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Research on transformer
operation state prediction based
on comprehensive weights and
BO-CNN-GRU

Ying Liu*, Wenbin Cao, Xiaoming Zhang, Yuhang Sun and
Xu Sun

State Grid Chaoyang Electric Power Supply Company, Chaoyang, Liaoning, China

Aiming at the problem that it is difficult to predict the future operating state
of the transformer, this paper proposes a method for predicting the operating
state of transformers based on comprehensiveweight and BO-CNN-GRU (Bayes
Optimization -Convolutional Neural Network- Gated Recurrent Unit). Firstly, 11
kinds of monitoring data in three categories including oil chromatography gas
content, temperature, and electrical quantity are selected as feature parameters;
Then, the game theorymethod is used to integrate theweight values of the three
methods of G1 method, entropy weight method and CRITIC method to get the
comprehensive weight value of each feature parameter, and the transformer
operation state index is constructed based on the comprehensiveweight; Finally,
the BO-CNN-GRU combination prediction model is built, which solves the
problem of difficulty in determining the hyperparameters of the model. After the
example analysis, it can be seen that the five evaluation indexes of this paper’s
model present the optimal results, effectively showing that this paper’s method
has better predictability for the transformer operation state.
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1 Introduction

The power transformer is one of the core equipment of the power system, which is the
carrier of power supply from the grid to the user. Whether the transformer can operate
stably plays a decisive role in the stability of the power supply. Once the transformer fails, it
will cause regional power outages, casualties, and a series of problems, resulting in serious
safety issues and economic losses (Cheng et al., 2022; Cheng et al., 2020a; Cheng et al.,
2020b). The photograph of the scene where the transformer failure caused the explosion
is shown in Figure 1.

Prediction of transformer operation state can provide a data basis for transformer
maintenance and overhaul, which in turn improves the stability of power system operation
and has an important role in promoting the intelligent development of the power grid
(Zhou et al., 2014; Arshad et al., 2014; Bakar and Abu-Siada, 2016; Li et al., 2021).
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FIGURE 1
Transformer explosion scene diagram.

In recent years, with the rapid development of artificial
intelligence technology, intelligent detection technology, and data-
driven methods (Cao et al., 2024; Bai et al., 2024; Liu et al.,
2024; Li et al., 2024; Li et al., 2023), scholars at home and abroad
have made better research results in the fields of transformer fault
diagnosis, transformer operation state prediction, and transformer
life prediction. In Lei et al. (2024), Lei et al. proposed a zero-sample
fault diagnosis technique for transformers based on a variable-
weight attribute matrix for the problem of missing information
on fault samples caused by the long-tail effect. In Du et al.
(2023), Du et al. proposed a power transformer fault detection
method based on multiple eigenvalues of vibration signals for
the problem of poor generalization of diagnostic algorithms.
In Zhou et al. (2024), Zhou et al. used a cloud model and
a weighted implicit semi-Markov model to predict transformer
operating conditions. In Ge et al. (2021), Ge et al. proposed a
transformer fault data enhancement method based on an Improved
Autoencoder (IAE) to address the problem of insufficient data in
machine-learning transformer fault diagnosis methods. In Li et al.
(2022), Li et al. proposed a transformer state analysis method
that combines autonomous discretization of signs and autonomous
dimensionality reduction preference of signs and single event
multi-model fusion analysis of data distribution, to overcome
the problem that existing studies have neglected the diagnosis
of a single sample. In Wang et al. (2022), Wang et al. proposed
a transformer fault diagnosis model combining a multi-strategy
improved sparrow algorithm (MISSA) with a bidirectional long
and short-term memory network (BiLSTM) for the problem of
low fault diagnosis accuracy of transformers. In Pan et al. (2022),
Pan et al. addressed the problem of winding vibration under
the unbalanced operation mode of the transformer, carried out
the vibration signal decomposition and reconstruction based on
wavelet packet transform, investigated the energy distribution law of
different frequency domain scales, and proposed a vibration feature
identification method based on the scale-energy occupancy ratio.

Analyzing the above research content, it can be seen that
most of the existing research revolves around the analysis of
transformer fault data, typical transformer fault diagnosis, and
traditional condition assessment algorithms. This has played a role
in promoting the development of this research field, but the research

on the use of transformermulti-feature parameters, the construction
of transformer condition assessment indexes, andhigh-performance
prediction models is still inadequate. Therefore, based on the multi-
dimensional transformer feature parameter information, this paper
carries out in-depth research on the construction of transformer
operating state index and prediction model.

With the continuous development of technology, more and
more online monitoring data can be collected on the transformer,
how to make good use of a variety of online inspection data
is of great significance to the transformer condition assessment
(Guo et al., 2025). Traditional neural network-based prediction
methods have the problems of long model training time, gradient
vanishing problem, and complex hyperparameter selection (Cheng
and Yu, 2019). As an improved model of LSTM, the gated
recurrent unit (GRU) can effectively alleviate the problem of
gradient disappearance in the recurrent neural network, and at
the same time, it has a faster training speed under the premise of
guaranteeing the prediction accuracy (Ma et al., 2023). However,
GRUneural networks cannot solve the problemof complex selection
of hyperparameters of neural networks and need to be combined
with other optimization algorithms.

Based on the insufficiency of existing research and the difficulty
of confirming the hyperparameters of the prediction model, this
paper proposes a transformer operation state prediction method
based on BO-CNN-GRU. Taking 11 kinds of transformer feature
parameters as the data basis, theG1method, entropyweightmethod,
and CRITIC method are used to calculate the corresponding
feature parameter weights, and the comprehensive transformer
weights are constructed through game theory, to construct a more
accurate transformer state index. The BO-CNN-GRU combination
prediction model is adopted to complete the optimization of model
parameters, which improves the accuracy of the prediction model
and provides a new method for transformer state prediction.

2 Basic principle

The overall flow of the transformer operation state prediction
method based on comprehensive weights and BO-CNN-GRU
is shown in Figure 2. The main model algorithms include the G1
method, entropy weight method, CRITIC method, Game theory,
Bayes optimization, CNN, and GRU.

2.1 Calculation of the comprehensive
weights of the feature parameter

The results of the calculation of the weights of the feature
parameters will directly affect the accuracy of the construction of the
transformer condition index results, so the calculation of theweights
of the feature parameters is one of the key steps in the assessment
of the transformer condition. However, the weight allocation results
obtained by the existing weight calculation methods have a large
error with the actual situation, which leads to a large error in
the actual operation status obtained by calculation, and such
problems have beenwidely concerned in the fields of nondestructive
testing of equipment and materials (Versaci et al., 2020; Versaci,
2016). Therefore, this paper adopts the comprehensive weight
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FIGURE 2
The overall flow of the transformer operation state prediction method.

TABLE 1 Transformer state classification results table.

Health Grade Range of values Condition Description

Excellent [0,0.1) Equipment performance is good, and safe operation

Good [0.1–0.3) The equipment is in general running condition, and still can run stably, but needs strengthened monitoring

Average [0.3–0.7) The equipment is abnormal and needs regular maintenance

Deteriorated [0.7–0.9) The equipment has been faulty and should be repaired as soon as possible

Severe [0.9–1.0] The equipment has been unable to run and should be shut down for inspection and overhauling

FIGURE 3
Structure diagram of CNN.

calculation method to construct a more reasonable transformer
feature parameter weight.

2.1.1 G1 method for determining subjective
weights

The G1 method avoids the shortcomings of the hierarchical
analysis method and has strong operability for practical engineering
applications. The specific calculation process is as follows:

(1) Each of the feature parameters is ranked in order of importance
according to the experience of the experts.

(2) Determine the value of the ratio rk of the degree of importance
of the neighboring feature parameters xk and xk-1.

(3) If the ratio of the degree of importance is rk, then the weight
wm of themth feature parameter is calculated by Equation 1:

wm = (1+
m

∑
k=2

m

∏
i=k

rk)
−1

(1)

(4) The weights of the other feature parameters are calculated by
theweightwm of themth feature parameter, and the calculation
process is shown in Equation 2.
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TABLE 2 Table of formulae for convolutional structures.

Convolutional structure Calculation formula

Convolutional layer ylj = f( ∑
i∈Mj

xl−1i ωl
ij + b

j
i)

Pooling layer (SK)max−pooling = max(al(i,t))

Fully connected layer h(xi) = f(ωxl−1 + b)

wk−1 = rkwk,k =m,m− 1,⋯3,2 (2)

wherewk-1 is the weight of the k-1th feature parameter, rk is the ratio
of the degree of importance of two neighboring feature parameters,
and wk is the weight of the wth feature parameter.

2.1.2 Entropy weighting method for objective
weight calculation

Entropy weighting is a method that can determine the weights
by the amount of information contained in the data, the smaller
the entropy value of the feature parameter, the more information
it contains and the higher the corresponding weight (Xu and
Fang, 2022).

Let xij (i = 1, 2, ⋯, n; j = 1, 2, ⋯m) be the jth data under the
ith feature parameter, then the entropy weight ej of the jth feature
parameter is calculated by Equation 3:

ej = −k
m

∑
i=1

pij ln pij (3)

where ej is the entropy weight of the jth feature parameter, pij is the
weight of xij in all data, and k is a constant.

Finally, the weight uj of the jth feature parameter is
calculated by Equation 4:

uj = 1− ej/n−
n

∑
j=1

ej (4)

2.1.3 CRITIC method for determining objective
weights

The CRITIC method calculates objective weights by comparing
intensity and conflictiveness between feature parameters. The
specific calculation process is as follows:

(1) Calculate the standard deviation sj of the jth feature
parameter by Equation 5.

sj =
√∑

n
i=1
(xij − xj)

2

n− 1
(5)

where sj is the standard deviation of the jth feature parameter, xij is
the ith data of the jth feature parameter, and xj is the mean of the jth
feature parameter data.

(2) Calculate the conductivity of the feature parameter with other
variables Rj by Equation 6.

Rj =
p

∑
i=1
(1− rij) (6)

where rij is the correlation coefficient between the feature parameters
i and j.

(3) Calculate the informativeness of the feature parameters
cj by Equation 7.

cj = sjRj (7)

(4) The objective weights of the jth feature parameter were as
follows by Equation 8.

θj =
cj
m

∑
j=1

cj

j = 1,1,⋯m (8)

2.1.4 Game theory comprehensive weighting
calculation

Game theory is a theory for studying things with a competitive
nature. Game theory can analyze the problem of rational behavior
and its decision-making equilibrium when the behavior of multiple
decision-making subjects interacts with each other. In game theory,
it can be assumed that each option is the result of rational decision-
making, which is made by decision-makers to maximize their
benefits or minimize their losses. This competitive outcome is not
controlled by one decision-maker but is achieved by all decision-
makers. The purpose of the game theory portfolio assignment is to
optimize the combination of weights calculated by various methods
to obtain the optimal weight values.

For a basic set of weight vectors, n vectors are arbitrarily
linearly combined into one possible combination of weights, and the
calculation process is shown in Equation 9.

U =
n

∑
k=1

αku
T
k (αk > 0) (9)

where U denotes the possible optimal weights, αk is the weight
coefficient and uk is the weight vector.

The objective of game theoretic optimization is to minimize the
deviation between the combination of weights and the individual
weights, and the calculation process is shown in Equation 10.

min ∥
n

∑
j=1

αk × uTk −u
T
k ∥2(i = 1,2,L,n) (10)

The optimal first-order derivative condition obtained from the
differential properties of the matrix is calculated by Equation 11.

n

∑
j=1

αk × uk × uTk = uk × u
T
k (i = 1,2,Ln) (11)

The resulting game-theoretic model is shown in Equation 12.

[[[[[[[

[

u1u
T
1 u1u

T
2 ⋯ u1u

T
n

u2u
T
1 u2u

T
2 ⋯ u2u

T
n

⋮ ⋮ ⋮ ⋮

unu
T
1 unu

T
2 ⋯ unu

T
n

]]]]]]]

]

[[[[[[[

[

α1
α2
⋮

αn

]]]]]]]

]

=

[[[[[[[

[

u1u
T
1

u2u
T
2

⋮

unu
T
n

]]]]]]]

]

(12)
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FIGURE 4
Internal structure diagram of GRU.

TABLE 3 Table of formulae for GRU.

GRU structure Calculation formula

Reset Gate rt rt = σ(xtWxr + ht−1Whr + br)

Update Door zt zt = σ(xtWxz + ht−1Whz + bz)

Candidate hidden state ht ht = tanh(xtWxh + (rt⨀ht−1)Whh + bh)

Hidden State ht ht = zt⨀ht−1 + (1− zt)⨀ht

In the above table,Wxr, Wxz, Whr, Whz, Wxh, Whh are weighting parameters, br, bz, bh are
deviation parameters, and xt is the current time step input.

TABLE 4 Transformer feature parameter table.

Primary feature
parameter

Secondary feature
parameters

Oil Chromatography

H2 content

CH4 content

C2H2 content

C2H4 content

C2H6 content

CO content

CO2 content

Total hydrocarbon content

Temperature
Oil temperature

Winding temperature

Electrical quantities Core grounding current

Based on theweighting coefficients, the combination coefficients
for each weight are calculated by Equation 13.

α∗k =
αk
n

∑
k=1

αk

(13)

Thefinal comprehensiveweightswere calculated by Equation 14.

u∗ =
k

∑
k=1

α∗ku
T
k (14)

2.2 Condition classification of transformers

Concerning the regulatory requirements of the National Grid
and the historical summary of experience, the transformer is divided
into five state levels, and the relationship between each state level and
the state of the transformer is shown in Table 1.

2.3 BO-CNN-GRU transformer state
prediction model

2.3.1 Bayes optimization principle
Bayes optimization is an approximation idea that has the

advantage of better hyperparameter confirmation in the case of
more complex computations and a higher number of iterations.
The hyperparameter combination selection process of the model
is shown in Equation 15.

x∗ = argmin f(x) (15)

where f (x) is the minimized objective function, which is used to
assess the optimal performance of the objective function, and x∗is
the optimal hyperparameter combination obtained at the end.
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TABLE 5 Weights of the transformer feature parameter.

Primary feature
parameter

Secondary
feature

parameters

G1 method Entropy weight
method

CRITIC method Comprehensive
weighting

Oil Chromatography

H2 content 0.1541 0.0571 0.1108 0.1107

CH4 content 0.0954 0.0600 0.1056 0.0853

C2H2 content 0.1285 0.0628 0.0748 0.0938

C2H4 content 0.1071 0.1200 0.1687 0.125

C2H6 content 0.0973 0.1643 0.0880 0.119

CO content 0.0811 0.1714 0.963 0.1154

CO2 content 0.0795 0.0757 0.1051 0.0832

Total hydrocarbon
content

0.0722 0.1028 0.0642 0.0812

Temperature
Oil temperature 0.0339 0.0545 0.0525 0.0452

Winding temperature 0.0678 0.0472 0.0497 0.0565

Electrical quantities Core grounding current 0.0847 0.0847 0.0847 0.0847

FIGURE 5
Bayes optimization process parameter variation.

Bayes optimization stems from Bayes’ theorem and uses the BO
formula to establish a probability distribution for the optimization
process. The calculation process is shown in Equation 16.

P(E|D) ∝ P(D|E)P(E) (16)

where P(E) is a Gaussian distribution, and P (E|D) is a Gaussian
regression process.

2.3.2 CNN convolutional neural network
CNN is a feed-forward neural network, which is mainly

composed of the input layer, convolutional layer, pooling layer, fully
connected layer, and output layer, and the input feature vector can
be amulti-dimensional vector set, which adopts local perception and

FIGURE 6
Loss value changes during model training.

weight sharing. The convolutional layer extracts the feature volume
of the original data and deeply mines the intrinsic connection of the
data, the pooling layer can reduce the complexity of the network
and reduce the training parameters, and the fully connected layer
merges the processed data and calculates the classification and
regression results (Ye et al., 2024).

The main components of the convolutional neural network
are shown in Figure 3.

The convolutional neural network computation process
is shown in Table 2.

Where ylj is the jth feature mapping in the lth layer of the current
layer, f is the activation function,Mj is the input featuremapping xl−1i
is the ith featuremapping of the previous layer,wl

ij is the convolution

Frontiers in Energy Research 06 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1486731
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Liu et al. 10.3389/fenrg.2025.1486731

FIGURE 7
Multiple method prediction results comparison plot.

FIGURE 8
Multiple method prediction error comparison plot.

kernel of the ith and jth layers, bji is the bias, (SK)max-pooling is the
value of the corresponding neuron after pooling, al(I,t) is the output
of the tth neuron of the ith mapping in layer l, h (xi) is the fully
connected output of layer l, f is the activation function, ω is the
weight of the neuron node, xl−1 is the fully connected input of layer
l and b is the bias.

2.3.3 GRU recurrent neural network
GRU modifies the calculation of hidden states in recurrent

neural networks by simplifying the input, forgetting, and output
gates to update and reset gates based on LSTM. The internal
structure of the GRU is shown in Figure 4.

The formula for GRU is shown in Table 3.

3 Transformer feature parameter
selection and comprehensive weight
construction

3.1 Selection of the feature parameters

In this paper, a 500 KV oil-immersed transformer is used as
an experimental object. To accurately assess the operating state of
the transformer, the feature parameters that have a great influence
on the operating condition of the transformer should be selected.
Feature parameters related to transformer state can be divided into
two categories: those that can be monitored online and those that
cannot be monitored online. This paper mainly adopts the feature
parameters that can be monitored online in real time to predict the
future operating state of the transformer. Three types of features,
including oil chromatography, temperature, and electrical quantity,
are selected. The specific feature parameters are shown in Table 4:

3.2 Comprehensive weighting calculation

Based on the feature parameter data, G1 method, entropy
weight method, and CRITIC method are used to calculate
the corresponding weights of each feature parameter of the
transformer, and the calculation results are 0.4332 for the G1
method, 0.3505 for the entropy weight method, and 0.2173 for
the CRITIC method. The feature parameter weight data and the
comprehensive weights calculated by the three methods mentioned
above are shown in Table 5.

The operating state index data of the transformer is obtained by
using the data of each feature parameter of the transformer and the
comprehensive weights. The use of comprehensive weights makes
the operating state index data more similar to the actual operating
state and can reflect the overall degradation of the transformer more
comprehensively. Based on the transformer operating state index
data, the future operating state of the transformer is predicted.

4 Transformer operating state
prediction analysis

4.1 Comparative analysis of multiple
prediction methods

400 sets of data for 200 days from February to October 2021
of the transformer are selected for example analysis. Multi-feature
input matrix is constructed based on temperature, humidity, and
condition indicator data to realize future transformer condition
prediction. The data through the first 160 days is used as a training
set and the data of the next 40 days is used as a test set.
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TABLE 6 Table of indicators for the evaluation of prediction models.

Prediction model RMSE MAE MAPE Computing time Running memory

BO-CNN-LSTM 0.0022 0.0018 0.0190 482s 9576 MB

BO-CNN-GRU 0.0017 0.0014 0.0152 407s 9521 MB

BO-CNN-BiLSTM 0.0020 0.0015 0.0167 514s 9632 MB

TABLE 7 Evaluation index table for the optimized prediction model.

Prediction model RMSE MAE MAPE

SSA-CNN-GRU 0.0018 0.0014 0.0155

GA-CNN-GRU 0.0021 0.0019 0.0171

WOA-CNN-GRU 0.0019 0.0016 0.0173

BO-CNN-GRU 0.0017 0.0014 0.0152

TABLE 8 Table of indicators for evaluating single-input
prediction models.

Prediction model RMSE MAE MAPE

BO-CNN-LSTM 0.0027 0.0021 0.0213

BO-CNN-GRU 0.0019 0.0015 0.0161

BO-CNN-BiLSTM 0.0023 0.0017 0.0172

The Bayes parameter optimization process of this paper’s method
is shown inFigure 5.Thevariationof loss valuesduringmodel training
is shown in Figure 6. The prediction results of different methods are
shown in Figure 7. The error result graph is shown in Figure 8.

Analysis of Figure 5 shows that when the number of iterations
of the Bayes optimization process reaches 8 times, the minimum
target observation value and the estimated value tend to be stable
and basically the same, and at this time, the optimal hyperparameter
combination is determined. Analysis of Figure 6 shows that in the
model training process, when the number of iterations reaches about
100 times, the loss value is unchanged, indicating that the model
training is completed at this time.

Analyzing Figures 7, 8, it can be seen that the trends of future
transformer operating state changes predicted by the three prediction
models, BO-CNN-GRU, BO-CNN-LSTM, and BO-CNN-BiLSTM,
are all closer to the actual transformer state changes, which are shifted
from the Excellent state to the Good state. However, the prediction
results of the BO-CNN-GRU are more accurate.

To better illustrate the advantages of the method in this paper,
four evaluation indexes, namely, RMSE, MAE, MAPE, Computing
time, and Running memory, are calculated to evaluate the model
performance. The calculation results are shown in Table 6.

Analyzing Table 6 shows that the RMSE, MAE, and MAPE,
of the BO-CNN-GRU, prediction model are the smallest, which
indicates that BO-CNN-GRU, can better reflect the trend and

fluctuation of the data compared to the BO-CNN-LSTM, and BO-
CNN-LSTM, prediction models. Meanwhile, the BO-CNN-GRU,
prediction model has the shortest computation time and occupies
less memory, indicating lower computational cost.

4.2 Comparative analysis of multiple
optimization algorithms

To better analyze the superiority of the BO Optimization
Algorithm, the Sparrow Search Optimization Algorithm (SSA),
Genetic Optimization Algorithm (GA), and Whale Optimization
Algorithm (WOA) were used to optimize the CNN-GRU prediction
model, respectively, and the evaluation indexes of the CNN-
GRU model after optimization of each optimization algorithm
are shown in Table 7.

Analysis of Table 7 shows that compared with SSA, GA, and
WOA Optimization Algorithms, the BO Optimization algorithm
has the lowest values of RMSE, MAE, and MAPE, which indicates
that the BO optimization algorithm has a better optimization ability
to improve the performance of CNN-GRU prediction model, and
can better complete the prediction of transformer’s future state when
used in combination with CNN-GRU.

4.3 Comparison of multi-input and
single-input results

To further verify the necessity of constructing a multi-feature
input matrix based on temperature, humidity, and state indicator
data, the prediction process is completed only through the
state indicator data, and the prediction result evaluation indexes
are shown in Table 8.

Analyzing the evaluation index data in Tables 6, 8, it can be seen
that compared with the single feature input, the multivariate input
matrix constructed using temperature, humidity, and state index
data has a better prediction effect, and the RMSE, MAE, and MAPE
of the prediction results are lower than that of the prediction effect
using the single feature input, which further verifies the superiority
of this paper’s method.

5 Conclusion

In this paper, a transformer future operating state prediction
method based on comprehensive weights and BO-CNN-GRU is
proposed, a 500 KV oil-immersed transformer is taken as an
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experimental object, and the following conclusions are obtained
based on the example analysis:

(1)Basedon11kindsoftransformerfeatureparameters, thegame
theorymethodisusedtointegratetheG1method,entropyweight
method, and CRITIC method to construct the comprehensive
weights of feature parameters, and more accurate data of the
transformer’s operation status indicators are obtained.

(2) The BO-CNN-GRU transformer future operating state
prediction model is constructed, which solves the problem of
difficulty in confirming the hyperparameters of the prediction
model. After comparative analysis, it can be seen that
compared with other state prediction models, the method
of this paper has lower RMSE, MAE, MAPE, and higher
computational efficiency. This shows that this paper can better
complete the transformer operation state prediction.

(3) In future research, the weight allocation scheme of transformer
feature parameters will be further explored.The applicability of
the paper’s methodology in multiple types of transformers and
the impact of extreme influences on the model performance
will also be further verified.
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