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Assessing the economic and
technical feasibility of off-grid
renewable hybrid energy systems
through optimization

Yashwant Sawle*

Electrical Engineering Department, Madhav Institute of Technology and Science, Gwalior, India

This research investigates the economic and environmental viability of a
combined renewable energy system that incorporates solar photovoltaic,
wind, and biomass power production with diesel generators and battery
storage serving as backup options. The system is designed to optimize
energy costs while ensuring high reliability, lower emissions, and greater
renewable energy utilization. Various advanced optimization methods,
including genetic algorithm, particle swarm optimization, artificial bee
colony optimization, and teaching-learning-based optimization, are used to
determine the most efficient system configuration. The combined energy
system is evaluated under two operational strategies, load following and
cycle charging, with a maximum power supply loss probability of 2% to
maintain system dependability. The findings indicate that the teaching-learning-
based optimization approach surpasses other methods in identifying the
most cost-effective and environmentally friendly solution. This investigation
centers on Barwani, a rural district in India, to evaluate the technical and
economic feasibility of implementing such a combined energy system. Through
comprehensive comparative analyses, the study emphasizes the superior
performance of teaching-learning-based optimization in achieving optimal
outcomes, showcasing its potential for practical applications in remote and
energy-scarce regions.

KEYWORDS

diesel dispatch strategies, LPSP, penalty cost, emission, particulate matter emission
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1 Introduction

In this era of energy demand versus economics, a diesel generator (DG) is not a
viable solution for electricity generation due to factors including fluctuations in fuel
prices, high operational expenditures, safety, and theft of fuel. In addition to the depletion
of fossil fuels and environmental concerns, renewable energy offers a superior choice
for generating electricity that mitigates the emission of pollutants. The abundance of
availability of renewable energy in the environment in distinct forms like solar, wind, and
biomass can be configured with battery banks that enhance the hybrid system’s efficiency
and dependability (Diaf et al., 2007). The optimized hybrid system is configured with a
combination of batteries, PV panels, generators, PV panels, etc., and offers minimized
total net present value (TNPC) and enhanced reliability. Various optimum approaches
(quantitative, probabilistic, recursive, etc.) are employed to evaluate the hybrid system’s
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optimal solution. Dufo-Lopez et al. (Köprü et al., 2024) designed
a multi-objective program for the optimal solution and control
techniques by using a genetic algorithm (GA) and multi-objective
evolutionary algorithm taking constraints as TNPC, unmet load,
and emission. The standalone hybrid system is optimized and
derived through the GA (Verma et al., 2024) PV panel, DG, and
battery bank combination to meet the load demand of the customer
by using HOMER software (Islam et al., 2024).

L. Prakash et al. (Shah et al., 2022) created an independent
photovoltaic stimulated strong wind electrical generator for off-grid
applications in India that reduces system costs and improves hybrid
model system performance. Different strategies, including honey
bee mating optimization, imperialist competition algorithm, linear
programming, harmony search, simulated annealing, tabu search,
and particle swarm optimization, are highlighted in various studies
and are used to find the optimal combination of hybrid systems
with minimal total net current value (Roy, 1997; Thirunavukkarasu
and Yashwant, 2022; Zeng et al., 2025; Águila-León et al., 2024;
Singh and Kumar, 2023; Jain et al., 2022a; Saha et al., 2023;
Sawle et al., 2017; Deb et al., 2023). Deb et al. (2023) designed an
ant lion optimization (ALO)-based approach for optimizing a smart
local energy system (LES) with CHP, solar power, and lithium-ion
battery storage. Validated on the University of Warwick’s energy
system, the method effectively balances stochastic generation and
demand, demonstrating high efficiency and reliability. Zeng et al.
(2025) reported a novel constrained multi-objective optimization
method for standalone microgrids, minimizing cost, reliability,
and emissions. Using advanced techniques, it outperforms existing
methods in achieving optimal planning with improved performance
metrics. In a study on Hawai’i Island, Singh et al. (Jain et al., 2022a)
useHOMER andMATLAB and show the effectiveness of combining
diverse renewable energy sources with energy storage and demand
management strategies. This approach results in a 62.62% decrease
in net present cost, a 15.35% reduction in energy purchased from
the grid, and a 42.98% increase in energy sales. The research
demonstrates the viability of this integrated system for improving
energy efficiency and cost-effectiveness. Zhou and Xu (2023)
developed an optimal design framework for standalone renewable
microgrids in Northeast China, finding that PV/wind/tidal/battery
systems are the most viable. Sensitivity analysis highlights cost-
effective, clean electrification solutions, supporting sustainable
investment in rural power access. Loss of power supply probability
(LPSP) plays a crucial role in the optimal sizing of hybrid systems
involving photovoltaic (PV), wind, and battery storage. Recent
studies focus on minimizing the LPSP while balancing costs and
system efficiency (Emrani and Berrada, 2024).

Helpful design models and competent optimizing software
platforms for studying suitable proposals and financial estimates
for hybrid sustainable energy are scarcely available in the literature.
A well-defined algorithm is needed to obtain an innovative study
and effective utilization of sources of energy for the integration
of renewable systems. In this study, an off-grid PV-wind-biomass
hybrid model for the remote community of Barwani, Madhya
Pradesh, India, is explored for the best solution and innovative
proper evaluation with two alternative methods (demand flowing
and cycle charging) using GA and particle swarm optimization
(PSO). The analysis of comparative results uses PSO and GA
based on different factors, for example, number of wind turbines

(WIND), PV (NPV), LPSP, renewable factor, the cost of electricity
(COE), wind power, pollutant emissions, reliability, biomass power,
operating hours of DG, emissions penalty cost, PV power, DG
power, and algorithm running time.

This paper is organized as follows:
Section 2 presents a comprehensive overview of component

sizing fundamentals for hybrid renewable energy systems,
encompassing load data and resource information such as solar
radiation, wind velocity, and biomass availability. Section 3 explores
various control strategies for standalone hybrid systems. Section 4
examines the optimization of hybrid system design, including
mathematical models for different energy components. Section 5
offers a multifaceted comparison from technical, economic,
environmental, and social standpoints, along with the identification
of optimal system configurations. Section 6 delves into the results
of the optimization process and provides a comparative analysis
of the proposed research. Lastly, Section 7 concludes the study
by summarizing the findings and discussing potential avenues for
enhancing system performance in the future.

2 Unit sizing of a hybrid renewable
energy system

The suggested integration of a renewable system is taken
to develop a PV-wind-biomass hybrid renewable energy system
(HRES) with a system of batteries to store energy and a DG
to keep the supply and power system stable. The dump charge
is used to discharge surplus power via an outer resistor. The
goal of the dumped load is to preserve the reliability of the
hybrid model and to intentionally discharge extra power when the
DG’s constant power limit is lower than that established by the
firm (Physical Progress Achievements, 2017; Nplindia, 2025). The
hybridization system’s optimal size and tech-economic research are
based on yearly daily average resource (wind/PV) data. Reliability
assessment uses the loss of power supply probability (LPSP)
technique. The system’s lower COE determines the best hybrid
renewable energy system design. A dispatch strategy is needed to
control the functioning of the battery system and theDGwhen there
is sufficient renewable power to fulfill the load demands.

2.1 Load profile

The power load requirements are also reduced because there are
fewer workers at the location implementing the planned renewable
energy hybrid system. The average energy usage is estimated to
be 110.6 kWh/day, with a peak load of 7.8 kW and an average
of 4.61 kW. The statistics for the complete hourly rate daily load
power situation of a load requirement for the Barwani district were
estimated. Figure 1 depicts the load profile over a 24-hour period.

2.2 Wind energy

Wind energy is plentiful in the atmosphere and is a source of
energy that may be utilized to produce electricity. Wind energy
capacity is greater in various parts of India, including the south,
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FIGURE 1
Load profile for 24 h.

FIGURE 2
Wind energy installations across India (Government of India, (n.d.)).

north, and west. These Indian areas now rank fourth in the world
in terms of wind power generation, trailing only China, Germany,
and the United States, having surpassed Spain in 2015. Wind power
installed capacity in India is 27,441.15 MW as of 31/July/2016
(Author Anonymous, 2025). As of 03/2015, there are no grid-
connected wind power plants in the East or Northeast. Figure 2
(Justus, 1978) depicts a rising number of wind energy installations
in Indian states. A tiny wind turbine with a rated output of
1 kW is included in the planned work for the design of a solar
hybrid renewable energy system (SHRES). Table 1 provides a full
representation of a wind turbine. Equation 1 is used to determine
wind energy (Gönül et al., 2024).

SHRES’s design site offers high availability in a wind system.
The yearly average wind speed is 4.5 m/s. The wind’s speed
changes constantly. It varies hourly and annually (Sawle, 2022).
The wind speed is at a maximum in December, as shown
in Figure 3, when wind turbine efficiency is at its peak and
produces the most power (Physical Progress Achievements, 2017).
The friction factor is also called the Hellmann exponent, the
electricity exponent, or the airflow gradient. Terrain irregularity,
height above ground, wind speed, region temperature, hourly
statistics of the day, and seasonality influence the friction coefficient.
The friction factor is often assumed to be approximately 1/7.
The output power of wind turbines may be calculated using the
calculations below.

PTWIND,each =

{{{{{
{{{{{
{

0V ≤ vJorV ≥ vo

PRw(
V− vJ
vR − vJ
)vJ < V < v.

PRwvr ≤ V < vo

(1)

2.3 PV energy

An SHRES is projected for Barwani, Madhya Pradesh,
India (latitude 22.71 north, longitude 75.85 east) (Gupta, 2010).
Solar radiation has a long-term annual capacity scalability of
5.531 kW/m2. Summer solar activity is greater than winter solar
irradiance, as shown in Figure 4.

The solar radiation output of a PV panel is estimated using
Equation 2 (Sawle et al., 2018;Medghalchi andTaylan, 2023). Table 1
provides precise information on the PV panels used in the
suggested work.

PPV,each =

{{{{{{{
{{{{{{{
{

PRS(
R2

RsrsRcr
)0 ≤ R < RCR

PRS(
R
Rsrs
)RCR≤R < Rsrs

PRSRsrs ≤ R

. (2)
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TABLE 1 Variables used in the hybrid system (Sawle, 2022; Akbar et al., 2015).

Variables Specification value Variables Specification value

Annual interest rate (i) 6% O&M for biomass 0.02 $/kWh

Life span of the system (n) 20 years O&M diesel generator 0.008 $/kWh

Solar panel price 468 $ O&M for inverter/converter 0 $/kWh

Solar panel installation fee 50% of the price O&M for battery 50 Annual

Wind turbine price 1850 $/turbine Biomass price 500 $/kW

Wind turbine installation fee 25% of the price Inverter/converter power 8 kW

Unit cost of battery (CBatt) 150 $/kWh Vj 2.5 m/s

Usage% of the battery’s rated capacity (g) 80% Vo 13 m/s

Battery’s rated capacity (SBatt) 8 kW h Vr 11 m/s

Battery’s life span 15,000 cycles PRw 1 kW

Unit time (Dt) 1 h PRS 260 W

O&M for the PV array (CSol Mnt) 0.0 $/kWh Rcr 150 W/m2

O&M for the wind turbine (CWind Mnt) 0.02 $/kWh Rsrs 1000 W/m2

FIGURE 3
Hourly wind speed data.

FIGURE 4
Hourly solar radiation data.

Frontiers in Energy Research 04 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1504972
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Sawle 10.3389/fenrg.2025.1504972

2.4 Biomass energy

In this research, rice husk is used as a renewable energy biomass
source. In India, more than 40% of all grain is produced as rice,
using 30% or more of all farmed land. India produces 21% of
the world’s rice. The design site at Barwani produces 460 Kg of
paddy rice each day. Various studies predict that the production
of rice husks will represent 25% of paddy output, and the growth
of an immature paddy will represent 3% of paddy production.
As a consequence, rice husk produces 115 kg/d total biomass
(Physical Progress Achievements, 2017). The calorific values of
various agricultural wastes have been reported in the literature to be
between 12.1MJ/kg and 15.2 MJ/kg. Equation 3 (Koholé et al., 2024)
can be used to compute the power output from biomass energy.

Total available energy for electricity:

PBM(
kWh
yr
) =(

Totalricehuskavailable( tyr) × 1000×CBBIO ×CVBIO

860× (operatinghours/day)
).

(3)

2.5 Battery bank

Batteries implemented for storage maintain a balance between
the load profile and the electricity energy coming from the resource.
Because of the charge/discharge process, the current battery power
input might be negative or positive. Analysis, condition of charge,
efficiency, and time consumed are as follows:

a) PTPV + P
T
WIND + P

T
BIO = P

T
DEMAND In this battery state, the

battery’s capacity is steady and does not vary.
b) PTPV + P

T
WIND + P

T
BIO > P

T
DEMAND In this case, the total hybrid

(PV + Bio + Wind) output of the device exceeds the load
requirements. At this point, the batteries are in the recharging
position, and the recharged amount at time (T) is represented
by Equation 4 (Sawle and Gupta, 2015):

ETbattery= E
T−1
battery.(1− τ) + [(P

T
PV+P

T
WIND + P

T
BIO) −

PTl
ηinverter
]ηbc. (4)

c) PTPV + P
T
WIND + P

T
BIO < P

T
demand In this case, the total electricity

produced by the hybrid system (PV+Bio+Wind) is lower than
the load requirement. At this moment, the power system is in
the discharging position, and the charge quantity is included
in the equation. The battery storage bank is configured to
a notional capacity and only allows discharge within that
capacity (Sawle andGupta, 2015). Table 1 contains information
on the battery bank. The following Equation 5 represents
the discharging mode of the batteries (Thirunavukkarasu and
Sawle, 2021).

ETbattery = E
T−1
battery
.(1− τ) + [

PTl
ηinverter
− (PTPV+P

T
WIND + P

T
BIO)]ηbf .

(5)

2.6 Diesel generator

When the electricity generated by the hybrid system is
insufficient to supply the required load, the DG serves as a
source of backup power. The DG improves system dependability
while also lowering system costs (Akbar et al., 2015). The DG’s
hourly fuel usage and efficiency study can be determined using
Equation 6 (Zhou and Xu, 2023):

Fdsl(t) = A.PR +B.P(t). (6)

2.7 Converter/inverter

An electronic converter is required to regulate the energy
transfer between the DC and AC components. At the correct
frequency for the load, electrical energy is converted by
inverters from one form to another (inverter DC to AC and
converter AC to DC). The efficiency of the inverter is given by
Equation 7 (Yadav et al., 2022):

ƞimv =
P

P+ P0 + kP2,
(7)

where P0, P, and k are calculated using the
formulas in Equation 8:

P0 = 1− 99(
10
ƞ10
− 1
ƞ100
− 9)

2
,k = 1

ƞ100
− P0 − 1,And P =

Pout
Pn
,

(8)

where ƞ10 and ƞ100 are the inverter’s reliability at 10% and
100% of its power rating, as defined by the manufacturer. Table 1
shows the cost and other characteristics of electronic
conversion.

3 Dispatch strategies for an isolated
HES

The appropriate functioning of a load-following system to fulfill
load requirements is strongly related to the dispatch strategy and
system management operation (Barley et al., 1995; Dsouza et al.,
2024). The hybrid system is maintained by the battery bank and
DG, which also solves the problem of unreliable and fluctuating
power supply. The battery bank and DG operations are managed
by a dispatch strategy. The dispatch mechanism is impacted by the
kind of renewable source, fuel price, generator, and battery storage
capacity, percentage of renewable energy in the hybrid model,
and cost of fuel. Typically, two different dispatch techniques are
employed while creating hybrid systems: a cycle-charging strategy
or a load-following strategy.The following Equation 5 represents the
discharging mode of the batteries.

3.1 Cycle-charging strategy

The generator is running at maximum efficiency in accordance
with the cycle-charging schedule, with any additional power going
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FIGURE 5
Flowchart for optimal sizing of a hybrid system using PSO.

toward charging the battery. The cycle-charging method aims to
provide a perfect hybrid vehicle, with or without renewable energy
sources, which can be calculate using Equation 9 for cyclic charge

strategy of DG. The DG always supplies electricity to the prime
load supply. The battery bank, electrolyzer, and deferrable load
are all charged using the extra power generated. The Equation 9
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FIGURE 6
Flowchart for optimal sizing of a hybrid system using GA.
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FIGURE 7
Flowchart for optimal sizing of a hybrid system using the ABCO algorithm.
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FIGURE 8
Flowchart for optimal sizing of a hybrid system using TLBO.
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FIGURE 9
PV output power of hybrid system using TLBO: (a) load-following strategy; (b) cycle-charging strategy.

FIGURE 10
Wind output power of the hybrid system using TLBO: (a) load-following strategy; (b) cycle-charging strategy.
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FIGURE 11
Diesel generator output power of hybrid system using TLBO: (a) load-following strategy; (b) cycle-charging strategy.

represents the energy balance among total demand and hybrid
energyn system.

PL = (PWIND + PPV + PBIO + PDIESEL)(Chargewith fullcapacity)

+ PBATTERY(chargewithexcesspower). (9)

3.2 Load-following strategy

The load monitoring approach asserts that the DG only
provides electricity when it is needed. Lower-priority tasks,
such as charging batteries or fulfilling postponed demand, are
left to renewable sources of energy. The following Equations
10–12, represent the load-following strategy mode of the DG
operation (Gupta et al., 2025).

PL = PWIND + PPV + PBIO + PBATTRY(PDIESELiso f f)withBatterybank. (10)

PL = PDIESELwithoutbattery. (11)

PEXCESS = PDUM,L + PTHERMAL. (12)

4 Optimization of hybrid system
design issues

4.1 Minimization of cost

The goal function of the viable design issue in this
suggested hybrid system design is to lower the cost of electricity
(COE). It is computed as a percentage of the total yearly
cost (the total annualized cost minus the cost of serving
the thermal load). Equation 13 refers to the topic of hybrid
model design and is handled using the fractional swarm
optimization approach (Thirunavukkarasu et al., 2023a).

MTotalannual =MAIC +MOM, (13)

where MAIC is the annual initial cost and MOM is the annual
operations and maintenance (O&M) cost.

If the energy cost is low, a hybrid system is preferable
(Bamisile et al., 2024). Energy costs are expressed as the unit cost of
electricity or as a steady price per energy unit. Equation 14 (Solargis,
2013) is used to compute it:

MinimizationofCOE =
MTotalannual

∑H−1
H−8760

PL
×CRF. (14)
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FIGURE 12
Dump load of a hybrid system using TLBO: (a) load-following strategy; (b) cycle-charging strategy.

The asset recovery factor is a proportion used to assess
an annuity’s current value (a series of equal annual cash
flows). The present value factor is calculated using Equation 15
(Singh et al., 2022; Thirunavukkarasu et al., 2023b):

CRF =
I(1+ I)N

(1+ I)N − 1.
(15)

The anticipated hybrid model project lifespan of 20 years
is taken into account. The converter and battery have 10-year
lifespans. Equation 16 is used to calculate the present value factor
of the converter and battery (C&B):

PCB = CCB ×(1+
1
(1+ J)10

). (16)

4.2 Reliability model based on LPSP
conception

Stability is the main issue with any viable hybrid approach.
Reliability is used to evaluate the load supply’s standard. The
likelihood of a power outage is used to describe the statistical
component of dependability (Ji, 2025). LPSP refers to a supplied
power that is unable to meet load demands because of a problem

with technology or a lack of renewable energy sources. If the
generated power supply satisfies the demanded load demand while
the LPSP current is 0, the opposite is truewhen the LPSP value is one.
Because renewable energy sources are erratic, LPSP assessment was
analyzed with a probabilistic technique that eliminates the need for
time information and chronologicalmodeling (enumeration is time-
consuming and necessitates access to data spanning a specific period
of time) using Equation 17 (Koholé et al., 2023;Homerenergy, 2025).

LPSP =
∑(PLOAD − PPV − Pwind − PBIo + PSOCM

+ PDISEL)

∑PLOAD
. (17)

4.3 Pollutant emissions

DG is a traditional energy source that emits hazardous gases.
Carbon monoxide (g/L of fuel), nitrogen oxides (g/L of fuel),
particulate matter (PM) (g/L of fuel), fraction of sulfur transformed
to PM(%), unburned hydrocarbons (g/L of fuel), and carbondioxide
are all present in exhaust gases. In this research, a large amount
of carbon dioxide is evaluated for emission price in the emission
output (Sawle et al., 2017; Nplindia, 2025). The cost of marketable
renewable certificates is used to compute the estimated value of
carbon dioxide. A biomass generator uses rice husk as its input fuel
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TABLE 2 Results for load-following and cycle-charging strategies using GA, PSO, ABCO, and TLBO with the hybrid system.

parameters

Methodmets Cycle
charging

Load
following

GA PSO ABCO TLBO GA PSO ABCO TLBO

NPV 50 67 72 66 61 66 76 54

NWIND 16 16 15 16 18 18 16 21

Cost of energy (COE in $/kWh) 0.2396 0.2394 0.2392 0.23911 0.2625 0.2617 0.2616 0.2609

LPSP 0.0143 0.01409 0.01408 0.01406 0.0172 0.0164 0.01628 0.01601

Renewable factor 0.8659 0.8857 0.8866 0.8869 0.9198 0.9237 0.9230 0.9241

Pollutant emissions (ton) 8.9069 8.7027 8.6843 8.6603 7.2668 7.2038 7.1773 7.1373

Emission penalty cost ($) 219.8155 214.7755 214.5553 213.0932 179.3397 177.7828 176.0545 175.8334

Operating hours DG (h) 1,078 1,036 1,024 1,008 2,127 2089 2049 2023

PV power (kW) 24,178 32,399 34,816.34 31,915 29,497 31,915 36,750.58 26,112.26

Wind power (kW) 34,435 34,435 32,282.72 34,435 38,739 38,739 34,435 45,195.81

Biomass power (kW) 5,693.35 5,693.35 5,693.35 5,693.35 5,693.35 5,693.35 5,693.35 5,693.35

Diesel power (kW) 8,624 8,288 8,192.2 8,152.1 5,925.6 5,821.8 5,746.60 5,671.86

Reliability (%) 98.57 98.59 98.592 98.594 98.28 98.36 98.37 98.40

Algorithm running time (s) 535.4624 501.3572 496.9123 433.2896 566.0706 543.1537 538.6375 509.1795

because it has the largest calorific value of all the fuels used. While
operating the diesel generator, carbon dioxide has been released, and
carbon monoxide gas has been emitted by the biomass generator.
The cost of biomass generator and DG emissions is calculated using
Equations 18–20:

DG:

Co2W =
CC × PDIESELG

1000
. (18)

CO2TAX = (
PTRC
CC
)× 1000. (19)

EMISSIONC = CO2W ×CO2TAX. (20)

where EMISSIONC, PDIESELG are the cost of emissions, CC is the
carbon regarded as 0.6078 Kg per KWh, and PTRC is the cost of
marketable renewable certificates (US$/KWh). Co2W is granted in
tons, and CO2TAX has been calculated in terms of US dollars per ton

The emissions of the biomass generator are determined
using Equation 21:

EMISSIONBIOMASS = (
∝1 +∝2

1000
)×M ton/day, (21)

where ∝1∝2 are the biomass emission coefficients and M is
the biomass volume (Gupta et al., 2008). The emission factors are
0.00532 kg/kg and 0.082 kg/kg, respectively.

4.4 Renewable fraction

The renewable fraction is the portion of the energy supply that
comes from renewable sources compared to the overall demand.The
hybrid energy system’s sustainable percentage reveals the limit of the
power supply compared to non-renewable energy sources. The ideal
hybrid model has 100% renewable fractions. This shows that all of
electricity produced to power the load is generated from renewable
sources. The renewable percentage is calculated using Equation 20.
If the renewable fraction is zero, it signifies that the overall demand
has been fulfilled entirely by generators powered by non-renewable
energy sources (Jain et al., 2022b; Thirunavukkarasu and Sawle,
2020).

Renewable fraction = (1−
∑Pdiesel
∑ppv +∑pwind

)× 100. (22)

4.5 Optimization techniques

The ideal size of the HES was determined using a genetic
algorithm (GA), artificial bee colony optimization (ABCO),
particle swarm optimization (PSO), and teacher-learning-based
optimization (TLBO). A well-known optimization strategy based
on swarm population is the optimization of particle swarms. During
the PSO, the particle circles a promising location in the search space.
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FIGURE 13
Comparison of load-following and cycle-charging strategy using GA, PSO, ABCO, and TLBO for a hybrid system: (a) COE, (b) operating hours of DG,
and (c) Pollutant emissions.

Particles are randomly positioned via the PSO technique, and they
can alter their placements based on their own and neighboring
particles’ optimal performance (Sawle et al., 2017; Sawle and Gupta,
2015; Lvshan et al., 2017). Figure 5 depicts the process flow for
equipment sizing via PSO. The underlying premise behind genetic
algorithms is “survival of the fittest” (Lvshan et al., 2017). The GA
optimization procedure includes only one powerful solution that
can survive while the others cannot. The GA can generate an initial
population of likely optimal solutions.The significantmeasurements
in GA are population size, crossover mechanism, fitness function
evaluation, and mutation rate. The process flowchart for using GA
to choose the appropriate location and size of DGs in various test
systems is shown in Figure 6.

The artificial bee colony optimization (ABCO) is based on bee
honey extraction behavior. It is divided into three parts: employed
bees, food sources, and unemployed bees, and it comprises two

main behavior patterns: food resource collecting and food source
abandonment (Verma et al., 2024). Figure 7 depicts the flow chart for
ABCO equipment sizing. Optimization based on teacher learning
(TLBO) is focused on a teacher’s influence on a certain set of
pupils (beginners). The method’s primary idea may be divided
into two parts: the teacher component and the learning part
(Bacha et al., 2024). Figure 8 depicts the flow diagram for TLBO
system sizing.

5 Results and discussion

The ideal PV, biomass, and wind hybrid energy system (HES)
schedule, together with DG backup and battery, is shown using PSO,
GA,ABCO, andTLBOanalysis.The specified job is carried out using
MATLAB (2009a) on a computer runningWindows 8 and equipped
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FIGURE 14
Comparison of load-following and cycle-charging strategies using GA, PSO, ABCO, and TLBO for a hybrid system: (a) emissions penalty cost, (b)
reliability, and (c) algorithm running time.

with an Intel(R) Core(TM) i7-3,370 processor operating at 3.40 GHz
and 4.0 GB of RAM. The population, swarm, hive, and class sizes for
PSO, GA, ABCO, and TLBO are all 30 in this sample research, and
the number of iterations is 50. The design of the ideal HES size for
remote rural electrification using GA, TLBO, PSO, and ABCO with
two distinct dispatch algorithms is described.The research studywas
done in Barwani, India, to enhance the construction of the PV-wind-
biomass hybrid model.

The PV-wind-biomass HES’s best scheduling is assessed
using optimization techniques for dispatch systems that use
load monitoring and cycle charging. The following factors affect
the hybrid system’s optimal parameters. The outcomes of the
best planning of a PV-wind-biomass hybrid system for base
load approach using PSO, GA, ABCO, and TLBO are displayed

in Figures 9–12 and Table 2. Figures 9–12 show how, for load-
following and cycle-charging techniques, TLBO beats GA, PSO,
and ABCO in terms of yearly PV output power, wind output
power, DG output power, and dump load. Because there is
some fluctuation on an hourly basis and better performance
metrics are determined for a cycle-charging strategy using
TLBO than PSO, the evaluation for additional parameters may
be provided.

Table 2 lists several parameters, including NWIND, NPV, cost
of electricity (COE), LPSP, pollutant emissions, renewable factor,
cost, operating hours of DG, PV, wind, biomass, and DG power.
Additionally, the reliability and algorithmic running time are
listed for the cycle-charging method employing the load-following
technique. The NPV and NWIND for a load-following strategy are
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FIGURE 15
Comparison of the price of electricity (COE) using GA, PSO, ABCO, and TLBO in a (a) load-following strategy and (b) cycle-charging strategy.

61 and 18, 66 and 18, 76 and 16, and 54 and 21, respectively, for
GA, ABCO, PSO, and TLBO. Using GA, ABCO, PSO, and TLBO,
the COE for the load-following approach is 0.2625 $/kWh, 0.2617
$/kWh, 0.2616 $/kWh, and 0.2609 $/kWh, respectively. Similarly,
the load-following strategy’s LPSP values using PSO, GA, ABCO,
and TLBO are 0.0172, 0.0164, 0.01628, and 0.01601, respectively.
The following values are listed in order of PSO, GA, ABCO, and
TLBO: sustainable factor, pollutants, penalty cost, operational

hours of DG, biomass, wind, PV, and DG power, reliability, and
algorithm running time. Sustainability factor values: 0.9198, 0.9237,
0.9230, and 0.9241; pollutants: 7.2668 ton, 7.2038 ton, 7.1773 ton,
and 7.1373 ton; penalty cost: 179.3397 $, 177.7828 $, 176.0545 $,
and 175.8334 $; operational hours: 2,127 h, 2,089 h, 2049h, and
2023 h; biomass power: 29,497 kW, 31,915 kW, 36,750.58 kW, and
26,112.26 kW; wind power: 38,739 kW, 38,739 kW, 34,435 kW, and
45,195.81 kW; PV power 5,693.3 kW, 5,693.3 kW, 5,693.35 kW, and
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5,693.35 kW; DG power: 5,925.6 kW, 5,821.8 kW, 5,746.60 kW,
and 5,671.86 kW; reliability: 98.28%, 98.36%, 98.37%, and
98.40%; and running time: 566.0706 s, 543.1537 s, 538.6375 s, and
509.1795 s, respectively.

Figures 9–12 and Table 2 show the findings for the best
planning of a PV-wind-biomass hybrid model with a cycle-charging
approach employing GA, PSO, ABCO, and TLBO, respectively.
As demonstrated in Figures 13–15, it is more technologically and
economically feasible to use TLBO than GA, PSO, and ABCO
to use the output power from solar panels, wind turbines, DGs,
and dump loads for cycle-charging strategies. Similar findings
for other parameters are shown for the cycle-charging strategy.
There is an equivalent hourly basis difference, and a cycle-
charging strategy employing TLBO has superior performance
characteristics than PSO, GA, and ABCO. The cycle-charging
strategy’s NPV and NWIND values are 50 and 16 for GA, 67
and 16 for PSO, 72 and 15 for ABCO, and 66 and 16 for TLBO,
respectively. When employing GA, PSO, ABCO, and TLBO,
the cost of electricity (COE) for the cycle-charging method
is 0.2396 $/kWh, 0.2394 $/kWh, 0.2392 $/kWh, and 0.23911
$/kWh, respectively. The following factors are listed in order
of GA, PSO, ABCO, and TLBO: renewable factors, penalty
cost, LPSP, pollutant emissions, DG operation hours, biomass,
wind, PV, DG power, dependability, and algorithm running
time. Renewable factors: 0.01430, 0.01409, 0.01408, and 0.01406;
LPSP: 0.8659, 0.8857, 0.8866, and 0.8869; pollutant emissions:
8.9069 ton, 8.7027 ton, 8.6843 ton and 8.6603 ton; penalty
cost: 219.8155 $, 214.7755 $, 214.5553 $ and 213.0932 $; DG
operation hours: 1,078 h, 1,036 h, 1024 h, and 1008 h; biomass
power: 24,178 kW, 32,399 kW, 34,816.34 kW and 31,915 kW; wind
power: 34,435 kW, 34,435 kW, 32,282.72 kW, and 34,435 kW; PV
power: 5,693.3 kW, 5,693.3 kW, 5,693.35 kW, and 5,693.35 kW;
DG power: 8,624 kW, 8,288 kW, 8,192.2 kW and 8,152.1 kW;
dependability: 98.57%, 98.59%, 98.592%, and 98.594 %; and
running time: 535.4624 s, 501.3572 s, 496.9123 s and 433.2896 s,
respectively. The research mentioned above clearly demonstrates
that the PSO offers better outcomes for load-following and cyclic-
charging approaches than hybrid systems in terms of performance
measurements.

Figures 13–15 display the comparison of the hybrid system
results for DG, COE, pollutant emissions, reliability, load-following,
algorithm running time, and cycle-charging methods using GA,
PSO, ABCO, and TLBO. Figures 13, 14 demonstrate that TLBO
performs better than GA, PSO, and ABCO for both load-following
and cycle-charging methods in terms of COE, DG operation
hours, pollutant emissions, emissions penalty cost, reliability, and
algorithm running time. The load-following and cyclic charging
techniques can be compared on the basis of the best outcomes
attained by each method for COE, reliability, economy, and
algorithm running time, as indicated in Table-2. These findings
suggest that cycle-charging techniques using GA, PSO, ABCO,
and TLBO have lower operation hours for COE, DG, algorithm
running time, and greater dependability. As a result, cycle-charging
solutions using TLBO have more effective overall results. The cycle-
charging method is preferable for the best planning of the PV-
wind-biomass hybrid power system employing TLBO because it is
more dependable, efficient, and technologically affordable than the
load-following strategy.

6 Conclusion

This study assesses the optimal design of a PV-wind-biomass
hybrid energy system (HES) for a remote area in the Barwani
region of India. It employs advanced optimization techniques,
including teaching-learning-based optimization (TLBO), genetic
algorithm (GA), particle swarm optimization (PSO), and artificial
bee colony optimization (ABCO), under both cycle-charging and
load-following strategies. The findings indicate that under the load-
following approach, the cost of electricity (COE) ranges from
$0.2609/kWh to $0.2625/kWh across the different optimization
methods. In comparison, the cycle-charging strategy substantially
reduces COE to between $0.23911/kWh and $0.2396/kWh.
These results demonstrate the cycle-charging approach’s superior
performance, with TLBO yielding the most economical and
environmentally friendly outcomes. Further analysis reveals
that the cycle-charging strategy surpasses load following in
various performance indicators. These include loss of power
supply probability (LPSP), pollutant emissions, renewable energy
utilization factor, emissions penalty cost, diesel generator (DG)
operational hours, and computational efficiency. Notably, TLBO
excels in reducing pollutant emissions and emissions penalty costs,
improving reliability, and decreasing DG operating hours and
algorithm runtime compared to the other optimization techniques.
Figures 13, 14 emphasize the technological and economic benefits
of using the cycle-charging strategy with TLBO to achieve optimal
configurations for a PV-wind-biomass HES. This approach not
only enhances cost-effectiveness but also supports sustainability
objectives by minimizing environmental impact and maximizing
renewable energy use. The study concludes that the cycle-charging
strategy using TLBO is the most efficient and techno-economically
viable method for planning a PV-wind-biomass HES in remote
areas. It outperforms the load-following approach across all major
evaluation criteria, establishing a standard for future research in
optimizing hybrid renewable energy systems for rural electrification
and sustainable development.

6.1 Future possibilities and scope of the
proposed work

Emerging trends in hybrid energy systems: Incorporating AI-
driven methods to forecast energy requirements, renewable power
generation, and system efficiency, facilitating more precise and
anticipatory decision-making. Next-generation battery solutions:
Creating more efficient, long-lasting, and economical batteries
(e.g., solid-state and lithium-sulfur variants) to store surplus
renewable energy for future use. Adoption of smart grid innovations:
Deploying sophisticated monitoring systems to observe energy
flows in real-time and enhance system performance. Energy
management and demand response: Applying demand response
tactics to equilibrate supply and demand, decrease peak loads, and
boost system efficiency. Electric vehicle incorporation: Assimilating
electric vehicle charging infrastructure into the energy network
to optimize power consumption and grid stability. Regulatory
and policy frameworks: Establishing supportive policies and
incentives to encourage the adoption of renewable energy and
energy-efficient measures. Community-centric energy systems:
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Enabling communities to engage in energy generation and
consumption, promoting local economic growth and social equity.
By concentrating on these areas, scientists and policymakers can
collaborate to develop more sustainable, resilient, and cost-effective
hybrid energy systems that contribute to a greener future.
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Nomenclature

PTWIND,each Power generated by the wind turbine

vr Nominal speed of the wind turbine

V Windspeed

vo Cut out speed

vJ Cut in speed

ηBIO Efficiency of the biomass

CVBIO Calorific value of the rice husk

Fdsl(t) Diesel fuel consumption L/h

P(t) Diesel generator power (kW)

PR Rated power of the generator

PR Wind generator rated power

SOCM Minimum state of charge

PL The hourly power consumption

N Number of years

I Real interest rate

PCB Worth of converter/battery components

A,B Area costs and parameters (L/kW)

PT
PV:each PV system-generated power.

PRS Rated power by PV panel.

R Solar radiation factor.

Rcr Certain radiation at 150 W/m2

Rsrs Standard solar radiation at 1000 W/m2

T− 1and T Charge times by battery bank.

PTl Energy demand of a particular hour

PTWIND Power generated by the wind turbine

PTPV Power generated by the PV panel

PTBIO Power generated by biomass

PTl Energy demand for a particular hour

ηbc Charge efficiency of the battery bank

ηinverter Efficiency of the inverter

τ Hourly self-discharge rate

ηbf Discharging efficiency of batterybank

CCB Converter/inverter price

ETbatteryand ET−1battery Charge quantities of the battery
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