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based optimised deep
bidirectional long short term
memory for global horizontal
irradiance prediction in long-term
horizon

Manoharan Madhiarasan ® *

Department of Business Development and Technology, Aarhus School of Business and Social Sciences
(BSS), Aarhus University, Herning, Denmark

With the continued development and progress of industrialisation,
modernisation, and smart cities, global energy demand continues to increase.
Photovoltaic systems are used to control CO, emissions and manage global
energy demand. Photovoltaic (PV) system public utility, effective planning,
control, and operation compels accurate Global Horizontal Irradiance (GHI)
prediction. This paper is ardent about designing a novel hybrid GHI prediction
method: Bayesian Optimisation algorithm-based Optimized Deep Bidirectional
Long Short Term Memory (BOA-D-BiLSTM). This work attempts to fine-tune the
Deep Bidirectional Long Short Term Memory hyperparameters employing
Bayesian optimisation. Globally ranked fifth in solar photovoltaic deployment,
the INDIA Two Region Solar Irradiance Dataset from the NOAA-National Oceanic
and Atmospheric Administration was used to assess the proposed BOA-D-
BiLSTM approach for the long-term prediction horizon. The superior
prediction performance of the proposed BOA-D-BILSTM is highlighted with
the help of experimental results and comparative analysis with grid search and
random search. Furthermore, the forecasting effectiveness is compared with
other models, namely, the Persistence Model, ARIMA, BPN, RNN, SVR, Boosted
Tree, LSTM, and BiLSTM. Compared to other forecasting models according to the
resulting evaluation error metrics, the suggested BOA-D-BiLSTM model has
minor evaluation error metrics, namely, Root Mean Squared Error: 0.0026 and
0.0030, Mean Absolute Error:0.0016 and 0.0018, Mean-Squared Error: 6.6852 x
107% and 8.8628 x 107°¢ and R-squared: 0.9994 and 0.9988 on both dataset
1 and 2 respectively. The proposed BOA-D-BiLSTM model outperforms other
baseline models. Thus, the proposed BOA-D-BIiLSTM is a viable and novel
potential forecasting model for effective distributed generation planning and
control.

deep learning, bidirectional long short term memory, bayesian optimisation algorithm,
hyperparameters, prediction, long-term horizon, and global horizontal irradiance
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1 Introduction

Within the renewable energy canopy, solar energy has emerged
as a potentially viable energy source to mitigate the increase in
greenhouse gas emissions from fossil fuel combustion and address
the ongoing energy issue (Madhiarasan, 2018). According to the
Ministry of New and Renewable Energy (MNRE) report on
30 November 2022, India is ranked fifth globally in solar energy
deployment, stating that around 70.10 GW (Gigawatt) of installed
solar power is now available in India (Ministry of New and
Renewable Energy, 2024). Global Horizontal Irradiance (GHI)
prediction is necessary for solar energy systems to be deployed
effectively because it affects grid stability, system design, and energy
planning. Long-term GHI predictions are necessary for strategic
planning, guaranteeing appropriate decisions on infrastructure
expenditures, resource allocation, and policy creation. As the
world moves toward energy from solar energy sources, the need
for accurate long-term forecasting has increased since it helps energy
suppliers anticipate fluctuation, maximise solar integration and
reduce dependency on fossil fuels. Precise solar GHI forecasting
is vital for the safe and effective integration of solar power into the
grid system. The photovoltaic energy is unstable because of the
inherent intermittency of solar irradiance and other climatic
conditions. As a result, effective solar irradiance forecasting is
regarded as one of the most essential issues in the power grid.
Effective planning, balancing, and controlling requires forecasting
the GHI in PV systems penetrating energy consumption and
production. Long Short Term Memory (LSTM) proved effective
in time series and sequence modelling applications. The
Bidirectional LSTM 1is a variant of the LSTM to benefit from
better results for real-time applications. Over the past 2 decades,
time series, sequence learning, and other real-time applications have
widely used BiLSTM (Bidirectional Long Short Term Memory).
Fixing optimal hyperparameters requires experience and skill.
Manual exploration of optimal hyperparameters is a relatively
task.
hyperparameter setup looks complicated since it varies based on

complex and  time-consuming Optimisation  of
the task to be performed, the dataset to be utilised, and so on, making
each circumstance unique. Hyperparameters fine-tuning using trial-
and-error, grid search, and random search are well-known methods
but have less efficient, computationally costly, and uncertain issues,
respectively. In a BiLSTM, significant performance changes occur
because of the various hyperparameters. Optimal selection of the
hyperparameter leads to outstanding and competing performances.

Estimating the optimal values of the hyperparameters is perplexing
and requires much computational effort and cost. Optimisation
algorithm-based hyperparameter fine-tuning is vital for better
performance. Bayesian optimisation is effective and sensible for
identifying the optimal hyperparameters of the BiLSTM. Numerous
prediction models have been designed to predict the sporadic and non-
linear solar irradiance time series (Global Horizontal Irradiance).
However, most of these models bypass the application of Bayesian
optimisation to maximise the hyperparameters throughout the training
process for neural networks. The present work aims to bridge the gap
using a new hybrid prediction approach (BOA-D-BiLSTM). Therefore,
this paper strives to use Bayesian optimisation-based BiLSTM
hyperparameter optimisation for the global solar irradiance (GHI)
prediction task.
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The following are the significant contributions of the paper:

o This research contribution provides a robust and reliable
prediction model to bridge the gap between existing models
and the growing demand for generic and precise prediction.

o The Bayesian optimisation algorithm is used to optimise the
hyperparameters of Deep BiLSTM

o Hyperparameter optimisation based on the Bayesian
optimisation algorithm is more effective and precise than
grid and random search.

« Using two locations of real-time data from India, the analysis
highlights the outstanding performance of the proposed BOA-
D-BiLSTM model for long-term GHI forecasting.

o The BOA-D-BIiLSTM model proposed in this research work
was assessed and compared with eight baseline models on two
data sets. Ultimately, it was discovered that the BOA-D-
BiLSTM model performs better than the eight considered
baseline models in terms of the least evaluation error
metrics such as RMSE (Root Mean Squared Error), MAE
(Mean Absolute Error), R* (R-squared), and MSE (Mean
Squared Error).

Section 1 introduces, discusses motivation, contributes, and
highlights the proposed prediction model. Section 2 studied
related work concerning the prediction of GHI and the
importance of hyperparameter fine-tuning. Section 3 presents the
description and concepts of the proposed prediction model. Section
4 discusses the details of the experimental simulation. Section 5
discusses the results and comparative analysis. Section 6 draws the
summarised conclusion of the proposed prediction model,
limitations, and future research direction.

2 Brief of solar irradiance prediction
related work

Researchers and other professionals are increasingly advocating
integrating solar energy into smart grids to moderate the
dependence on fossil fuels while simultaneously encouraging the
ecological and preservation of the environment. Thus, accurate and
reliable global horizontal irradiance (GHI) forecasting is essential for
predicting the prospective solar power era. The recurrent neural
network with optimised hyperparameters performs better GHI
prediction. Finding the optimal set of hyperparameters from all
if the
hyperparameters is higher. The Bayesian optimisation algorithm
can mitigate the LSTM hyperparameter optimisation problem. The

possible combinations is challenging number of

hyperparameters of the GPR (Gaussian process regression) were
optimised using Bayesian optimisation for the COVID-19 case
(2015)
predicted horizontal global solar radiation and used support
vector regression (SVR). Two SVRs, the RBF (radial basis
function) and the poly (polynomial basis function)—were used to

forecasting (Alali et al, 2022). Mohammadi et al.

examine the performance of long-term observations for a city in a
sunny region of Iran. Moreover, SVR-rf significantly qualified for
HGSR prediction utilising n and N, outperforming SVR-poly on
accuracy. The gradient-boosted regression tree (GBRT) model,
suggested by Persson et al. (2017), constitutes a nonparametric
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machine learning technique employed in multi-site solar power
generation prediction over a forecast timeframe of 1-6 h. In contrast
to GBRT model variants and single-site linear autoregressive models
overall forecast horizons, the multi-site model showcases superior
outcomes based on root mean squared error.

Yu et al. (2019) In this analysis, short-term predictions are made
using an LSTM-based technique based on a timeline that includes
global horizontal irradiance (GHI) in Atlanta and Hawaii 1 hour and
1 day ahead. According to the daily forecast results, LSTM continues
to be more accurate than other models and successfully boosts RNN.
Benamrou et al. (2020) introduced a novel hybrid method for
predicting GHI hourly in Al-Hoceima, Morocco. The lagged
satellite-derived GHI encompassing the point of interest was
determined to be the most pertinent feature for this purpose
using a deep long- and short-term memory network, Xgboost,
Random Forest, and Recursive Feature Elimination with cross-
validation. The selected feature was input to the suggested model,
and the Grid Search algorithm was used to select the best
prediction model. Jumin et al. (2021) Based on data collected
in Malaysia, the enhanced decision tree regression (BDTR) model
was implemented to forecast variations in solar radiation. The
suggested model was then contrasted with neural networks and
linear regression. Sensitivity and uncertainty analysis was
included to verify the truthfulness of the recommended model.
Kiang et al. (2021) proposed a hybrid machine-learning
algorithm to predict solar power accurately. The Persistence
Extreme Learning Machine (P-ELM) algorithm trains the
hybrid model, which performs more proficiently in short-term
forecasting than the ELM algorithm.

Bou-Rabee et al. (2022) To obtain precise solar irradiation
predictions, a DL model is built that uses the attention
mechanism employed in bidirectional long short term memory
(BiLSTM) is built. The suggested model works on both sunny
and cloudy days to provide better accuracy in various weather
situations. Madhiarasan and Louzazni (2022) considered various
influencing meteorological parameters as inputs for a novel
Combined Long Short-Term Memory Networks (CLSTMN). The
suggested prediction model is aggregated and compounded by many
inputs associated with six distinct long short-term memory models
built to increase the accuracy and generalisation of solar irradiance
prediction. Vijay and Saravanan (2022), a Bayesian optimisation-
based regression tree (BORT) machine learning technique was used
to anticipate the values of global horizontal irradiance (GHI). The
analysis of Bayesian optimisation’s performance against grid and
random search methods has demonstrated its validity. Medina-
Santana et al. (2022) Two deep learning models (feed forward and
recurrent neural networks) are utilised to forecast renewable sources
over a long period for a site in Michoacan, Mexico, to address the
uncertainty surrounding solar resources. Michael et al. (2022) By
incorporating stacked LSTM layers, dropout architecture, and
LSTM-based model, this work suggests an optimised stacked
Bidirectional Long Short Term Memory (BiLSTM)/Long Short
Term Memory (LSTM) model for predicting univariate and
multivariate hourly time series data. The model’s performance is
improved using Bayesian optimisation to adjust six pertinent
hyperparameters. The accuracy of the predicted results is
equivalent for both GHI and POA (Plane of Array) when using
real-world solar data from the Sweihan Photovoltaic Independent
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Power plant in Abu Dhabi, UAE, and NREL solar data for
year-round data.

Li et al. (2023) presented long- and short-term memory
networks (BO-LSTM) with a Bayesian algorithm for short-term
heat load forecasting. To remove noise from the data, apply the
moving average data smoothing technique. The model’s input is
ascertained using Pearson’s correlation analysis. Chodakowska et al.
(2023) employed data from Poland and Jordan to examine
autoregressive integrated moving average (ARIMA) models for
the seasonal forecasting of solar radiation under various climatic
situations. ARIMA models are used to anticipate solar radiation and
may assist in ensuring that solar energy is steadily and firmly
integrated into national systems. Krishnan et al. (2024) An
ensemble model that uses gradient boosting was built and
suggested for India’s different climate zones for forecasting
hourly global horizontal irradiance. The autoregressive integrated
moving average (ARIMA), 2-layer feed-forward neural network, and
long short-term memory (LSTM) are used as benchmarks for the
gradient boost-based model; it is noticed an improved set of
performance measures was attained by gradient boosting.
(2024)  deployed the
optimisation algorithm and BiLSTM in conjunction with

Herrera-Casanova et al. Bayesian
bootstrap resampling for interval predictions to provide hour-
ahead photovoltaic power prediction. A Bayesian optimisation
algorithm (BOA) is used in conjunction with the BiLSTM model
to optimise its primary hyperparameters and improve its prediction
performance. The suggested model reduces the normalised mean

absolute error (nMAE) compared to the MLP and RF
comparison models.
The literature  shows that identifying  optimal

hyperparameters in bidirectional long short term memory is

crucial, complicated, time-consuming, and expensive.
Predicting solar irradiance with accuracy has become much
more crucial in light of the growing use of solar energy in
power and energy systems globally. Several studies use ML or
DL models for PV solar energy forecasting, as shown in the
literature study. It is clear from the literature review that using
hybrid models, which combine many basic models with optimal
hyperparameters, improves prediction accuracy. Still, other
research suggests extremely complicated models that require
Although that

tuning can prediction model

extended  training. research  indicates

hyperparameter improve
accuracy, some studies carry out this modification by trial and
error, taking a long period without ensuring optimal
correspondence. With motivation from the existing literature,
the BILSTM optimal hyperparameter set is automatically fine-
tuned and identified using the Bayesian optimisation algorithm
applied for solar GHI prediction using the two India region

datasets in this research work.

3 Proposed bayesian optimisation
algorithm-based optimized deep
bidirectional long short term memory
(BOA-D-BILSTM)

The proposed BOA-D-BiLSTM mathematical modelling and
descriptions are detailed below:
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FIGURE 1

Simplified BiLSTM model.

TABLE 1 Bayesian optimisation algorithm pseudocode.

Bayesian optimisation algorithm

1. Commence: The objective function is to minimise error and identify the optimal
hyperparameters of deep BiLSTM.
2. Randomly choose the initial samples
3. Build the surrogate framework and acquisition function to calculate fitness
concerning the considered samples
4. Perform the looping operation
1. Introduce the acquisition function to supplement the additional samples
2. Compute the surrogate
3. Update the surrogate framework to provide a posterior framework
5. Terminate

3.1 Deep bidirectional long short term
memory network (deep BiLSTM)

The unique feature is the information process from the past to
the future (forward flow) and from the future to the past (backward
flow) (Graves and Schmidhuber, 2005). It consists of two LSTM
layers, one for the forward information flow and the other for the
backward information flow. BiLSTM can extract more complex
relationships from the input sequence by considering historical and
longitudinal data. By combining the two LSTM layers, the final
output is obtained. The prediction may be required to be decided
jointly by the previous and subsequent inputs. Improvement in
prediction performance uses forward and backward transitions.
Thus, making the network learn better and more feasible for
real-time applications. Building the deep architecture model
involves stacking more than one BiLSTM. Figure 1 shows the
simplified BILSTM model.
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BiLSTM simplified mathematical model representation in terms
of matrix form.

GF f sig Ve Wi Br
G, fig Vi Wy B,

= R, + Sp1 + 1
Ge | ™| Fun || [ Ve [ H [ Wee [ B || @
Go fig Vzo Wso Bo

Mathematical model of BiLSTM and gate updating

Forget Gate, Gr = fg (VreRy + WspS,-1 + Br) )
Input Gate, G; = fg (VriR, + WS,y + By) ©)
Cellagent G¢ = fian (VrcRy + WcSno1 + Bc) 4)

Output Gate, Go = fig (VroR: + Ws0Ss-1 + Bo) (5)
Hidden State Q, = Go © ftanh (Gn) (6)

Cell State (Memory cell output) G, = G oG,y + G°Ge ~ (7)

The BiLSTM output vector

- «—
Pn = V§PQn + VEPQ" + BP (8)
Qs = fuig(VisRu + VigQut + Bg) )
— —
Qn = fsig(VR‘an + VE‘EQn—l + Ba) (10)

Where, fg,- Sigmoidal activation function for gates, fiann-
Tangent activation function, - Hadamard Product (element-wise
product), V-weighted connection of the gates, respectively forget
gate, input gate, cell gate and output gate, W-weighted connection
between the output state to the input state cell, S,,-; -time stamp n-1
past hidden state output, Q,,- time stamp n hidden state, R,, - current
time stamp input, B - bias of the respective gates, G,- Cell state,
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of India

v

v

Development of the Deep BILSTM
network

v

Perform training of the developed Deep
BiLSTM based prediction model with
real-time training data

pr—-

Perform testing the trained Deep
BiLSTM based prediction model with
| real-time testing data
Evaluate the model using the evaluation
metrics

FIGURE 2
The proposed workflow of the BOA-D-BIiLSTM prediction model.

Q,-forward flow information, 6,, -backward flow information, P,-
Output Vector.

Selecting an activation function fi, and fianh is essential for
managing the non-linearity of the output. The forward LSTM Qn
has access to historical data, but the backward LSTM Q,
represents the model’s memory at time step n. The model may
produce predictions based on both temporal contexts by
combining these hidden states. The BiLSTM may determine
dependencies from both directions in the sequence due to this
bidirectional structure. The degree to which the input affects the
current hidden state is determined by this V matrix. The impact
of the hidden state from the previous time step on the present one
is determined by this W matrix. The output layer’s bias term B
enables the final prediction to change by the patterns the model
has learned. It considers the context of the future. The model may
generate predictions based on both temporal contexts by
combining these hidden states. Equations 1-10 state the
mathematical model of BiLSTM.
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TABLE 2 Range set of hyperparameters for the Deep BiLSTM and Bayesian

optimisation algorithm parameters.

Number of Stack 1to3
Number of Layers 1to4
Number of hidden nodes 1 to 300
Batch size 16 to 128
Dropout 0.1 to 0.5

Activation function

‘relw’, ‘tanh’, ‘sigmoid’

Optimizer ‘adam’, ‘rmsprop’, ‘sgd’
Initial Learning Rate le-5 to le-2

L2 Regularization le-5 to le-15

Epoch 10 to 300

Bayesian Optimisation Algorithm

Parameters

Objective function

Minimisation of MSE

Iterations 200

TABLE 3 Dataset statistics.
Input variables Data size Range Units
Temperature 87,600 8-45 (‘C)
Wind speed 87,600 3-12 (m/s)
Pressure 87,600 990-1,017 (mbar)
Relative humidity 87,600 65-100 (%)
Cloud cover 87,600 0-11 (oktas)
Precipitation of water content 87,600 0-98 (%)
Wind direction 87,600 0-360 (Degree)
Dew point 87,600 18-41 (C)
GHI 87,600 0-1,031 (W/m2)
DNI 87,600 0-1,200 (W/m2)

3.2 Bayesian optimisation algorithm

The Bayesian optimisation algorithm solves difficulties by

finding the optimal parameters that minimise the objective

function in a finite area, with lower and upper bounds on each

variable, as given by Equation 11 (Pelikan et al., 1999).

r* = argmin f (r)

r€R

(11)

Where, f (r)-a score that should be minimised, R-domain of the
hyperparameter values, and r -the combination of hyperparameters
that yields the lowermost value of the score f (r).

Two fundamental elements that constitute the Bayesian

Optimisation Algorithm (BOA):.
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TABLE 4 Proposed Deep BiLSTM Optimised with Bayesian optimisation algorithm comparative analysis with other traditional optimisation methods.

Deep BiLSTM with optimisation methods Datasets Evaluation error metrics
MAE MSE
Grid Search (Bergstra and Bengio, 2012) Dataset 1 0.2037 0.1424 0.0415 0.9534
Dataset 2 0.2869 0.1842 0.0823 0.9401
Random Search (Bergstra and Bengio, 2012) Dataset 1 0.0063 0.0047 3.9543 x 107 0.9854
Dataset 2 0.0097 0.0070 9.4263 x 107 0.9810
Bayesian Optimisation Algorithm Dataset 1 0.0026 0.0016 6.6852 x 107 0.9994
Dataset 2 0.0030 0.0018 8.8628 x 107° 0.9988

The bold implies the best result.

Proposed Deep BiLSTM Optimised with Bayesian optimisation algorithm comparative analysis with other
traditional optimisation methods

BRMSE MAE mMSE mR"2

1
09
08
0.7
06
05
04
03
0.2 RA2

F 4 _ F 4 MSE
0.1 — — — MAE
0 - a5 - RMSE
Dataset 1 Dataset 2
Grid Search Random Search Bayesian Optimisation Algorithm Grid Search Random Search  Bayesian Optimisation Algorithm
FIGURE 3

Comparative analysis of the 3D column of proposed BOA-D-BILSTM with other traditional optimisation methods.

TABLE 5 The proposed Bayesian optimisation algorithm identified the optimal significant hyperparameter of the Deep BiLSTM.

Datasets Identified optimal significant hyperparameters
Number of BiLSTM Number of Initial Dropout Optimizer Batch L2 regularization
BiLSTM hidden nodes learning rate size
stacks layer rate

Dataset 1 2 2 50, 41 0.01015 03 Adam 32 118,58 x 107

Dataset 2 2 2 84, 28 0.010034 03 Adam 32 9.0466 x 107

Frontiers in Energy Research 06 frontiersin.org


https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2025.1499751

Madhiarasan

10.3389/fenrg.2025.1499751

TABLE 6 Proposed Bayesian Optimisation algorithm-based Optimised Deep Bidirectional Long Short Term Memory (BOA-D-BiLSTM) two datasets based on
comparative analysis with the baseline prediction models.

Prediction models Dataset Evaluation error metric
MAE MSE
Persistence (Xiang et al., 2021) 1 239313 22.4023 572.7094 -10.2399
2 20.3610 17.7686 414.5708 -9.9018
ARIMA (Chodakowska et al., 2023) 1 0.4463 0.4086 0.1991 —-1.0824
2 0.2565 0.1827 0.0658 —-0.0592
BPN (Madhiarasan, 2018) 1 0.5579 0.5016 0.3113 —2.2549
2 0.2508 0.1908 0.0629 —-0.0123
RNN (Yu et al, 2019) 1 0.0714 0.0547 0.0051 0.9496
2 0.0819 0.0591 0.0067 0.9402
SVR (Mohammadi et al., 2015) 1 0.0742 0.0576 0.0055 0.9424
2 0.0849 0.0708 0.0072 0.8827
Boosted Tree (Persson et al., 2017) 1 0.0592 0.0323 0.0035 0.9628
2 0.0663 0.0342 0.0044 0.9575
LSTM (Yu et al,, 2019) 1 0.0588 0.0305 0.0034 0.9638
2 0.0671 0.0387 0.0045 0.9570
BiLSTM (Bou-Rabee et al., 2022) 1 0.0548 0.0285 0.0030 0.9656
2 0.0624 0.0352 0.0039 0.9599
Proposed BOA-D-BiLSTM 1 0.0026 0.0016 6.6852 x 107°° 0.9994
2 0.0030 0.0018 8.8628 x 107 0.9988

Bold implies the best result.

« Probabilistic (surrogate) framework: BAYES® THEOREM
serves as the basis for BOA, which approximates the
objective function via a surrogate framework in each
iteration efficiently sampled. A Gaussian process serves as
the best stand-in framework for choosing a desirable group of
hyperparameters to assess the actual objective function. The
objective function is determined using a surrogate framework
and utilised to direct upcoming sampling.

o Acquisition function: The acquisition function intends to
discover the most promising group of hyperparameters that
should be assessed next by using Bayesian knowledge to
determine the optimal observation point in each iteration and
propose a new sampling point. The processes of exploration and
extraction are balanced through the acquisition function.
Exploitation concentrates on areas of the search space that
have a greater chance of yielding an improved solution based
on the present surrogate framework, whereas exploration pursues
less-explored areas of the search space. The Bayesian
Optimisation Algorithm Pseudocode is shown in Table 1.

3.3 Proposed BOA-D-BIiLSTM

This section is devoted to describing the proposed

framework. Deep BiLSTM hyperparameter tweaking is

Frontiers in Energy Research

significant in achieving the best model performance. The
disadvantages of automatic optimisation strategies like grid
and random search are that they take a long time for more
giant parameter sets and do not always provide the best finding,
respectively. In contrast, the Bayesian optimisation algorithm
(BOA) is a well-informed method that evaluates simply the
most promising models using a surrogate framework. With
fewer sampling points and a quicker computing time, the
Bayes applied to
distribution of the objective function.

theorem is construct the posterior

To enhance the long-term prediction of GHI, the best
hyperparameters for deep BiLSTM, such as its number of
hidden layers, hidden nodes, learning rate, regularisation,
and other significant hyperparameters, were found using the
method (BOA). The

optimisation algorithm was used to optimise Deep BiLSTM

Bayesian  optimisation Bayesian
concerning the optimal and promising hyperparameter and the
performance evaluated on the two datasets for the GHI
prediction in the long-term horizon. Figure 2 illustrates the
proposed BOA-D-BiLSTM prediction model workflow and
model built according to the set values and parameters
presented in Table 2. The author uses 10 times the number
of hyperparameters optimised as the initial samples and then
processed with complete

samples. The convergence is

determined by the minimisation of the MSE.
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(A) Comparison of the predicted GHI and the actual target GHI for the Chennai region (Dataset 1). (B) Comparison of the predicted GHI and the
actual target GHI for the Chennai region (Dataset 1) with the Zoomed-in section view. (C) Comparison of the predicted GHI and the actual target GHI for

the Chennai region (Dataset 1) with the Zoomed-in section view.

4 Experimental simulation details

The proposed BOA-D-BIiLSTM prediction model and other
models from the literature are used in the hp laptop system
configuration of the AMD Ryzen 5 3550H processor, RAM: 8 GB,
2100 Mhz and GPU: 4 GB. The proposed Deep BiLSTM
hyperparameters, namely, the number of stacks, number of
hidden layers, number of hidden nodes, learning rate, dropout
rate, batch function, and
L2 regularisation, are optimally fixed using the Bayesian

size, optimiser, activation
optimisation algorithm. The Bayesian optimisation algorithm
is based on identified optimal hyperparameters associated with
prediction model performance assessed based on the India

region’s two datasets (Datasets 1 and 2).

4.1 Data source

Environmental variables such as temperature, wind speed,
pressure, relative humidity, cloud cover, precipitation of water
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content, wind direction, dew point, and sun irradiance (GHI and
DNI (Direct Normal Irradiance (DNI)) are closely related to solar
energy fluctuations. Table 3 shows the statistics of the dataset.
This research experiment used data from India’s two regions,
namely, Chennai and Jammu. We used two data sets of Chennai
and Jammu locations in India that contain 10 years of datasets
consisting of GHI and other environmental variables for our
investigation and simulation evaluation. The daily resolution for
each meteorological parameter (Dataset 1 and Dataset 2) is
included in the data, encompassing 10 years from 01 January
2013 to 31 December 2022 hourly collected data, which is
obtained from the NOAA (National Oceanic and Atmospheric
Administration).

4.2 Normalisation
In this investigation, the collected real-time data was processed

in the range (0, 1) using the Min-Max normalisation approach, as
represented by the Equation 12.
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(A) Prediction Error vs. Data Points for Dataset 1. (B) Prediction Error vs. Data Points for Dataset 1 Zoomed-in section view. (C) Prediction Error vs.
Data Points for Dataset 1 Zoomed-in section view.
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(RO - Rmin)

7 (12)
Rmax - Rmin

R, =

Where, R,, are the values of R after normalisation, R is the

current value for variable R, Ry, and Ry, are the minimum and
maximum data points in the variable R of the input dataset.

4.3 Training and testing data sets

The proposed models possess the ten input nodes: GHI, DNI,
temperature, wind speed, pressure, relative humidity, cloud cover,
precipitation of water content, wind direction, and dew point. The
predicted GHI is the output node. The collected two region datasets
(1 and 2) consist of 87,000 data points of all considered inputs,
which are separated into training and testing sets based on the ratio
70:30, respectively.

Frontiers in Energy Research

4.4 Evaluation error metrics

This paper used RMSE (Root Mean Squared Error), R’
(R-squared), MSE (Mean Squared Error) and MAE (Mean
Absolute Error) as evaluation error metrics to evaluate the
proposed Bayesian Optimisation algorithm-based Optimised
Deep Bidirectional Long Short-Term Memory (BOA-D-BiLSTM)
and other baseline prediction model performance. Equations 13-16
state the evaluation metric formulations.

RMSE = ;i(m -P,)? (13)
1 N

MAE = N;'R"_P”l (14)

MSE = ii(Rn -p,)? (15)
Nn:I

10 frontiersin.org
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(A) Prediction Error vs. Data Points for Dataset 2. (B) Prediction Error vs. Data Points for Dataset 2 Zoomed-in section view. (C) Prediction Error vs.

Data Points for Dataset 2 Zoomed-in section view.

N
z (Rn - Pn)z
R=|1-" (16)
3 (R~ R)’
n=1

Let, N - the total number of the samples, R, - the real target GHI,
R- the mean target GHI, and P,- the predicted GHI.

5 Results and discussion

Global solar irradiance (GHI) prediction is a vital problem
in photovoltaic systems for vendors and power system
engineers. The proposed BOA-D-BiLSTM and other baseline
models were simulated on MATLAB R2024a. The detailed
proposed BOA-D-BiLSTM prediction model result analysis
and discussion regarding traditional optimisation methods
(grid search and Random search) and comparative result
models

assessment with the other eight baseline are

presented as follows.
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5.1 Comparative analysis with other
traditional optimisation methods for long-
term prediction of global horizontal
irradiance

Grid and random search are the traditional methods used to
identify the optimal parameter sets and comparative analysis. In the
context of the two data sets from the India region, this research
constitutes a deep bidirectional long short term memory network
that is resilient and optimised for long-term global horizontal
radiation (GHI) prediction. The results achieved are tabulated in
Table 4. From experimentation observation, it was noticed that grid
searches are notoriously time-consuming. The trial-and-error
method results in uncertain efficiency, and the grid search is
exorbitant in computational complexity. In order to optimally
the capability, hyperparameters be
appropriately configured. Grid Search and Random Search (RS)

use network’s must
are common approaches for hyperparameter optimisation. Still, they
are computationally costly, may take a long time to analyse, may

result in inappropriate hyperparameters, and produce an extensive
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(A) Linear regression plot for the Dataset 2. (B) Linear regression plot for the Dataset 2 Zoomed-in section view.

Proposed Bayesian Optimization algorithm-based Optimized Deep Bidirection long short-term Memory
(BOA-D-BILSTM) two datasets based on comparative analysis with the baseline prediction models
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FIGURE 10
The 2D stacked bar graph of the proposed BOA-D-BILSTM model performance comparison with other baseline prediction models.
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variance during computation. The advantage of Bayesian
optimisation algorithms is that they prevent being trapped in the
optimal solution.

The Bayesian optimisation algorithm optimises the Deep
the

optimisation limitations. The findings suggest that the models’

BiLSTM  hyperparameters to overcome traditional

GHI prediction capabilities are considerably enhanced by
adjusting the hyperparameters using random search, grid search,
and Bayesian optimisation algorithms. The experimental results
show that compared to the grid search, random search-based
identified hyperparameters-based Deep BiLSTM results are better
but do not surpass the Bayesian optimisation algorithm-based
identified hyperparameters-based BiLSTM prediction model for
long-term solar GHI prediction application. Random search-
based BiLSTM achieves reduced RMSE, MAE, MSE, and
R2 compared to grid search-based BiLSTM, but it is not supreme
compared to Bayesian optimisation algorithm-based BiLSTM. As
the number of hyperparameters rises, grid search algorithms become
less effective, and computation time complexity becomes
problematic. The approach employs the Bayesian optimisation
algorithm to discover the optimal combination in an acceptable
time. Moreover, the prediction performance of BiLSTM is greatly
enhanced by tweaking hyperparameters during training and testing.
With this, it was concluded that the optimised hyperparameter
based on the proposed Bayesian optimisation algorithm incurred
BiLSTM outperforms in terms of better performance and faster
convergence. The Bayesian optimisation algorithm outperforms grid
search and random search because it can intelligently navigate
complex, high-dimensional parameter spaces with few iterations.
Therefore, the authors considered the Bayesian optimisation
algorithm accurate and simple compared to the traditional
hyperparameter fine-tuning method, which was clearly inferred
from Figure 3. The identified significant hyperparameters based
on the Bayesian optimisation algorithm based identified significant
hyperparameters are tabulated in Table 5. Finding the best set of
parameters in an acceptable amount of time may be accomplished
through hyperparameter tweaking using Bayesian optimisation.

Additionally, it benefits in reducing model overfitting problems.

5.2 Comparative analysis of proposed BOA-
D-BiLSTM with other baseline models

In existing global horizontal prediction applications research,
many prediction models were suggested using baseline models such
as the persistence model, ARIMA (Autoregressive integrated
RNN (recurrent neural network), BPN
SVR  (Support Vector
Regression), Boosted Tree, LSTM (Long Short Term Memory)
and BiLSTM (Bidirectional Long Short Term Memory). All these
models predict values based on the present and past information,

moving average),

(backpropagation neural network),

and the selection of hyperparameters is not optimal. Still, in real-
time applications, consideration of future information along with
past and present and optimal hyperparameter-associated neural
networks leads to improved prediction performance. To address
this issue, the paper uses the deep Bi-LSTM with the Bayesian
optimisation algorithm-based optimised hyperparameters to predict
the GHI in the long-term horizon time scale. The results of the
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proposed BOA-D-BiLSTM investigations are examined in the
configuration as per Table 5; listed hyperparameters and other
parameters of the baseline model are considered as per the
literature but evaluated on the India region. The results attained
are tabulated in Table 6.

The suggested BOA-D-BiLSTM model performed better than
the baseline models when assessed using the MAE, RMSE, MSE and
R’ In this research, using the Bayesian optimisation approach, the
author determines the best Deep BiLSTM hyperparameter values
that lead to greater model precision, as noted in Figures 4-9. The
combined use of deep BiLSTM and Bayesian optimisation algorithm
in the proposed model yields better-reduced error metrics than the
benchmark models, as demonstrated by our comparative analysis
and experiment results. The persistence model prediction
performance does not produce effective results with high
evaluation error metrics compared to other prediction models.
ARIMA and BPN models compete for dataset 1, where ARIMA
performs better than BPN, and for dataset 2, where BPN performs
better than ARIMA. RNN performs better than SVR, BPN, ARIMA
and persistence.

LSTM has a reduced amount of evaluation metrics than Boosted
Tree, but BiLSTM performs better than LSTM, Boosted Tree, SVR,
BPN, ARIMA and persistence regarding reduced error. For linear
and stationary time series, ARIMA works well; however, it cannot
effectively represent the complex, non-linear patterns encountered
in GHI data. Although non-linear relationships can be captured by
simple LSTMs, such models frequently rely on human expertise or
assistance for hyperparameter adjustment, which is challenging and
not an optimal option for large-scale applications. To overcome the
drawbacks of simpler models like ARIMA and basic LSTMs, the
BOA-D-BiLSTM model incorporates the Bayesian Optimisation
Algorithm (BOA). The BOA-D-BiLSTM model’s incorporation of
BOA ensures
complexity by optimising hyperparameter tweaking. Effectively

optimal configurations with low computing

handling varied and high-dimensional datasets increases
scalability in addition to improving forecast accuracy. Regarding
predicting, the Deep BiLSTM structure outperforms simpler models
by capturing temporal dependencies in both forward and backward
directions. The validity and generalisation ability are proved on the
two different regions’ data sets. The proposed model performed well
and had improved accuracy for both datasets. BOA-D-BiLSTM for
the India region dataset 1 achieves MAE: 0.0016, RMSE: 0.0023,
MSE: 6.6852 x 107 and R* 0.9994 meanwhile for dataset 2-based
evaluations, achieve MAE: 0.0018, RMSE: 0.0030, MSE: 8.8628 x
107 and R 0.9988. As a result, Table 6 demonstrates the feasibility
of using a Bayesian optimisation approach to tune the Deep BiLSTM
framework by identifying the perfect combination of
hyperparameters that greatly enhances the proposed BOA-D-
BiLSTM efficacy that leads the predicted values to exactly match
with the actual target of GHI for the two data sets, as noted in Figures
4A-C and Figures 7A-C the zoomed-in view visualises the
effectiveness of the proposed model in accurate prediction of
GHI in the long-term horizon. Hence, prediction errors are near
zero for both datasets 1 and 2, and it is clearly visualised with the
help of the prediction error plot and the zoomed-in section view
shown in Figures 5A, B and Figures 8A, B. The linear regression plot
shows the linear relationship with R = 1 for both datasets, as

observed in Figures 6A, B and Figures 9A, B, respectively.
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Compared to the frequently used time series models, namely, the
Persistence Model, ARIMA, BPN, RNN, SVR, Boosted Tree,
LSTM, and BiLSTM, the proposed hybrid model BOA-D-
BiLSTM can affirm the significant elements of the input
information and also integrate forward and backward
transitions to improve solar irradiance (GHI) prediction and
produce the minor error than the eight baseline models, which is
illustrated in Figure 10 for better visualisation of the efficacy of

the proposed model.

6 Conclusion

However, the intermittent and non-linear character of solar
energy and GHI makes integrating PV-produced energy with an
electric grid a critical hurdle. The reliable and efficient operation
of the photovoltaic system penetrated the grid, which was
ensured by an accurate prediction of global solar irradiance
(GHI). This paper proposed the long-term horizon global
horizontal irradiance prediction using Deep Bidirectional
long-term memory with Bayesian optimisation for automatic
hyperparameter  fine-tuning  and  fixation. = Bayesian
optimisation algorithms (BOA) were used to fine-tune the
BiLSTM hyperparameters to improve prediction accuracy. The
performance of the proposed BOA-D-BiLSTM prediction model
is compared with the eight baseline prediction models using the
evaluation error metrics (MSE, RMSE, MAE, and R?) to prove the
performance validity. The comparative analysis confirms the
suitability and outperformability of the proposed BOA-D-
BiLSTM prediction model for the long-term GHI prediction
application among the other contract prediction models.
Further, the potential limitations and future direction are
as follows.

The of the

optimisation algorithm is that its run time is quite large when

Potential Limitation: limitation Bayesian

dealing with large amounts of data.

Future direction: The proposed model will be applied to
in future work. Furthermore,
the

scalability for the real-time application extended using the

real-time applications

improvements concerning computational cost and

transformer network, and significant parameters can be

explored using the parallel versions of the Bayesian

optimisation algorithm for the different horizon-based GHI
predictions to speed up the time and overcome the existing
potential limitation.
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