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With the increasing integration of distributed rooftop photovoltaic (PV) systems
into distribution networks, traditional scenario generation methods based
solely on historical PV data have become inadequate. This paper proposes a
planning-stage PV scenario generation method to address the challenges of
high-penetration rooftop PV integration. The method combines Conditional
Generative Adversarial Networks (CGAN) with an improved Bass model to
estimate new PV capacity. Load scenarios are constructed by analyzing regional
load growth patterns. Typical weather days are classified using Spearman’s
rank correlation coefficient to form joint PV-load scenarios, which are then
reduced using k-means clustering. The study compares multi-scenario energy
storage configuration schemes considering planning-stage scenarios with
those based only on historical data predictions. Results demonstrate that the
generated planning-stage scenarios align well with future actual operating
scenarios. Furthermore, the energy storage configuration scheme considering
planning-stage scenarios outperforms the scheme based solely on historical
data predictions, indicating the proposed method’s effectiveness in addressing
high-penetration PV integration challenges in distribution network planning.

KEYWORDS

deep learning, conditional generative adversarial networks (cGAN), photovoltaic(PV),
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1 Introduction

In the context of widespread photovoltaic (PV) application, an increasing number of
rooftop distributed PV systems are being continuously integrated into distribution net-
works (Uddin et al., 2023). The power output of distributed PV systems exhibits significant
randomness and strong correlation with meteorological conditions (Wang et al., 2023).
Generating reasonable planning-stage PV and load scenarios for distribution networks
with rooftop PV systems has become a challenging issue in terms of enhancing local PV
consumption and ensuring secure and reliable system operation.
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For planning distribution networks with PV integration,
the typical scenario generation method is commonly used
(Ehsanbakhsh and Sepasian, 2023; Lefeng et al., 2022). This method
extracts representative characteristics of PV and load data while
reducing the original large-scale PV and load scenarios, thereby
obtaining a small number of representative typical scenarios. This
approach achieves the transformation from numerous uncertain PV
output scenarios to a few deterministic scenarios.

Currently, typical scenario generation methods can be classified
into two main categories (Zhang et al., 2018). The first category
employs traditional clustering algorithms, including K-means
clustering based on Euclidean distance, spectral clustering based on
graphs, and fuzzy clustering algorithms (Gao et al., 2017). Reference
(Hu and Li, 2022) proposes an improved k-means clustering
algorithm based on multi-feature indicators, extracting features
from historical information of island power supply systems to
generate PV scenarios. Reference (Yang et al., 2022) uses a clustering
algorithm based on local density centers to analyze historical PV
output data, taking cluster centers as typical output scenarios, and
then utilizes Copula functions to establish formulas de-scribing
correlations between typical scenarios.

The second category primarily involves artificial intelligence
learning methods (Ali E and Qiang, 2019). These methods use
neural networks with learning and fitting capabilities to learn
the distribution characteristics of historical data, enabling the
network to generate desired data sequences. Reference (He et al.,
2022) proposes an improved generative adversarial network for
PV scenario generation. Its designed loss function incorporates
Lipschitz continuity constraints, enhancing the convergence speed
of the scenario generation model and the quality of generated
scenarios, capturing nonlinear characteristics of PV output.
Reference (Niu et al., 2021) presents a random scenario generation
method for renewable energy based on pixel convolutional
generative networks. This method generates PV and wind power
curves point by point through a chain method, verifying that the
constructed output curves can effectively simulate the volatility
and spatiotemporal correlation characteristics of actual wind
and PV power.

Although these methods have shown good results in generating
renewable energy scenarios, they mostly rely on historical scenarios
as references. For distribution networks experiencing rapid
integration of rooftop distributed PV, they fail to fully consider
the growth characteristics of renewable energy output and load,
and cannot establish operational scenarios oriented towards the
planning stage. To address this issue, a common approach is to
forecast renewable energy output and load. Reference (Chen et al.,
2021) proposes a stochastic power multi-scenario prediction model
based on Markov chains. It models and analyzes the stochastic
characteristics of renewable energy and load, as well as seasonal
fluctuations, and finally completes the prediction of renewable
energy output and load levels based on a multi-scenario prediction
model using scenario trees. Reference (Hu et al., 2022) first uses
the BIRCH unsupervised clustering algorithm to divide historical
data into datasets under three typical weather conditions, and then
employs a dual-layer L-Transformer model to complete short-
term PV power prediction. The model’s robustness and accuracy
for different weather types are verified through measured data.
Although predictions of PV and load can provide references for

distribution network operation and planning, they still do not
adequately address the issues brought by rapid integration of rooftop
PV into distribution networks, nor can they form more specific
planning-stage operational scenarios for distribution networks.

What’s more, current methods often treat PV generation and
load growth as independent processes, neglecting their inherent
correlations and the impact of external factors such as regional
economic development and technological advancements. This
limitation is particularly critical in the context of high-penetration
PV integration, where the variability of PV output and the
uncertainty of load growth can significantly affect the stability and
reliability of distribution networks (Cheng et al., 2021; Colmenar-
Santos et al., 2016).

To address these problems, this paper proposes a method for
generating typical planning-stage scenarios considering PV-load
growth characteristics (Cheng et al., 2024). For PV, it first uses a
Conditional Generative Adversarial Network (CGAN) to fully learn
the relationship be-tween PV capacity and output from historical
PV data, and then employs an improved Bass model to estimate the
relationship between future additional capacity and time, thereby
completing the generation of PV output scenarios corresponding to
specific PV capacities at future time cross-sections. For load, it first
studies the load growth patterns of regional distribution networks to
determine the growth situations of different load types (Zhu et al.,
2024). Then, it combines historical load data to construct planning-
stage load scenarios. Due to the strong correlation between PV,
load, and meteorological factors, to achieve joint PV-load scenario
generation, Spearman’s rank correlation coefficient is first used
to analyze the correlations between meteorological factors and
PV/load, completing the classification of typical weather days.
Subsequently, the planning-stage PV and load scenario datasets are
divided into different typical weather days. Finally, the k-means
clustering algorithm is applied to different datasets to complete
scenario reduction, obtaining joint typical PV-load scenarios for
different weather days in the planning stage. By integrating these
approaches, our method not only captures the dynamic growth
characteristics of PV and load but also generates joint PV-load
scenarios that reflect the correlations between meteorological
conditions, PV output, and load demand. This represents a
significant advancement over traditional methods, as it provides
a more accurate and comprehensive framework for distribution
network planning in the era of high-penetration renewable energy
integration.

2 Materials and methods

2.1 Planning-stage PV scenario generation
based on CGAN and bass model

For medium to long-term planning of distribution networks
with rapidly increasing rooftop PV integration, it is crucial to
generate PV output scenarios that align with future time cross-
sections. Therefore, this paper proposes a planning-stage PV
scenario generation method based on Conditional Generative
Adversarial Networks (CGAN). First, historical PV operational data
is used to train the CGAN network, enabling it to fully learn the
relationship between PV output and capacity in the distribution
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FIGURE 1
Basic structure of CGAN network.

network.Then, the Bass model is employed to estimate the installed
capacity of rooftop PV in the distribution network area, fitting the
relationship between additional PV capacity and time. Finally, the
CGAN is equipped with the ability to generate planning-stage PV
scenarios for future capacities (Cheng et al., 2020).

2.1.1 Conditional generative adversarial network
Generative Adversarial Networks (GAN) are unsupervised

learning models, consisting of two structurally independent deep
learning networks: a generator and a discriminator (Wenlong et al.,
2022). Through adversarial learning between the generator and
discriminator, the authenticity of samples generated by the generator
is improved, enabling data-driven un-supervised learning.

The original GAN is an unsupervised model, generating
uncontrollable data and exhibiting drawbacks in training stability
and convergence, as well as being prone to local optima. Most
importantly, GAN can only learn from provided historical training
data, generating samples essentially consistent with the historical
data, which is not well-suited for this paper’s goal of generating
future scenario data driven by historical scenario data. CGAN,
however, introduces a condition c, improving the network into a
supervised model. During network training, each iteration of real
data is input alongwith a condition c, allowing the generator to learn
the correlation between the real data and condition c, in addition
to learning the characteristics of the real data. This provides a de-
gree of controllability for generating data under specific conditions
(Yanping et al., 2023). The basic structure of the CGAN model
is shown in Figure 1.

The loss functions for the generator G and discriminator D are
shown in Equations 1, 2, respectively.

LG = −Ez∼pz(z)[log (1−D(G(z)))] (1)

LD = −Ex∼pdata(x)[logD(x)] +Ez∼pz(z)[log (1−D(G(z)))] (2)

Where E represents the expectation of the distribution.
The objective function of CGAN is shown in Equation 3:

min
G
 max

D
 V(D,G) = Ex∼pdata(x)[log D(x ∣ c)]

+Ez∼pz(z)[log (1−D(G(z ∣ c) ∣ c))] (3)

Where V(D,G) represents a binary cross-entropy function,
aiming to minimize the Jensen-Shannon (JS) divergence
between the probability distributions of generated samples and
real samples (Jun et al., 2023).

The condition c not only provides direction for training data
samples but can also serve as a classification label for training data.
In this section, c is defined as the PV capacity value. Through the
driving of historical PV output data under different capacities, the
CGAN network is trained, enabling the generator to produce PV
output data for specific capacities.

Since the randomness of PV output ismainly reflected in vertical
similarity, i.e., PV output at a certain moment has a strong similarity
with adjacent moments but little correlation with distant moments,
convolutional neural networks are chosen to design the CGAN
structure. This is because convolutional networks can adequately
fit the correlation between a point and its nearby points without
considering distant points.

2.1.2 Estimation of additional PV capacity in
regional distribution networks based on bass
model

This section studies the integration of rooftop PV in regional
distribution networks, using the Bass model to fit the change of
additional rooftop PV capacity over time. This determines the total
installed capacity of rooftop PV at a future time cross-section,
thereby constructing planning-stage PV output scenarios for the
corresponding time.
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FIGURE 2
Identification of roof area associated with 10 kV feeder line: (A) The roof area associated with this feeder line; (B) 10 kV feeder topology diagram.

2.1.2.1 Rooftop PV potential in regional distribution
networks

For the same rooftop PV installation area, the capacity of
different PV panels varies. As a device that converts solar energy
into electrical energy, it is widely used in residential, commercial,
and industrial sectors.

Since polycrystalline silicon PV panels are currentlymainstream
and their scale and advantages will not be easily surpassed by other
types of PV panels for a long time in the future, this paper focuses
on this type of PV panel. The maximum installed capacity (i.e.,
maximum PV potential) of PV panels is shown in Equation 4:

Ep = Sr × Pn ×HA (4)

Where Sr is the total installable area of PV panels; Pn is the rated
power value of PV panels; HA is the solar radiation.

The total installable area of rooftop PV panels can be obtained
from relevant departments of the power grid company, including
rooftop information associated with each distribution area.Through
the power grid’s supporting rooftop area identification technology,
the total effective rooftop area available for PV installation can
be obtained and converted into the total installable area of PV
panels, ultimately completing the maximum installed capacity value
associated with the distribution network’s rooftops.

Figure 2 shows the rooftops associated with a certain 10 kV
feeder line in a region of Guangdong, with the red parts indicating
the rooftop area available for PVpanel installation. Table 1 shows the
current transformer capacity andPV installed capacity for each node
of this feeder line, while Table 2 shows the corresponding available
rooftop area and potential installed capacity.

2.1.2.2 Estimation of additional capacity based on bass
model

The main ideas of the Bass model based on the diffusion of
innovative products are:

1. The diffusion process of innovative products is a process where
potential groups gradually accept and use the product.

2. Potential groups are mainly divided into two categories:
innovators and followers.

3. Innovators are easily influenced by external factors
to adopt innovative products, while followers are

TABLE 1 Current transformer capacity and photovoltaic installed
capacity of each node.

Node number Transformer
capacity (kVA)

Total installed
capacity of
PV(kW)

1 500 —

2/14 500 102

3/13 630 146

4 630 —

5 800 —

6 500 —

7/12 1,000 450

8/11 500 173

9 1,000 —

10 500 —

TABLE 2 The available roof area and maximum installed capacity of this
feeder line.

Available roof area for
distribution network

feeder

Maximum PV capacity of
the feeder line

12648m2 1590 kW

easily influenced by internal factors to adopt
innovative products (Zhangjin et al., 2021).

The logical relationship is shown in Figure 3:
In the field of rooftop PV diffusion, the Bass model can be

improved by extracting its core ideas. Therefore, the three modeling
elements of the improved Bass model can be analyzed as: Ep
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FIGURE 3
Schematic diagram of the logic flow of the Bass model.

is the installation potential of rooftop PV, innovation coefficient
p, and imitation coefficient q. Ep refers to the total capacity of
rooftop PV ultimately installed; innovation coefficient p refers to
the influence of the external environment on potential installation
groups; imitation coefficient q refers to the influence of uninstalled
groups imitating installed groups due to word-of-mouth and other
spreading factors (Goodfellow I. et al., 2014).

Based on the modeling elements of the improved Bass model,
the cumulative curve expression equation N(t) and density curve
expression equation n(t) in the field of rooftop PV diffusion are
shown in Equations 5, 6, respectively:

N(t) = Ep[

[

1− e−(q+p)t

1+ q
p
e−(q+p)t
]

]
(5)

n(t) = Ep[

[

p(q+ p)2e−(q+p)t

[p+ qe−(q+p)t]2
]

]
(6)

Where p is the innovation coefficient, q is the imitation
coefficient, and p,q ∈ [0,1].

Assuming that individual users will choose to install rooftop PV
in time period t, based on the above Equation 5, the cumulative
distribution function FT(t) related to t is shown in Equation 7:

FT(t) =
1− e−(p+q)t

1+ q
p
e−(p+q)t
, t > 0 (7)

In terms of rooftop PV diffusion, let g represent the user group
connected to the same distribution network. The initial potential
market Hg represents the total number of users with sufficient
roof resources and meeting the minimum economic conditions for
rooftop PV installation, while the final potential market Fg is the
estimated number of users with economic potential and intention to
install rooftop PV, i.e., the installation potential of the distribution

network, which is a subset ofHg. Therefore, the calculation of Fg can
be done through Equation 8:

Fg =MgHg (8)

Where Mg is the maximum market share of rooftop PV
installation in group g. In other words, according to the analysis
of PV technology diffusion in the study area and Equation 8, the
number of customers in Fg corresponds to the number of users in
proportionMg in Hg.

The cumulative capacity Ng(t) of rooftop PV can be
obtained by Equation 9:

Ng(t) = FT(t)Fg (9)

Where t represents a future time cross-section, and g is the user
group connected to the same distribution network.

Through the above formula calculations, we obtain the estimated
cumulative installed capacity of rooftop PV in the distribution
network at a future time cross-section, addressing the lack of
applicable planning-stage PV output scenario data for that time
cross-section.

2.1.3 Planning-stage PV scenario generation for
specific capacities
2.1.3.1 CGAN training steps

ThePVoutput sampling interval in this study is 1 h.The training
process of the CGAN planning-stage PV scenario generation model
using historical PV operational data is as follows:

Step 1: Normalize historical PV output training sample data and
historical PV capacity control conditions. Concatenate 1∗24
dimensional noise following a standard normal distribution
and 1∗24 dimensional daily scenarios of real PV with
historical PV capacity c. Process through convolutional
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FIGURE 4
Discriminator output change curve.

FIGURE 5
JS distance variation curve.

kernels to output generated samples (Fake data) and real
samples (Real data) containing condition c.

Step 2: Input Fake data and Real data into the discriminator
network. The discriminator outputs discrimination results
through the objective function and feeds back to the
generator.

Step 3: Extract gradient penalty sampling points, calculate loss
functions for G and D, and update their network weights.

Step 4: Determine if training is complete. If not, return to Step 1 and
continue iteration.

Step 5: Training ends.

During training, the output of the discriminator in Figure 4
illustrates the evolution of the generated samples. Initially, generated
samples (orange) and real samples (blue) are easily distinguishable
by the discriminator. As the model progresses, they become
increasingly difficult to differentiate. Figure 5 shows the distance
between real and generated samples. When approaching zero, it
indicates that the two distributions are close, suggesting that the
distribution generated by the generator model is now close to the
real PV output distribution, and training is complete.

2.1.3.2 Planning-stage PV scenario generation
Obtain the cumulative installed PV capacity at a future time

cross-section based on the Bass model. Extract the generator
model trained with real historical data from Section 2.3.1. Use the
cumulative installed PV capacity as the condition value c, input it
along with high-dimensional noise following a normal distribution
into the generator model. This ultimately yields rooftop PV output
scenarios for each distribution area under that capacity, further
obtaining planning-stage PV generation scenarios for each rooftop
PV connection point in the distribution area.

The blue line in Figure 6 shows a historical daily PV operation
scenario for a distribution area with a total rooftop PV capacity of
154 kW. When the total rooftop PV capacity of this area increases
to 188kW, the corresponding planning-stage PV operation scenario
for that day is shown by the red line. Similarly, in Figure 7, the old
capacity is 170 kW and the new capacity is 195 kW.

As shown in Figure 8, for node 7/12 of the feeder line in Figure 2,
365 daily PV operation scenarios are generated using the trained
CGAN generator under a specific future PV capacity.The PV output
has been normalized.

The proposed CGAN model, through its convolutional neural
network architecture, captures the short-term variability of PV
generation by learning the temporal correlations in historical PV
output data. This allows the model to generate realistic hourly PV
output scenarios that reflect the dynamic nature of solar power
production. Additionally, the Bass model provides a framework for
estimating future PV capacity growth, which, when combined with
the CGAN-generated scenarios, accounts for long-term trends and
seasonal variations in PV generation.

2.2 Construction of planning-stage load
scenarios considering regional distribution
network load growth characteristics

In this section, we focus on the construction of planning-
stage load scenarios, taking into account the regional distribution
network’s load growth characteristics. The approach involves
categorizing loads into residential, commercial and industrial,
agricultural, and office types, and estimating their growth rates
based on historical data.Thismethod inherently captures the diverse
growth dynamics of each load type, which can exhibit non-linear
trends due to varying socioeconomic factors.

By segregating loads into different categories, the model
accounts for the unique growth patterns specific to each sector. For
instance, residential load growth may be influenced by population
dynamics and household electrification rates, while commercial and
industrial loads might be affected by economic indicators such as
GDP growth and industrial policy changes.This method thus allows
for a nuanced understanding of load growth, reflecting the complex
interplay of factors that drive demand in each sector.

Furthermore, the regional analysis in our model considers the
specific characteristics of each sub-region, including local economic
development and infrastructure expansion. This regional approach
introduces variations in load growth patterns, acknowledging that
different areas may experience distinct growth trajectories based on
their economic and social contexts.
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FIGURE 6
PV scenario for distribution area 1.

FIGURE 7
PV scenario for distribution area 2.
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FIGURE 8
Generated planning-stage PV scenarios for a certain distribution area.

To construct planning-stage load scenarios, it is necessary to
understand information such as load power and distribution at a
future time cross-section. First, by studying the load growth patterns
of specific regions and combining with existing loads, the load levels
for a future period can be fitted, completing the construction of
planning-stage load scenarios.

2.2.1 Load growth patterns
Load growth is an uncertain process, with different types

of loads exhibiting distinct growth characteristics. However,
loads in neighboring areas also have certain spatiotemporal
correlations.Therefore, the key to constructing regional load growth
patterns lies in distinguishing load types and determining the
impact of load spatiotemporal characteristics on growth. This
paper selects existing point load growth and large-capacity load
application methods combined with spatiotemporal characteristics,
using sequence operation theory to analyze and describe
load growth (Goodfellow I. J. et al., 2014).

First, the loads in the studied area are categorized into four types:
residential, commercial and industrial, agricultural, and office. The
natural growth rates for each type are obtained through statistical
analysis of historical load data from the distribution network data
collection and monitoring system. Then, the natural growth rates
are adjusted based on the development function positioning of the
load area to determine the overall growth rate data for future loads,
ultimately obtaining the total future load for each region and type.

To quantify the uncertainty of load growth and consider
the differences in growth rates among different load types and
regions, this paper establishes scenarios including high, low, and
medium load growth. The studied area is divided into M sub-
regions, with the load growth prediction value for sub-region k
denoted as Qh

1k、Qm
1k、Q1

1k , and its corresponding probability as
P11k,P

m
1k,P

1
1k(k = 1,2...,M) . This is then discretized with a step size

Q, ultimately obtaining the probabilistic sequence formula ak(i), i =
0,1, ...,Nk for the sub-region as shown in Equations 10, 11:

Nk = [Qlk/Q] (10)

ak(i) =

{{{{{{{
{{{{{{{
{

Phlki = [Q
h
lk/Q]

Pmlk i = [Q
m
lk/Q]

Pllki = [Q
l
lk/Q]

0 else

(11)

In Equation 10, [x] represents the largest integer not exceeding
x; Nk is the number of discretized values for sub-region k. The
superscripts h, m, and l represent high, medium, and low growth
scenarios, respectively.

When considering the correlation between growth in different
regions and load types, the total probability sequence x(i) can be
obtained according to the probability sequence derivation rule. By
calculating the expected value of this sequence, we can obtain the
expected value of total load growth as EQ. Finally, the increased
load is allocated according to the characteristics of load distribution,
which can be expressed using Equations 12, 13:

x(i) = a1(i) ⊕ a2(i) ⊕ ...... ⊕ am(i) (12)

EQ = Q
N0

∑
i=0
 ix(i) (13)

In Equations 12, 13, N0 = ∑Mk=1  Nk; ⊕ represents the convolution
sum operation.

For large user applications, the final total regional load growth
prediction value is determined based on the installed load capacity
Pcap provided by the relevant power grid department, the load
terminal utilization coefficient αpra, the stage coefficient bsta, and
considering the simultaneous rates of large user load ηins and
regional load ηng, determine the final total regional load growth
forecast value PForecast, as shown in Formulas 14, 15:

Pinstall = Pcap × αpra × bsta (14)

PForecast = ηng × (PNaturalgrowth(EQ) + ηins × Pinstall) (15)

Through modeling and analysis of historical load data, as well
as research on the distribution network load growth rate calculation
model constructed based on regional characteristics, a series of load
growth characteristics for a future time cross-section based on the
actual situation of the regional distribution network are obtained.

2.2.2 Construction of planning-stage load
scenarios

This section needs to integrate historical load scenarios and load
growth characteristics, reasonably superimposing the load growth
characteristics of the regional distribution network onto historical
load scenarios. This updates a large number of historical load
scenarios into planning-stage load scenarios that conform to a future
time cross-section, laying the data foundation for forming typical
planning-stage load scenarios.

Based on the above analysis, a load scenario prediction
model oriented towards medium and long-term planning stages is
established, as shown in Equation 16:

Mt =Mt0 ×(1+
PForecast − P0

P0
) (16)
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FIGURE 9
Planning-stage daily load operation scenario for a certain distribution area after 1 year.

Where Mt represents the planning-stage daily load operation
scenario for a future time cross-section;Mt0 represents the historical
daily load operation scenario; PForecast is the load prediction
value from Equation 15; P0 represents the total regional load at the
most recent time in the historical load data.

The blue lines in Figures 9, 10 show the daily load operation
scenario for a distribution area with a transformer capacity
of 1000kVA. Through the study of the load growth pattern
in this distribution network area, the red line in Figure 9
shows the operation scenario for this distribution area’s load
after 1 year, and the red line in Figure 10 shows the scenario
after 2 years.

From Figures 9, 10, it can be seen that with social development
and improvement in people’s living standards, the load connected
to a certain transformer area in the distribution network
gradually increases. For a given day-ahead load scenario,
through the study and calculation of the load growth pattern,
the possible load scenarios after 1 year and 2 years are shown
by the red lines in Figures 9, 10, respectively, representing
the planning-stage daily load operation scenarios for this
distribution area.

2.3 Typical weather day classification
considering meteorological factor
distribution characteristics

The natural correlation between PV output and meteorological
information means that different meteorological data corresponds

to different PV output scenarios. These meteorological factors
mainly include solar radiation, temperature, precipitation, and
wind speed. Based on the factors that significantly influence PV
output and load power, regional weather is classified into several
typical weather days. However, selecting more meteorological
features is not always better. The correlation between PV output
time series and meteorological features, as well as between load
power and meteorological features, can be analyzed separately to
select highly correlated meteorological features as the basis for
dataset division.

2.3.1 Correlation analysis of meteorological
features and sample data based on spearman
correlation

Spearman correlation coefficient is a non-parametric measure
of rank correlation, which can effectively measure the strength of
the monotonic relationship between two variables (Su, 2023). For
the relationship between PV output and meteorological features,
the Spearman correlation coefficient ranks both the meteorological
feature values and PV output sample data values from smallest
to largest, calculating correlation using these ranks rather than
actual values (Li, 2023).

To complete the correlation analysis between meteorological
features and PV output/load power, this paper selects the Spearman
correlation coefficient to analyze the correlation between six
sample meteorological features (radiation, air pressure, relative
humidity, precipitation, temperature, and sunshine duration)
and PV output/load power sample data. The specific formula
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FIGURE 10
Planning-stage daily load operation scenario for a certain distribution area after 2 years.

is shown in Equation 17:

ρ =
∑N

i=1
 (xi − x)(yi − y)

√∑N
i=1
 (xi − x)

2(yi − y)
2

(17)

Where: N is the number of processed PV output sample data or
meteorological sample data, xi and yi are the i-th sample PV output
value and i-th sample weather feature value respectively, and are the
average values of sample PV output and sample weather features
respectively.

Through the calculation of Equation 17, the correlation
coefficients between the six sample meteorological features and
PV output/load power sample data are obtained, denoted as. The
results are shown in Table 3.

From the PV correlation coefficient column in Table 3, it
can be seen that radiation, temperature, and sunshine duration
have high correlations with PV output, with radiation having
the highest correlation coefficient. The load correlation coefficient
column shows that load power is also highly correlated with
these three meteorological features, with temperature having the
highest correlation coefficient with load power. Therefore, these
three meteorological factors can be selected as the classification
standard for typical weather days in this region for studying PV
output and load power.

2.3.2 Typical weather day dataset division
Due to differences in climatic conditions across regions,

mechanically dividing historical PV and load data into four seasonal
datasets lacks applicability. Considering that meteorological
conditions in the same area are stable over long time scales,

TABLE 3 Correlation analysis results of meteorological features with
PV and load.

Meteorological
characteristics

PV correlation
coefficient

Load
correlation
coefficient

Radiation level 0.934 0.756

Pressure 0.366 0.258

Relative humidity −0.541 0.463

Precipitation −0.574 0.311

Temperature 0.816 0.863

Duration of
illumination

0.792 −0.644

generally alternating between specific types of weather days,
and the proportion of a certain typical weather day in an
annual meteorological cycle doesn't change significantly. To avoid
mechanically using the average or median of meteorological
factors as the division standard, this paper uses kernel density
estimation to visualize the distribution characteristics of each
meteorological factor and completes the division based on the
distribution characteristics of regional meteorological factors. The
data used in this paper’s case study is from a regional distribution
network in Guangdong for the entire year of 2022. The specific
division process is as follows:
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(1) Select temperature, radiation, and sunshine duration as
meteorological conditions for dataset division;

(2) For temperature, calculate the average daily temperature from
the dataset, obtain the daily average temperature dataset,
and use kernel density estimation to fit its distribution
characteristics, as shown in Figure 11. Based on the
distribution characteristics of daily average temperature,
19.2°C can be set as the temperature division point. For
the i-th day, if the daily average temperature is higher than
19.2°C, it is considered a high-temperature day, otherwise a
low-temperature day. Mark high-temperature days as 1 and
low-temperature days as 0;

(3) For radiation, calculate the average daily radiation from the
dataset, obtain the daily average radiation dataset, and use
kernel density estimation to fit its distribution characteristics,
as shown in Figure 12. Based on the distribution characteristics
of daily average radiation, 147.4W/m2 can be set as the
radiation division point. For the i-th day, if the daily average
radiation is higher than 147.4W/m2, it is considered a high-
radiation day, otherwise a low-radiation day. Mark high-
radiation days as 1 and low-radiation days as 0;

(4) For light intensity (measured in Lux), count the number
of hours in a day when the average light intensity within
an hour is greater than 800 Lux, considering that hour to
be in a bright state. After calculation, use a bar chart to
represent the frequency of daily sunshine hours in the dataset,
as shown in Figure 13. Based on the bar chart, 9 h can be set
as the division point for sunshine duration. For the i-th day,
if its sunshine duration is greater than or equal to 9 h, it is
considered a long sunshine day, otherwise a short sunshine day.
Mark long sunshine days as 1 and short sunshine days as 0;

(5) Based on the meteorological conditions from steps 2), 3), and
4), the dataset can be divided into 2 × 2 × 2 = 8 specific weather
day types, forming the matrix in Equation 18:

(6) According to the dates corresponding to each data category in
the matrix, divide the distribution network area into 8 weather
day types, and extract the corresponding PV and load data
for each date. If the data for a certain category is extremely
scarce, merge it with a similar category’s dataset. Finally, obtain
8 weather day dataset divisions based on the distribution
characteristics of meteorological factors.

After constructing a large number of planning-stage PV and
load daily scenario description matrices, divide the planning-stage
PV and load daily scenario data into 8 different typical weather day
datasets according to the dates of weather days, forming 8 planning-
stage PV output datasets and 8 planning-stage load power datasets.

The following is the dataset classification of planning-stage
PV and load scenarios for a feeder line with rooftop PV
integration in Guangdong area for 2021 and 2022. The study
period is two consecutive full years, i.e., 730 daily operation
scenarios each for PV and load. According to the local typical
weather day division method, these 730 daily operation scenarios
are divided (Chong et al., 2023), and the classification results
are shown in Table 4:

3 Experimental results and related
discussions

3.1 Scenario generation and validation

Due to the large number of historical operational scenarios
involving photovoltaic systems and loads in the distribution
network, it is necessary to perform scenario reduction to derive
a limited number of representative historical scenarios. Scenario
reduction employs mathematical algorithms and analysis to reduce
the number of similar scenarios during the study period, thus
lowering computational complexity (Qun et al., 2023). In this
paper, the k-means clustering algorithm is used to perform scenario
reduction on the 16 datasets mentioned above, utilizing Euclidean
distance to measure the distance between data points. This ensures
that scenarios within the same cluster have significant similarities,
while those in different clusters display distinct differences (Li et al.,
2023). This is particularly appropriate for the photovoltaic and load
power curves. Ultimately, the cluster centers of each cluster are used
as the typical scenarios for each typical meteorological day dataset.

The steps of the clustering algorithm are as follows:

1) Randomly select a data point from the dataset as the first cluster
center K1.

2) Calculate the distance between other sample data and the
initial cluster center K1, and select the sample data farthest
away as the new center K2.

3) For the i-th cluster center Ki(i ≥ 3), it should satisfy the
condition max{min(di,1,di,2, ...,di−1,M)} where di−1,M is the
distance between the (i− 1) − th cluster center and the M-th
group of data.

4) Repeat step 3) until K cluster centers have been selected.
5) Assign all data points to the nearest cluster center.
6) Recalculate the cluster centers based on the data points in

each cluster.
7) Repeat steps 5) and 6) until the cluster centers no longer change

or a predefined number of iterations is reached.

To determine the optimal number of clusters for each scenario
set, the Elbow Method is used in step 4) to identify the best
number of clusters. The basic principle of this method is to observe
the relationship between the sum of squared errors (SSE) and the
number of clusters, looking for an inflection point or elbow, where
the corresponding number of clusters is deemed optimal (Yuan
and Yang, 2019). This completes the generation of typical historical
scenarios for each specific meteorological day.

Figure 14 shows the cluster centers obtained using the k-
means clustering method for 344 load and photovoltaic daily
scenarios under meteorological day 8 at nodes 7/12, with
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FIGURE 11
Distribution of daily average temperature.

FIGURE 12
Distribution of daily average radiation.

three centers for load and two for photovoltaic. Figure 15
shows the typical scenarios corresponding to these
cluster centers.

In addition, clustering analysis was conducted on
each meteorological day dataset, and the clustering results
are shown in Table 5.

Meteorological day division method discussed in this paper, the
number of typical scenarios can be reduced to 12 for load nodes and
10 for photovoltaic nodes. In practice, these 22 typical scenarios do
not appear randomly but are manifested according to the division
of meteorological days, aligning with specific photovoltaic-load day
scenarios within those days.
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FIGURE 13
Frequency statistics of sunshine hours.

TABLE 4 Typical weather day dataset division.

Typical
meteorological day
categories

Daily scene days Proportion

Meteorological Day 8 344 47.2%

Meteorological Day 7 44 6.0%

Meteorological Day 6 74 10.1%

Meteorological Day 5 50 6.8%

Meteorological Day 4 20 2.7%

Meteorological Day 3 34 4.6%

Meteorological Day 2 42 6.0%

Meteorological Day 1 122 16.7%

3.2 Practical application and
computational efficiency

The proposed mathematical models and algorithms are
designed to be applicable to real-world distribution networks. The
Conditional Generative Adversarial Network (CGAN) and Bass
model are implemented in a modular fashion, allowing for easy
integration with existing distribution network planning tools. For
instance, the CGAN can be trained offline using historical PV and
load data, and the trained model can then be deployed to generate
scenarios for specific future time horizons.This approachminimizes
the computational burden during real-time planning, as the scenario

generation process is decoupled from the optimization of network
configurations.

Regarding computational complexity, the CGAN training
process is the most resource-intensive step, as it involves iterative
updates of the generator and discriminator networks. However,
once trained, the CGAN can generate scenarios in a matter of
seconds, making it highly efficient for practical applications. The
Bass model, which is used to estimate future PV capacity, is
computationally lightweight and can be executed in real-time. The
overall computational efficiency of our method is further enhanced
by the use of k-means clustering for scenario reduction, which
reduces the number of scenarios to a manageable size without
significant loss of information.

For large-scale networks, the proposed method can be scaled
by parallelizing the CGAN training process and distributing
the scenario generation across multiple computing nodes.
Additionally, the modular design of the algorithm allows for
integration with existing software tools, such as distribution
network simulators and optimization platforms, enabling
seamless implementation in real-world planning workflows. The
experimental results demonstrate that the proposed method
achieves a balance between computational efficiency and
scenario accuracy, making it a practical tool for distribution
network planning.

3.3 Dynamic characteristics of PV
generation and scenario realism

The proposed CGAN model captures short-term PV variability
by learning temporal correlations in historical data, enabling
realistic hourly PV output scenarios. For example, it replicates
rapid fluctuations caused by weather changes, as shown in the
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FIGURE 14
Clustering results of load and photovoltaic data at node 7/12 and meteorological day 8.

FIGURE 15
Typical daily scenarios of load and photovoltaic under node 7/12, meteorological day 8.

generated scenarios for nodes 7/12 (see Figures 6, 7). Combined
with the Bass model, which estimates future PV capacity growth,
the framework accounts for long-term trends and seasonal
variations, ensuring scenarios reflect both short-term and
long-term dynamics.

By classifying typical weather days based on radiation,
temperature, and sunshine duration, the model inherently captures
seasonal and weather-driven PV variability. This enhances scenario
realism, as demonstrated in the clustering results for meteorological
day 8 (see Figures 14, 15). While the current model does not
explicitly use advanced time-series techniques, its modular design
allows future integration of detailed meteorological data or
seasonal forecasting models, further improving applicability to
real-world planning.

4 Discussion

4.1 Experimental validation and
comparative analysis

The example feeder line in this article is a 10 kV feeder line
located in a certain area of Guangdong. Its topology structure
is shown in Figure 2, and the photovoltaic, load, and meteorological
data are the operational data of the feeder line for the years 2021
and 2022. In order to highlight the advantages of the planning
state typical scenario construction method considering specific
meteorological days in this article, we compared the photovoltaic
and load scenarios under 8 meteorological days in the example
feeder line, using the planning state typical scenario construction
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TABLE 5 Number of load and typical photovoltaic scenarios on each
meteorological day.

Meteorological
day categories

Number of
typical load
scenarios

Number of
typical PV
scenarios

Meteorological Day 8 3 2

Meteorological Day 7 1 1

Meteorological Day 6 2 1

Meteorological Day 5 1 1

Meteorological Day 4 1 1

Meteorological Day 3 1 1

Meteorological Day 2 1 1

Meteorological Day 1 2 2

method considering specific meteorological days in this article and
the typical scenario generation method using only historical data
to reasonably superimpose photovoltaic and load growth rates. The
scenario reduction was achieved using k-means clustering method.

For the validation method in this article, the photovoltaic and
load data of the node for the first 18 months before 7/12 are
shown below as training data for CGAN. Combined with the Bass
model prediction results and clustering algorithm, a typical planning
scenario for the next 6 months is constructed. For the method
of considering only historical data and reasonably adding growth
rates, the annual average photovoltaic and load growth rates are
calculated using the photovoltaic and load data before 2022, and
then the growth rates are reasonably added based on the operating
data of the first half of 2022 to form the predicted photovoltaic
and load operating data for the second half of 2022. Compare the
scenarios generated by the above twomethodswith typical operating
scenarios in the second half of 2022. The average errors of load and
photovoltaic scenarios are shown in Figures 16, 17, respectively.

Analysis of the results from Figure 17 and Figure 18 reveals that,
compared to themethod that generates future load and photovoltaic
scenarios solely based on historical load data, the planning state load
and photovoltaic scenario construction method proposed in this
paper is more aligned with real-world conditions. This is because
the planning state scenario generation method developed in this
study extensively investigates each load node type and its growth
characteristics, as well as the probability of new capacity at each
photovoltaic node. Consequently, for distribution networks rapidly
integrating rooftop photovoltaics, the method presented in this
paper offers a higher degree of accuracy in generating planning state
load and photovoltaic scenarios.

4.2 Methodological advantages and
practical applicability

The proposed methodology is designed with practical
application in mind, particularly for real-world distribution

networks. The Conditional Generative Adversarial Network
(CGAN) and Bass model are implemented in a modular fashion,
enabling seamless integration with existing distribution network
planning tools. For instance, the CGAN can be trained offline using
historical PV and load data, and the trained model can generate
scenarios for specific future time horizons in a matter of seconds.
This decouples the scenario generation process from real-time
optimization, significantly reducing computational burden during
planning tasks. The Bass model, used for estimating future PV
capacity, is computationally lightweight and can be executed in
real-time, further enhancing the method’s efficiency.

For large-scale networks, the scalability of our approach is
ensured by the parallelizability of the CGAN-based scenario
generation process. Scenarios for different nodes or time
horizons can be generated independently, allowing the method
to be efficiently scaled using distributed computing resources.
Additionally, the modular design of the algorithm facilitates its
integration with widely used optimization platforms such as
MATPOWER and OpenDSS, making it suitable for real-world
planning workflows.

4.3 Scenario generation rigor and
validation

Regarding the scenario generation process, we employ a rigorous
methodology to ensure the accuracy and representativeness of the
generated scenarios. Historical PV and load data are preprocessed
and used to train the CGAN, which learns the underlying
distribution of PV output and load demand under varying
meteorological conditions. Typical scenarios are selected using
the k-means clustering algorithm, with cluster centers chosen as
representative scenarios.The number of clusters is determined using
the ElbowMethod, balancing representativeness and computational
efficiency.

To validate the accuracy of the generated scenarios, we compare
them with historical operating data, calculating metrics such
as mean absolute error (MAE) and root mean square error
(RMSE). As shown in Figures 16, 17, the generated scenarios
exhibit low error rates, confirming their alignment with real-world
conditions. This validation process ensures that the scenarios are
not only representative but also reliable for use in distribution
network planning.

4.4 Limitations and future refinements

The Bass model simplifies the diffusion process by assuming
homogeneous user behavior and static innovation/imitation
coefficients (Mahajan et al., 1990). However, this approach may
overlook regional economic disparities or policy-driven incentives
that influence rooftop PV adoption rates. For example, Tsoularis and
Wallace (2002) proposed a phased logistic growth model to capture
heterogeneous diffusion dynamics across sub-regions (Tsoularis
and Wallace, 2002). Future enhancements could incorporate multi-
scale modeling, such as fitting region-specific Bass parameters or
embedding stochastic processes, to improve prediction accuracy
in heterogeneous markets. Additionally, high-resolution data on
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FIGURE 16
Comparison of errors in node 7/12 load scenarios under different methods.

FIGURE 17
Comparison of node 7/12 photovoltaic scene error under different methods.

user demographics and policy impacts could enable discrimination
among competing diffusion models for tailored planning.

While the proposed CGAN and Bass model framework
effectively leverages historical data to generate planning-stage
scenarios, it is essential to acknowledge its limitations in
anticipating technological innovations. For instance, breakthroughs
in photovoltaicmaterials or energy storage systemsmay significantly
alter future energy landscapes, which cannot be fully captured by
historical data alone. As noted byNorton andBass (1987), successive
generations of technology can disrupt traditional diffusion patterns,
leading to deviations in market penetration predictions. To
address this, future research could integrate technology trend

forecasting or dynamic parameter adjustments into the model
to better account for uncertainties arising from disruptive
innovations.

4.5 Summary of contributions

In summary, our method addresses key challenges in scenario
generation for distribution networks, offering a computationally
efficient and scalable solution that can be readily integrated
into existing planning workflows. The validation results further
underscore the practical applicability and accuracy of the generated
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scenarios, making our approach a valuable tool for addressing the
complexities of high-penetration PV integration and load growth in
modern distribution networks.

5 Conclusion

1) For distribution networks rapidly integrating rooftop
photovoltaics, this paper adopts a method driven by historical
data using Conditional Generative Adversarial Networks
(CGANs). It innovatively captures the photovoltaic capacity
and three meteorological factors that have the highest
correlation with photovoltaic output, thus generating planning
state photovoltaic output scenarios for specific meteorological
days and capacities. This approach addresses the limitations of
traditional methods that rely solely on historical photovoltaic
data for future scenario generation.

2) Regarding the correlation between meteorological factors
and both load and photovoltaic outputs, this study employs
the Spearman correlation coefficient method to analyze
the correlation between meteorological characteristics and
sample data. It identifies the three meteorological factors
that have the highest correlation with load and photovoltaic
outputs. Considering the unique meteorological distribution
characteristics of each region, this paper avoids mechanically
using the mean or median values of meteorological factors
as classification standards. Instead, it employs kernel density
estimation to visualize the distribution characteristics of
each meteorological factor, allowing for the segmentation of
meteorological factors based on variable quantiles according
to regional characteristics.

3) Concerning the integration of planning state photovoltaic-
load typical scenarios, this paper avoids mechanically dividing
historical photovoltaic and load data into four seasonal
datasets. Given that meteorological conditions in the same
region are stable over long time scales and typically only
a few specific meteorological days alternate, and that the
proportion of a particular type of meteorological day does not
vary significantly over an annual cycle, this study innovatively
classifies future meteorological days using the meteorological
factors most correlated with load and photovoltaic outputs.
Therefore, the few planning state typical photovoltaic-load
scenarios generated can be effectively combined under
corresponding typical meteorological days.

6 Future work

The current methodology focuses on single-region distribution
network planning. However, real-world power systems require
coordinated multi-regional renewable energy deployment to
mitigate generation volatility. Facchini et al. (2021) demonstrated
that leveraging meteorological correlations across regions can
optimize resource allocation and reduce fluctuations (Facchini et al.,
2021). Furthermore, policy interventions—such as feed-in tariffs
or renewable portfolio standards—could regulate the ‘natural
penetration’ modeled by Bass curves, ensuring grid stability
(Surmonte et al., 2021). Future work will explore correlated weather

scenario generation for geographically dispersed systems and
develop policy-aware Bass models to support national-scale energy
planning. Stochastic approaches, as proposed by Scala et al. (2019),
could further enhance robustness by integrating uncertainty in
weather patterns and policy enforcement.
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