
as shown in Figure 8. Template_6 demonstrates the highest oil
production rate and dimensionless rate among all templates.
Conversely, Template_4 exhibits the lowest production rates,

FIGURE 8
RP Templates Sensitivity Analysis, starting from the top left is Dimensionless Rate and its first Derivative vs dimensionless time, Recovery Factor vs
standard HCPVI, CO2 Retention Factor Vs HCPVI, Oil Rate, Gas Rate, and CO2 Production Moles.
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attributed to its highest capillary pressure among the templates, a
characteristic reflected in its elevated CO2 retention factor. In
contrast, Template_7, characterized by the lowest capillary
pressure, facilitates earlier gas and CO2 breakthroughs,
resulting in a lower CO2 retention factor. The influence of
capillary pressure is further evidenced in the derivative of the
dimensionless oil rate, with Template_7 showing the deepest
trough, indicating a rapid rate of decline, while Template_
4 exhibits the shallowest trough, indicative of its high
capillary pressure.

4.3 Porosity sensitivity

As porosity increases, the dimensionless oil rate also increases,
albeit with a quicker initial decline, resulting in a deeper trough.
However, production subsequently, stabilizes for an extended
duration, potentially without experiencing a secondary trough
observed in other cases. Conversely, gas and CO2 molar
production rates rise with decreasing porosity, leading to a
decrease in the CO2 retention factor. The results for the
sensitivity of porosity are shown in Figure 9.

FIGURE 9
Porosity Sensitivity Analysis, starting from the top left is Dimensionless Rate and its first Derivative vs dimensionless time, Recovery Factor vs standard
HCPVI, CO2 Retention Factor Vs HCPVI, Oil Rate, Gas Rate, and CO2 Production Moles Vs Time.

Frontiers in Energy Research frontiersin.org09

Emera and Kalantari Dahaghi 10.3389/fenrg.2025.1478473

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2025.1478473


4.4 Permeability sensitivity

As permeability decreases, the oil rate increases, albeit with a swifter
decline due to the ease of gas breakthrough, consequently diminishing
the ultimate oil recovery factor. The dimensionless oil rate demonstrates
an increase, accompanied by an earlier onset of the decline stage and a
shallower trough in the first derivative. The optimal oil recovery factor is
observed at moderate permeability values around 50 mD. While high
permeability values enhance oil flow, they accelerate water and gas
breakthroughs, thereby reducing recovery. Conversely, lower
permeability yields better values for CO2 retention, attributed to

enhanced CO2 storage resulting from solubility. The results for the
sensitivity of permeability are shown in Figure 10.

4.5 Initial reservoir pressure sensitivity

The initial pressure must exceed the BHFP to ensure adequate
drawdown. A higher initial pressure results in a prolonged period of
stabilized rate initially, yet thereafter, its influence on oil recovery, gas, or
CO2 production diminishes. However, distinctions can be noticed in the
dimensionless rate and its first derivative with varying initial pressures.

FIGURE 10
Permeability Sensitivity Analysis, starting from the top left is Dimensionless Rate and its first Derivative vs dimensionless time, Recovery Factor vs
standard HCPVI, CO2 Retention Factor Vs HCPVI, Oil Rate, Gas Rate, and CO2 Production Moles Vs Time.
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As the initial pressure rises, the dimensionless rate decreases, and its first
derivative exhibits a deeper trough. The results for the sensitivity of
initial reservoir pressure are shown in Figure 11.

4.6 Bottom hole flowing pressure sensitivity

When the Bottom Hole Flowing Pressure (BHFP) remains higher
than theMinimumMiscibility Pressure (MMP), an increase in the BHFP
of the producer well corresponds to an increase in the dimensionless oil
rate, along with a shallower trough in its derivative. Although the oil rate
decreases, it takes slightly longer to enter the decline phase. Meanwhile,

gas and CO2 molar production decreases, leading to an improvement in
the CO2 retention factor. The results for the sensitivity of bottom hole
flowing pressure are shown in Figure 12.

5 Dataset development

Our aim in this stage is to acquire a dataset that accurately
represents the reservoir field data of the CO2 EOR application,
which will serve as the training data for the machine learning
model. To achieve this, we employed the compositional box
model utilized in the sensitivity analysis as the foundational

FIGURE 11
Initial Reservoir Pressure Sensitivity Analysis, starting from the top left is Dimensionless Rate and its first Derivative vs dimensionless time, Recovery
Factor vs standard HCPVI, CO2 Retention Factor Vs HCPVI, Oil Rate, Gas Rate, and CO2 Production M.
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model for simulation work, utilizing tNavigator reservoir
simulation software modules to generate the requisite data. To
encompass a wide range of conditions, we conducted
experiments in two phases. The variable parameters were
selected based on the common selection criteria for CO2-EOR
projects found in the literature, as shown in Table 1, with some
modifications to suit our approach. Instead of defining reservoir
fluid properties such as viscosity, API, and MMP directly, we
used predefined PVT templates. Similarly, instead of relying on
saturation and different rock types, we employed various relative
permeability templates to represent these properties.

Initially, we developed base models with varying reservoir fluid
properties and relative permeability, resulting in the creation of
8 reservoir fluid composition templates and 9 relative permeability
templates. These templates were constructed based on field data
obtained from the literature. By combining each PVT template with
each relative permeability template, we generated a total of 72 base
model cases. Throughout these base cases, porosity, permeability,
and initial pressure remained constant.

In the second phase, we varied the porosity, permeability, and
initial pressure for each of the 72 base models. We employed the
Assisted History Matching (AHM) module to conduct a Latin

FIGURE 12
Bottom Hole Flowing Pressure Sensitivity Analysis, starting from the top left is Dimensionless Rate and its first Derivative vs dimensionless time,
Recovery Factor vs standard HCPVI, CO2 Retention Factor Vs HCPVI, Oil Rate, Gas Rate, and CO2 Production Molar Rate Vs Time.
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hypercube experiment for each case, running 30model iterations per
case. This process yielded a total of 2,160 models after filtering out
cases with errors.

The Latin Hyper Cube algorithm operates by generating model
variations according to the user-specified number of variants,
denoted as N, and the number of variables, denoted as M. It
partitions the search space into N hyperplanes, with each
hyperplane containing precisely one variant. This method aids in
covering a wide range of possibilities within the search space
(McKay, 1992).

Each of the 72 cases served as a base scenario, from which
30 sensitivity cases were derived by adjusting the porosity,
permeability, and initial reservoir pressure. To ensure comprehensive
coverage, we employed the Latin hypercube experiment. The parameter
ranges were determined based on literature data, with distributions
chosen to ensure representative coverage. For instance, a truncated
normal distribution was utilized for permeability to predominantly
reflect lower values observed in the literature. The ranges for porosity
and permeability remained consistent across all cases, while the range
for initial reservoir pressure varied with changes in PVT templates to
ensure the initial value exceeded the bottomhole flowing pressure of the
producer well, set above the MMP. The maximum oil rate was capped
at 5000 STB/D, the gas injection rate at 10,000 MSCF/D, and the
bottomhole injection pressure limit at 6000 PSI to encompass a broad
spectrum of scenarios.

The input ranges for porosity, permeability, and initial
pressure were compared to the ranges observed in field cases
gathered from literature sources as shown in Figure 13. Analysis
of the scatter plot reveals that porosity exhibits a linear
distribution encompassing the full range of field data.
Permeability distribution predominantly clusters within the
0–200 mD range, with fewer cases observed beyond this range.
Conversely, the distribution of initial pressure covers the entire
field data range, with a notable concentration of cases at higher
values exceeding 2500 PSI. This concentration aligns with
expectations, as the input values were deliberately selected to
surpass the Minimum Miscibility Pressure (MMP).

The post-simulation analysis revealed that the simulated data
spans the spectrum of recovery factors and hydrocarbon pore
volume injected observed in field operations. However, the
P50 recovery factor derived from simulation data appears more
optimistic compared to field data. This disparity can be attributed to
the fact that injection in simulation scenarios commenced from day
1, facilitating pressure maintenance and resulting in higher recovery
rates. In contrast, much of the recovery data reported in the
literature pertains to secondary or tertiary recovery, indicating
incremental gains, which consequently exhibit lower values
compared to simulations, although simulation data spans the
entire range, the P50 value is notably higher in simulations, as
illustrated in Figure 14.

FIGURE 13
Pre-Simulation Input Values Distributions compared with the Field Data for Porosity, Permeability, and Initial Reservoir Pressure.
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6 Proxy model development

Proxy models are constructed by leveraging established models
with reliable outcomes, wherein parameters deemed influential are
selected for a fitting process. This process estimates results for
additional cases if input values fall within the parameter range
used to construct the proxy model (Bahrami et al., 2022).
Artificial Neural Networks (ANNs) draw inspiration from the
functioning of biological neurons in the human brain. The
network comprises an input layer representing input parameters,
an output layer indicating the target parameter to be predicted, and
multiple hidden layers in between. Neurons within each layer are
computed based on preceding layer neurons, weights, and a bias
factor (Mohaghegh, 2000). In our study, ANN was employed to
develop a proxy model for predicting oil flow rate (Qo), gas rate
(Qg), and CO2 production. Optimal fit and accurate predictions
were achieved through testing various configurations of neurons and
layers. Input parameters were categorized into reservoir parameters,
such as initial reservoir pressure, porosity, permeability, relative
permeability templates, and PVT/fluid composition templates, and
operational parameters, including gas injection rate, bottomhole
injection pressure, and bottomhole flowing pressure. The ranges of
input data are detailed in Table 3:

To ensure uniformity in input data scales and prioritize parameters
equally in the model’s initial impact, datastandardization was executed.
This process was guided by the mathematical expression outlined by
Equation 6 (Muther et al., 2021):

xstandard � x −Mean

StandardDeviation
(6)

Where x is the value of each parameter in the input or
output data.

To assess the impact of each input parameter on the target
output parameter, we employed the Random Forest Regressor
method. This approach involves partitioning the data into subsets
and evaluating the variance reduction for each attribute at every tree
level (Ho, 1995, p. 1). This technique is utilized to determine the
importance of input parameters, irrespective of whether they
contribute to an increase or decrease in the output (Belyadi and
Haghighat, 2021).

It’s observed in Figure 15 that time holds the most significant
influence on production, as anticipated, followed by porosity.
Conversely, initial pressure exhibits the least impact on production,
as anticipated, given that once CO2 injection commences, it can surpass
initial pressure values and exert a greater influence.

The dataset is divided into an 80% portion for training the model
and adjusting weights, while the remaining 20% is further divided into
two equal parts: 50% serves as a testing dataset for evaluating prediction
accuracy, and the remaining 50% acts as a validation set to assess model
performance. Additionally, we employ 10-fold cross-validation by
default during the splitting process to minimize the risk of
overfitting and ensure robust model evaluation. As previously
discussed, the model’s architecture comprises layers and nodes, with
each node’s calculation based on preceding layer nodes, their weights,
and a bias factor. An activation function is employed to constrain each
node’s output value within the range of 0–1, aiding in capturing
nonlinear relationships between nodes. The Rectified Linear Unit
(ReLU) activation function was utilized in this study. Optimization
algorithms are used to improve the accuracy and robustness of
searching for the optimum weight factors for achieving the
minimum objective function by adjusting the learning rate. The
algorithm we used is ‘Adam’, which is suitable for large dataset
problems; it is based on adjusting lower-order moments (Kingma
and Ba, 2017).

FIGURE 14
Recovery factor versus standardized hydrocarbon pore-volume injected simulation results compared with field data.
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The neural network model aims to determine optimal weights
that minimize the objective function. In the case of a regression
neural network, this objective function can be one of several
regression evaluation metrics, such as mean absolute error
(MAE), mean squared error (MSE), and root mean squared error
(RMSE). In our model generation process, we utilized MAE as the
objective function, while employing other metrics for model
evaluation. MAE computes the average absolute difference
between actual and predicted values, expressed by the formula
(Belyadi and Haghighat, 2021) where n represents the number of
sample points, yi denotes the actual output, and yi represents the
predicted output from the model as shown in Equation 7:

1
n
∑n
i�1

yi − yi
‘

∣∣∣∣∣∣ ∣∣∣∣∣∣ (7)

The evaluation of the proxy model involved several stages. The
initial stage involved plotting the loss function against the trained
epoch numbers. Ideally, as the ANN model undergoes training, the
loss function should diminish with increasing epoch numbers. A
well-trained model is expected to exhibit decreasing loss values for
both the training and testing datasets, as depicted in Figure 16 for the
three outputs of the proxy model.

The second evaluation stage involves creating a cross-plot to
compare the actual simulation results with the predictions from the
trained neural network (NN) model, both presented in their
standardized form. This plot demonstrates a strong correlation,

as illustrated in Figure 17. Although some data points may appear
scattered, the overall results are consistent and satisfactory.

Another evaluation stage was establishing the performance
metrics, which quantify the variance between the predicted
outcomes from the proxy model and the actual results from the
simulation. These metrics, shown in Table 4, reveal positive
outcomes, demonstrating an acceptable level of accuracy across
all three outputs.

The final evaluation checkpoint involves plotting individual cases. It
was observed that themajority of cases exhibit a precise alignment. One
interesting observation demonstrating the robustness of the training
and testing process to ensure the generalization capability of the trained
proxy models without memorization or overtraining is their
insensitivity to noise. We deliberately included the results of some
cases, as illustrated in Figure 18, where oscillations in the simulation
results are observed due to convergence during numerical simulation.
However, the trained proxymodel did not incorporate these oscillations
and noise but instead accurately captured the simulation’s underlying
physical trend.

7 Screening and designing applications

The utilization of the trained ANN proxy model depends on the
phase of the CO2 project under consideration. In the initial design stage,
where data availability is limited, primarily sourced from analog or
neighboring fields, numerous uncertainties arise. During this phase, the
aim of employing the proxy model is to swiftly assess the spectrum of
outcomes for various scenarios and their economic feasibility.

Imagine a fresh field where we’re aiming to introduce CO2 EOR.
The uncertainties we confront are having two different possiple fluid
composition templates; template 1 or 8, three different relative
permeability templates; template 1, 2 or 3, three porosity values
0.06, 0.12 or 0.16, and three permeability values 8 mD, 16 mD or
32 mD. Employing the ANN Proxy model allows us to generate
diverse scenarios that tackle these uncertainties. Consequently, we
can obtain approximations of the highest, median, and lowest
production profiles, illustrated in Figure 19. These profiles serve
as inputs for conducting techno-economic analyses. Furthermore,
the proxy model can be used to predict the amount of produced CO2

in moles. By combining this with the injected CO2 moles, the CO2

retention factor can be estimated using Equation 1.

FIGURE 15
Feature Ranking of the input parameters for the predicted output using Random Forest Regressor.

TABLE 3 Proxy model input data range.

Parameter Range

Initial Reservoir Pressure (Psi) 1,500–5,000

Porosity (Fraction) 0.05–0.385

Permeability (mD) 2–980

Relative Permeability (RP) Template 1–9

Fluid Composition (PVT) Templates 1–8

Gas Injection Rate (MMSCF/D) 0–10,000

Bottom Hole Injection Pressure (Psi) 1,495–6,000

Bottom Hole Flowing Pressure (Psi) 1,470–4,764
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8 Post-pilot application

The ANN Proxy model was utilized to create type curves
representing the dimensionless oil rate (Qd) and its first
derivative against dimensionless time (tD). This involved
employing 8 fluid composition templates and 9 relative
permeability templates while adjusting porosity, permeability, and
initial pressure. As we transition into the post-pilot stage, where data

collection begins and production profiles emerge, these
dimensionless type curves serve to refine the remaining missed
reservoir data. For instance, suppose the pilot well operation yields a
production profile akin to the dotted plot depicted in Figure 20. By
aligning this profile with the type curves generated by the proxy
model, we can infer its resemblance to a scenario characterized by
the fluid composition of template 1, relative permeability curves of
template 2, a permeability of 16 mD, porosity of 0.12, and an initial

FIGURE 16
Training and testing losses for CO2 production molar rate, oil rate, and gas production rate.

FIGURE 17
Actual Data vs ANN Predicted Data for the Testing and Validation datasets of CO2 Production Molar Rate, Oil Rate, and Gas Rate.

TABLE 4 Performance metrics between actual and proxy model outputs.

Performance metrics Formulae Validation Training Testing

CO₂ Oil Gas CO₂ Oil Gas CO₂ Oil Gas

Mean Absolute Error (MAE)
1
n∑n
i�1
|yi − yi |

0.00553 0.012384 0.0068 0.0053 0.0108 0.0058 0.0055 0.011 0.0061

Mean Squared Error (MSE)
1
n∑n
i�1
(yi − yi)2

0.00028 0.002746 0.0004 0.0002 0.002 0.0003 0.0003 0.0026 0.0004

Root Mean Squared Error (RMSE)
�����������
1
n∑n
i�1
(yi − yi)2

√
0.01695 0.052411 0.0203 0.015 0.048 0.017 0.017 0.051 0.02

Correlation of Coefficient (R2) R2 � 1 − ∑(yi−yi)2∑(yi−y)2
0.99971 0.997254 0.9995 0.9997 0.997 0.999 0.9996 0.997 0.999

Mean Absolute Percentage Error (MAPE)
1
n∑n
i�1
|yi−y i

yi
| × 100

3.609% 6.722% 2.76% 3.03% 10.31% 3.068% 2.414% 9.46% 2.427%
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pressure of 3000 PSI Figure 21. Importantly, this method extends
beyond the values illustrated in the type curves; interpolated values
can also be derived using the same proxy model, thereby enhancing
its applicability across a broader spectrum of scenarios.

9 Summary and conclusion

In summary, various reservoir characteristics significantly influence
the production behavior of both CO2-EOR projects and CO2 storage
endeavors. Advancements inmachine learning can support both design
and implementation phases. Key findings from this study include:

⁃ Sensitivity analysis indicates that while some properties, such
as initial reservoir pressure, have a slightly lesser impact on
production profiles, dimensionless type curves provide a

distinctive response that characterizes reservoir behavior
effectively.

⁃ The proposed ANN-based proxy model (PM) offers a
computationally efficient alternative to traditional
simulation methods for candidate reservoir screening. Each
traditional simulation case took an average of 20–45 min,
whereas the PM generated results in seconds.

⁃ The accuracy of the PM was validated through performance
metrics, with a correlation coefficient of approximately 0.99 and a
mean absolute error of 0.012 in oil rate predictions compared to
actual values. Overfitting was carefully managed by ensuring that
the model captured physical trends without mirroring simulation
noise. However, further testing on actual field data is
recommended to evaluate the PM’s reliability.

⁃ Utilizing dimensionless type curves allowed for additional
applications during the post-production phase. This

FIGURE 18
Real and Predicted Results for case PVT8RP1 Base Case, for CO2 Production Molar Rate, Oil Rate, and Gas Production Rate.

FIGURE 19
Oil flow rate (mstb/d) vs Time (days) of pre-pilot example with uncertainties.
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approach demonstrated effectiveness for oil rate
predictions and could potentially be extended to other
output metrics, such as gas rate and CO2 molar
production rate.

⁃ The use of first derivatives of dimensionless oil rates in this
study allows for more precise diagnostics of reservoir
properties, including identifying trends such as pre-decline
stability, breakthrough behavior, and post-decline production
stabilization.

10 Limitations

The limitations identified in this study highlight opportunities
for further research and development:

⁃ The proxy model is valid and applicable only to reservoirs with
properties that fall within the range of the training dataset.

⁃ The fluid composition and relative permeability templates
used in this study are fixed values, although they cover

FIGURE 20
Dimensionless Oil Rate and its First Derivative vs Dimensionless Time for Post-Production Application Pilot Data Example.

FIGURE 21
Dimensionless Oil Rate and its First Derivative vs Dimensionless Time for Post-Production Application Example After Matching.
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most of the parameter ranges found in existing CO2-
EOR projects.

⁃ While this paper presents the methodology and its application,
the results were not validated using actual field data.

⁃ The proxy model was developed based on continuous CO2

injection scenarios. Alternative methods, such as water-
alternating gas (WAG) injection, are not covered by the
current model. However, the study can be extended to
include these methods.

⁃ Operational changes, such as variations in the bottomhole
flowing pressure, were not considered; this parameter was kept
constant in all simulation cases.

⁃ Well geometry, tubing, and casing configurations were
assumed to be constant across all cases. Future studies
could explore sensitivities to these parameters.
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