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The rising demand for electricity presents significant challenges to grid stability.
Demand response programs address this issue by incentivizing consumers
to adjust consumption during peak periods. Load aggregators facilitate these
programs by coordinating load reductions across participants; however, they
face challenges in maintaining profitability and minimizing operational costs,
particularly in nascent demand response markets. In this study, we evaluate
three participant selection strategies: duration based, price based, and forecast
based, within the context of Thailand’s pilot demand response programs. We
propose a dual forecasting methodology that combines short-term load profile
forecasting using XGBoost and long-term load duration curve predictions using
SARIMAX. This integrated approach improves forecast accuracy and enables
more strategic participant selection. Simulation results demonstrate that the
dual forecasting strategy consistently minimizes operational costs and reduces
the number of participant calls, outperforming conventional strategies even
under resource-constrained, high-risk scenarios. These findings suggest that the
dual forecasting strategy offers a cost-effective and reliable solution for demand
response management, particularly in environments with limited participant
availability, making it well-suited for deployment in emerging markets.

KEYWORDS

demand response, load aggregation management, load forecast, xgboost model,
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1 Introduction

The rapid rise in global electricity demand is fueled by significant growth across
various sectors. For example, the increasing heating and cooling needs due to
climate change (Zhang et al., 2022), the increasing reliance on artificial intelligence
and data centers (de Vries, 2023), and the substantial shift in the transportation
sector driven by the widespread adoption of electric vehicles (EVs) are major
contributors (Blumberg et al., 2022). Among these, EVs are expected to grow at an
exponential rate, placing considerable pressure on electricity infrastructure, potentially
causing supply imbalances during peak times. This surge in load demands new
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approaches to grid management, where balancing supply and
demand becomes more critical than ever to maintain grid stability
and avoid costly infrastructure expansions.

In response to these growing pressures, the demand response
market has emerged as a key solution for grid operators
worldwide (Behrangrad, 2015). Demand response programs
allow for the dynamic adjustment of electricity consumption by
incentivizing consumers to reduce or shift their usage during
peak periods (Panda et al., 2023). As a result, demand response
programs have gained significant traction globally, helping to
balance grids more efficiently and reduce the need for costly
investments in additional generation capacity. These programs
also allow consumers to play a more active role in managing
energy use, providing new economic incentives for participants
(Nebey, 2024).

A pivotal player in the success of demand response initiatives
is the load aggregator, who acts as an intermediary between
the grid operator and individual consumers. The role of load
aggregators is to combine the reduction capacities of multiple
participants into a manageable resource, which can be called upon
during demand response events (Stede et al., 2020). Nowadays,
Thailand is currently piloting its own demand response programs,
which present unique challenges in terms of market readiness and
participant engagement (Sonsaard et al., 2023). With a relatively
small pool of businesses and entrepreneurs familiar with demand
response programs, there is a pressing need to optimize the
utilization of available participants.

Since load aggregators face significant challenges inmaintaining
profitability while minimizing the operational costs of curtailing
load. Therefore, they must develop effective strategies to select
participants based on factors such as duration, price, and
forecasted demand, ensuring both cost-effectiveness and reliability.
Identifying effective participant selection strategies is crucial
to ensure that the demand response initiative can achieve its
objectives while fostering greater awareness and participation
in the market. Developing tailored strategies that make the
best use of limited resources will be essential to driving the
success of Thailand’s demand response efforts, especially as the
country looks to expand its clean energy and grid management
capabilities.

In this paper, we explore strategies for optimizing participant
selection in demand response programs, with a focus onmaximizing
the efficiency of the participant pool in Thailand’s pilot programs.
By comparing different approaches, we aim to offer insights that can
help load aggregators enhance their profitability while contributing
to a more resilient and flexible power grid.

2 Related research work

2.1 Participant selection in demand
response

Demand response programs are increasingly important for
balancing electricity supply and demand, especially as renewable
energy sources grow, and grids require more flexibility (Gils,
2016). Load aggregators play a key role in managing participants,
typically industrial or commercial users, who agree to reduce

electricity usage during peak times. The success of these programs
depends on how well aggregators select participants to meet load
reduction targets at the lowest cost while maintaining reliability
(Mei et al., 2023; Xu et al., 2024).

One common method for selecting participants is the price-
based strategy, where participants are ranked by the cost they charge
per megawatt (MW) of load reduction, and the lowest-cost options
are chosen first. This method is simple and cost-focused but has
significant limitations. It often ignores other critical factors like
how long participants can sustain reductions (callable duration)
and their reliability in meeting commitments. This can result in
participants failing to deliver promised reductions or struggling
to sustain them, ultimately reducing the program’s effectiveness
(Silva et al., 2023).

To address these gaps, forecasting-based strategies are
being explored. Forecasting models predict when and where
load reductions will be needed, helping aggregators choose
participants who can best meet these demands. Machine
learning models like XGBoost (Chen and Guestrin, 2016) have
shown good results in forecasting short-term electricity demand
(Abbasi et al., 2019; Liao et al., 2019). However, single forecasting
models have limitations in accuracy, prompting research into
combining multiple models to improve predictions (Semmelmann
et al., 2022).

In addition, optimization algorithms offer advanced methods
for participant selection. Techniques like genetic algorithms are
used to balance cost, duration, and reliability, especially in
large-scale programs with many participants. These algorithms
help identify effective solutions without the heavy computation
required for exhaustive analysis (dos Santos Junior et al., 2024;
Mellouk et al., 2018; Mohanty et al., 2022).

In summary, while traditional cost-focused methods like
the price-based strategy are simple, they often may not take
account for key factors like duration and reliability. Advanced
methods such as dual forecasting, optimization algorithms, and
game theory (Goudarzi et al., 2021) now offer more effective ways
to select participants, ensuring that demand response programs are
both cost-efficient and reliable.

2.2 XGBoost short-term forecasting model

Short-term forecasting plays an important role in fields like
energy management, finance, and supply chains, where quick
and accurate predictions drive effective decision-making. These
applications demand models capable of adapting to rapid changes
and uncertainties in data. Popular methods include traditional
statistical models like ARIMA and SARIMA (Musbah and El-
Hawary, 2019; Tarmanini et al., 2023), as well as modern machine
learningmodels like XGBoost, RandomForest, and neural networks
(Dudek, 2022; He, 2017). Among these, XGBoost has emerged as a
top choice for short-term forecasting, especially when dealing with
dynamic and high-frequency data.

XGBoost, short for “Extreme Gradient Boosting,” is a powerful
ensemble learning algorithm that combines multiple decision
trees to create highly accurate predictions. Its strength lies in
its ability to handle large, noisy, and high-dimensional datasets
efficiently (Ahmetoglu and Das, 2022). This makes it particularly
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suitable for applications like energy forecasting, where data
complexity and timeliness are critical.

One of XGBoost’s key advantages is its ability to manage real-
world challenges like missing data, which is common in fields
like energy load forecasting. The model can adaptively decide
the best course of action in decision trees when data points are
missing.Moreover, it incorporates regularization techniques (L1 and
L2 penalties) to avoid overfitting, a common problem in short-
term forecasting with noisy or high-frequency data (Belyadi and
Haghighat, 2021).

From a broader perspective, XGBoost excels in short-term
forecasting due to its robustness, scalability, and accuracy. It
efficiently captures non-linear patterns, handles complex datasets,
and integrates external variables, all while maintaining fast training
speeds. Compared to other models like ARIMA, Random Forest,
or neural networks, XGBoost offers a balanced combination of
performance, ease of interpretation, and computational efficiency.
For industries such as energy management, where timely and
precise forecasts are essential, XGBoost stands out as a reliable and
effective tool.

2.3 SARIMAX long-term forecasting model

Long-term forecasting is useful for strategic planning in
industries like energy, retail, and finance, where accurate
predictions over extended periods guide key decisions (Zhou et al.,
2019). Models for long-term forecasting must capture trends,
seasonality, and external factors to address the complexities of
time series data. Among these models, SARIMAX (Seasonal
AutoRegressive Integrated Moving Average with eXogenous
variables) is widely recognized for its effectiveness (Alharbi and
Csala, 2022). By incorporating seasonal components and external
influences, SARIMAX builds on the ARIMA model, making it
ideal for data with cyclical patterns, such as energy demand or
retail sales (Arunraj et al., 2016).

SARIMAX excels because it can simultaneously model seasonal
patterns, trends, and external variables. For example, energy
consumption often follows yearly cycles due to heating and
cooling needs, while retail sales peak during holidays. SARIMAX
captures these behaviors using its seasonal features. Unlike
ARIMA, SARIMAX integrates external variables, allowing it to
handle more complex datasets and provide accurate, long-term
forecasts (Vagropoulos et al., 2016).

When compared to other models like Facebook’s Prophet,
SARIMAX offers greater flexibility. Prophet is simple to use
and effective for seasonality and trends but assumes an additive
structure, which may not suit datasets with complex seasonality.
In contrast, SARIMAX supports both additive and multiplicative
components and allows the integration of external factors, making
it more robust for intricate patterns (Žunić et al., 2020).

In summary, SARIMAX is a powerful tool for long-term
forecasting. Its ability to model trends, seasonality, and external
influences makes it a top choice for industries like energy and retail,
where understanding long-term patterns is essential. Compared
to alternatives, SARIMAX strikes a balance between flexibility,
accuracy, and interpretability, ensuring reliable forecasts that inform
strategic decisions.

3 Methodology

3.1 Participants calling strategies

In the context of demand response programs, one of the key
operational challenges faced by load aggregators is determining how
to select participants who will reduce their energy consumption
during critical events. The goal is to balance the need for cost
efficiency with the need to meet load reduction targets while
considering factors such as reliability andduration of load reduction.
To address these challenges, we propose three distinct participants
calling strategies that aim to optimize different aspects of demand
response management: duration-based, price-based, and forecast-
based strategies, the overview of which is summarized in Figure 1.
Each strategy offers a different approach to selecting participants
based on a set of criteria designed to maximize cost-effectiveness,
ensure load reduction reliability, and improve decision-making
through predictive insights.

• Duration-Based Strategy: This strategy prioritizes reducing the
number of participants involved in each demand response
event, thereby simplifying management and maximizing the
number of spared participants available in the pool. While
it offers operational advantages, it may fall short in terms of
profitability compared to other strategies.

• Price-Based Strategy: This approach emphasizes minimizing
the overall cost of energy reduction by selecting the least
expensive participants. Although widely adopted, it can lead to
inefficiencies in management. Participants who are frequently
called upon may experience fatigue or disengagement,
potentially diminishing their willingness to participate in
future programs.

• Forecast-Based Strategy: Our proposed strategy harnesses the
predictive capabilities of forecasting models to optimize the
utilization of the participant pool. By reducing both costs and
the number of participants required for each event, it proves to
be a more effective and balanced solution. However, its success
depends on the availability of reliable historical statistical data
for accurate forecasting.

3.1.1 Duration-based strategy
The duration-based strategy is designed to align participant

selection with the specific duration of a demand response event,
ensuring that participants can sustain their load reduction
commitments for the entirety of the event. In a typical demand
response event, the length of time for which the grid requires load
reduction can vary. Events might last for as little as an hour or
extend up to several hours, depending on the grid’s requirements.
The primary goal of this strategy is to ensure that the selected
participants can provide continuous load reductions without the
need for frequent switching or replacing participants mid-event,
which can introduce operational inefficiencies.

To implement this strategy, each participant’s callable duration
is compared against the event duration. The participants are ranked
based on how closely their callable duration matches or exceeds
the event’s length. For example, if the demand response event is
scheduled to last for 4 h, participants with at least 4 h of callable
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FIGURE 1
Overview of participants calling strategies.

duration will be prioritized. If a participant only has 2 h of callable
duration, they may not be selected unless there are no other
options, as the aggregator would have to replace them halfway
through the event.

In cases where several participants have similar callable
durations, additional criteria such as load reduction capacity and
cost are factored in. For instance, if two participants can both
provide 4 h of load reduction, but one offers a higher reduction
capacity at a reasonable price, theywould be prioritized.This ensures
that not only is the duration matched, but the load reduction
target is met with fewer participants, reducing complexity in
managing the event.

An example of how this strategy might play out is during a long
6-h demand response event. The aggregator would first look for
participants who can offer 6 continuous hours of load reduction.
Once those participants are exhausted, the aggregator might then
look at participants with 5 h of callable duration and then filling the
gaps as needed. The goal is to minimize interruptions by choosing
participants who can remain engaged throughout the event. This
strategy may benefit the aggregator that has hard time upon calling
multiple participants due to technical difficulties or management
difficulties.

3.1.2 Price-based strategy
The price-based strategy focuses on cost efficiency by

prioritizing participants based on the price they charge for reducing
their load. Participants in demand response events typically offer
different prices for the energy they are willing to curtail, often
measured in terms of Thai baht (THB) per megawatt (MW).
The goal of this strategy is to minimize the overall cost of the
demand response event by selecting the lowest-cost participants
first, ensuring that the target reduction is achieved at the most
economical price.

In this strategy, participants are ranked solely based on their
price per megawatt of load reduction, and the aggregator starts
by selecting the lowest-priced participants. For example, if one
participant offers to reduce their load for 500 THB per MW and
another offers to reduce for 1,000 THB per MW, the first participant
will be selected until their capacity is exhausted or the load reduction
target is met. Once the lowest-priced participants are fully utilized,
the aggregator moves on to the next-lowest-priced participant,
continuing this process until the load reduction target is reached.

While this approach is straightforward and effective in
minimizing costs, it presents potential limitations. Participants
offering the lowest prices may not always possess the necessary

Frontiers in Energy Research 04 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1511207
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Prakobkaew and Sirisumrannukul 10.3389/fenrg.2025.1511207

callable duration or load reduction capacity to meet the event’s
requirements. For instance, a participant may submit a low bid but
only sustain load reduction for 2 h during a 6-h event.Thismismatch
could result in gaps in load reduction or necessitate the inclusion of
additional, higher-cost participants to compensate for the shortfall,
potentially increasing overall costs.

Additionally, price-based selection can sometimes lead to the
selection of participants who may be less reliable, as their lower
price may reflect a lower willingness or ability to commit to
load reductions over the long term. Despite these potential issues,
the price-based strategy remains a commonly used approach in
markets where reducing costs is the primary objective, and where
there is a surplus of participants willing to reduce their load at
competitive prices.

3.1.3 Forecast-based strategy
The forecast-based strategy, which constitutes our proposed

approach, is a more advanced methodology that utilizes predictive
models to guide the participant selection process. The fundamental
principle of this strategy is the use of load forecasts to anticipate
the likelihood of additional demand peaks later in the month or
quarter. By forecasting these future peaks, the load aggregator is able
tomakemore informed and strategic decisions regarding participant
selection for the current demand response event, addressing not
only the immediate requirements but also accounting for potential
future needs.

The operation of this strategy is as follows: upon the initiation
of a demand response event, the aggregator employs load profile
forecasts to assess the likelihood of additional demand peaks
occurring later in the same month or quarter. Given the limited
opportunities to call participants, if the forecast anticipates
future demand peaks, the aggregator must strategically decide
whether to reserve certain participants, particularly those offering
longer callable durations and lower prices—for these forthcoming
events. This consideration is especially critical when the pool of
participants capable of sustaining long-duration reductions or
offering competitive pricing is limited.

For example, given a scenario where a demand response
event has just commenced, the aggregator is tasked with selecting
participants to reduce load. Based on the forecast, the aggregator
identifies a high likelihood of an even larger demand peak occurring
later in the month. In such a case, the aggregator may choose to
reserve the lowest-cost participants, particularly those with long
callable durations, for the future event, as their contributions would
be more valuable when the grid experiences greater strain. For the
current event, the aggregator would instead select participants with
shorter durations or those with slightly higher costs, ensuring that
the target reduction is achieved without depleting the resources
needed for future peaks.

Conversely, if the forecast does not predict any significant
peaks later in the month or quarter, the aggregator can confidently
utilize the lowest-cost participants without concern for resource
conservation in subsequent events. In this scenario, the focus shifts
solely to minimizing costs for the present event. The forecast-based
strategy enables the aggregator to optimize the timing of participant
selection and the allocation of resources across multiple demand
response events, ensuring that the most valuable participants are
preserved for periods of heightened demand.

An example of the forecast-based strategy in actionmight involve
a scenariowhere the current event is relativelymoderate, but a forecast
indicates that amajor demandpeak is likely in 2 weeks.Theaggregator
could choose to use medium-cost participants with shorter callable
durations for the current event, while holding back the most cost-
effective, long-duration participants for the upcoming peak. This
dynamic decision-making process ensures that the load reduction
resources are managed efficiently across multiple events, reducing the
risk of over-calling participants and avoiding unnecessary costs.

3.2 Short-term load profile forecast

In this work, we employed XGBoost for the short-term load
profile forecast. The XGBoost works through a boosting technique
wheremultiple decision trees are constructed sequentially. Each tree
is trained to correct the errors made by the previous trees, resulting
in a highly accurate prediction model. The model’s objective is
to minimize the difference between the predicted load values and
the actual load values by optimizing an objective function, which
balances both the prediction error and the complexity of the model.

The objective function L that XGBoost optimizes consists of
two parts: a loss function that measures the prediction error and a
regularization term that prevents overfitting. The objective function
is expressed in Equation 1:

L =
n

∑
i=1

l(yi, ̂yi) +
K

∑
k=1

Ω( fk) (1)

where

l(yi, ̂yi) = the loss function, typically the mean squared error
(MSE), between the actual load yi and the predicted load
̂yi

Ω( fk) = the regularization term for the fk tree, controlling the
complexity of the model

n = the number of observations in the dataset

The regularization term is defined in Equation 2:

Ω( fk) = γT+
1
2
λ

T

∑
j=1

w2
j (2)

where

γ = the penalty on the number of leaf nodes T
λ = the penalty on the sum of the squared leaf weights wj

The final prediction for the load at time t, denoted ̂y(t), is
the sum of the predictions from all individual decision trees,
as shown in Equation 3:

̂y(t) =
K

∑
k=1

fk(Xt) (3)

where

K = the total number of trees
fk(Xt) = the prediction from the k-th tree based on the feature set

Xt

Each tree is added with the aim of minimizing the residual
errors from the previous trees, thereby enhancing the model’s
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FIGURE 2
Load forecasting results for (a) July 2016 and (b) July 2017.

FIGURE 3
Load duration prediction results for (a) July 2016 and (b) July 2017.

overall accuracy as additional trees are constructed. This iterative
process continues until the model’s prediction error is minimized
or a stopping criterion is met, such as reaching a predefined
number of trees or implementing early stopping when no further
improvement in error is observed. In practical programming
applications, particularly with Python, several hyperparameters can
be tuned, including:

• Learning Rate:This factor controls the contribution of each tree
to the final prediction. A lower learning rate requiresmore trees
to reach optimal performance but can lead to better accuracy.

• Max Depth: This maximum depth determines the maximum
depth of each decision tree, controlling how complex the
model can become. A higher max depth allows the model to
capture more intricate relationships but can increase the risk of
overfitting.

• Number of Trees: This parameter specifies how many trees are
built in the ensemble.More trees typically improve performance
but increase computational cost.

• Subsample:The fraction of the training data is used to grow each
tree. Lower values can prevent overfitting by introducing more
randomness.
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FIGURE 4
Distributions of (a) callable capacity, (b) callable duration, and (c)
energy price.

3.3 Long-term load duration curve
prediction

To improve the load profile forecast, we use prediction of
load duration curve to scale the forecasted load profile, resulting
in improved accuracy. Since the load duration curve is typically
formed on a yearly basis, the Seasonal AutoRegressive Integrated
Moving Average with eXogenous variables (SARIMAX) model
was employed due to its ability to capture both the trend and
seasonality in time series data while also incorporating external
variables. The SARIMAX model extends the ARIMA framework
by introducing seasonality (through seasonal differencing) and

enabling the integration of external variables (exogenous factors)
that can influence load demand over longer periods.

The objective of using SARIMAX is to predict the yearly load
duration curve, which represents the relationship between load
demand and the percentage of time the demand exceeds specific
levels. SARIMAX is well-suited formodeling this curve as it captures
both the temporal trends in load data and the impact of external
factors that influence demand fluctuations.

The SARIMAX model builds on the ARIMA model by
incorporating seasonal components and exogenous variables, as
represented in Equation 4:

yt = ∅(B)yt−1 + θ(B)ϵt + βXt + S+ μ (4)

where

yt = the load at time t
B = the backshift operator

∅(B) = the autoregressive (AR) component, which captures the
relationship between the current value and its past values

θ(B) = the moving average (MA) component, which models
the relationship between the current value and past
forecast errors

ϵt = the error term (white noise)
β = the coefficient of the exogenous variable Xt, such as

temperature or economic indicators
S = the seasonal differencing applied to capture recurring

patterns over fixed periods
μ = the mean of the process (constant term)

The SARIMAX model is represented in Equation 5:

SARIMAX(p,d,q)(P,D,Q, s) (5)

where

p = the order of the autoregressive part (number of lag
observations)

d = the degree of differencing (number of times raw
observations are differenced to achieve stationarity),

q = the order of the moving average part (number of lagged
forecast errors)

P = the seasonal autoregressive order
D = the degree of seasonal differencing
Q = the seasonal moving average order
s = the seasonal period (e.g., 24 h for daily data)

After obtaining the load duration curve prediction results using
the SARIMAX model, we integrated them with the previously
forecasted load profile to adjust the maximum, minimum, and
average values of the original forecast. While these adjustments
caused the specific values to shift, the overall pattern of fluctuations,
including the rise and fall in different periods, was preserved,
ensuring that the original load dynamics remained intact.

4 Results

4.1 Load forecast results

In this work, load profile forecasting serves as the foundation
for effective demand response planning, which involves selecting
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TABLE 1 Participants calling strategy results: normal scenarios.

Performance metric Duration-based
strategy

Strategy price-based
strategy

Single forecast
strategy

Dual forecast
strategy

Test case: Year 2016

Average Cost (THB) 3,933,408.49 3,615,629.20 3,587,108.88 3,585,047.75

Average Called (Times) 100.46 113.44 109.08 109.88

Average Reduced Energy
(MW)

3,950.00 3,950.00 3,950.00 3,950.00

Average Cost Comparison (%) 100.00 91.92 91.20 91.14

Average Called Comparison
(%)

100.00 112.92 108.58 109.38

Average Reduced Energy
Comparison (%)

100.00 100.00 100.00 100.00

Test case: Year 2017

Average Cost (THB) 5,406,522.76 4,827,780.33 4,790,336.29 4,787,434.17

Average Called (Times) 125.83 147.36 130.86 132.61

Average Reduced Energy
(MW)

5,450.00 5,450.00 5,450.00 5,450.00

Average Cost Comparison (%) 100.00 89.30 88.60 88.55

Average Called Comparison
(%)

100.00 117.11 104.00 105.39

Average Reduced Energy
Comparison (%)

100.00 100.00 100.00 100.00

participants capable of adjusting their power usage in response
to grid demands. The objective is to forecast load profiles
with sufficient accuracy to support strategic decision-making
in selecting participants for demand response programs.
Two forecasting approaches were employed to achieve this
objective. The first approach uses the XGBoost machine learning
model, leveraging 10 years of historical data to predict load
profiles month by month. The second approach, aimed at
improving forecast accuracy, involves scaling the load profile
forecasts using a load duration curve prediction generated
through the SARIMAX statistical model. By incorporating the
SARIMAX-based load duration curve scaling into the XGBoost
predictions, we sought to refine the forecasted values and reduce
prediction errors.

To conduct the study, data from The Dayton Power and Light
Company for the years 2005–2017, obtained from the publicly
available Kaggle repository, was used. Two test cases were designed
for the experiments:

• Test Case 1 used data from 2005 to 2015 to forecast the load
profile in 2016.

• Test Case 2 used data from 2006 to 2016 to forecast the load
profile in 2017.

In the first test case, we applied theXGBoostmodel to predict the
load profiles for eachmonth of 2016, generating a total of 12 monthly
forecasts. Over the course of the year, the mean absolute percentage
error was found to be 13.78%. While certain periods exhibited
larger deviations between the predicted and actual values, the overall
trends of increasing and decreasing load levels were well captured.
This consistency in predicting monthly trends is essential crucial
for demand response planning, as it allows for reliable participant
selection based on load variations.

For example, Figure 2 illustrates the forecast for July 2016, the
peak electricity consumption month of the year. In this figure,
the grey line represents the actual load values, while the red
line depicts the forecasted load produced by the XGBoost model.
Despite some forecast deviations, the model’s ability to capture
the general upward trend in load demand during peak periods
makes the forecast effective for practical use in demand response
planning.

Similarly, for the 2017 forecast, the XGBoost model performed
satisfactorily, with a mean absolute percentage error of 13.07%. The
overall consistency in monthly load trends ensured the model’s
practical utility in planning for demand response participation
in 2017, as demonstrated in Figure 2a, which shows the model’s
forecast for July 2017.
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TABLE 2 Participants calling strategy results: high-risk scenarios.

Performance
metric

Duration-based
strategy

Price-based
strategy

Single forecast
strategy

Dual forecast
strategy

Test case: Year 2016

Average Cost (THB) 5,704,530.79 5,440,324.00 5,418,635.92 5,407,548.21

Average Called (Times) 136.37 148.46 139.37 141.43

Average Reduced Energy
(MW)

5,724.90 5,707.75 5,737.15 5,735.65

Average Cost Comparison
(%)

100.00 95.37 94.99 94.79

Average Called Comparison
(%)

100.00 108.87 102.20 103.71

Average Reduced Energy
Comparison (%)

99.56 99.27 99.78 99.75

Test case: Year 2017

Average Cost (THB) 7,209,357.34 6,874,078.22 6,627,041.72 6,619,743.60

Average Called (Times) 164.26 180.05 172.94 172.08

Average Reduced Energy
(MW)

6,918.10 6,882.40 6,960.85 6,960.95

Average Cost Comparison
(%)

100.00 95.35 91.92 91.82

Average Called Comparison
(%)

100.00 109.61 105.28 104.76

Average Reduced Energy
Comparison (%)

98.83 98.32 99.44 99.44

FIGURE 5
Boxplots of simulated total cost in normal scenarios of (a) year 2016 and (b) year 2017.

To improve the accuracy of these forecasts, we incorporated
the SARIMAX model to generate a long-term load duration curve
prediction. This prediction, unlike the month-by-month XGBoost
approach, provided a single, comprehensive prediction of the load

duration curve for the entire year. The results of this load duration
curve prediction showed a high level of alignment with the actual
data, yielding a mean absolute percentage error of only 5.92% for
the year 2016 and 6.97% for the year 2017. These highly accurate
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FIGURE 6
Boxplots of simulated total called in normal scenarios of (a) year 2016 and (b) year 2017.

FIGURE 7
Boxplots of simulated total cost in high-risk scenarios of (a) year 2016 and (b) year 2017.

FIGURE 8
Boxplots of simulated total called in high-risk scenarios of (a) year 2016 and (b) year 2017.

load duration curve predictions are illustrated in Figure 3, which
show the load duration curve predictions for July of 2016 and 2017,
respectively.

The precision of these predictions highlights the SARIMAX
model’s effectiveness in capturing the overall distribution of load
demand across different periods of the year. By scaling the XGBoost
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load profile forecasts based on the SARIMAX-predicted load
duration curve, even though the pattern has still maintained, and
the values were slightly changed, we were able to reduce the
average forecast error even further. After scaling, the mean absolute
percentage error for 2016 dropped to 12.75%, and for 2017, it
decreased to 11.94%. These improvements can be observed in the
blue lines in Figure 2b.

4.2 Calling strategies results

After obtaining the load profile forecasts, the next step is to apply
these forecasts in the selection of participants for load reduction
events to meet the demand response objectives. In this section, we
focus on how these forecasts are utilized to choose the appropriate
participants for each load reduction event, ensuring that the demand
response goals are achieved. In this research, we consider the fact
that demand response remains a relatively new business concept,
with pilot programs still ongoing in many countries. As a result,
we aligned our calling strategy with the global context, where
demand response is being gradually adopted to delay infrastructure
investments or to enhance grid stability. To reflect this early-stage
adoption, the load reduction target is not overly ambitious, with
the primary goal being to attract load aggregators and promote
participation in the program. For our demand response strategy,
we set a target load reduction of 50 MW per event. Additionally,
each event is limited to a maximum duration of 6 consecutive
hours, with no more than one event per day, and a maximum of 10
events per month.

The participants in this demand response scenario are treated as
resources aggregated by the load aggregator, each subject to various
constraints related to callable duration, size, and the cost of load
reduction per unit of energy. These participants have varying load
reduction potentials, with callable durations ranging from 1 to 6 h
per event. In Thailand’s demand response programs, the callable
duration is typically limited to 3 h per session. However, our study
broadens this concept to better reflect real-world conditions under
a load aggregator model. Different businesses offer different levels
of flexibility; for instance, factories may handle longer reductions
by adjusting operations. In contrast, service-based businesses like
supermarkets, which depend heavily on HVAC systems, may prefer
shorter durations. To represent this diversity, we randomly assign
callable durations across participants, with a slight preference
toward longer durations, which are more advantageous from the
aggregator’s perspective. We also assume high reliability from all
participants, as their operational characteristics are considered
during selection, ensuring a dependable demand response program.

Participants capable of sustaining reductions for the full 6-
h duration are prioritized, forming a significant portion of the
resource pool in this test case. The overall participant pool offers an
average reduction capacity of around 15–20 MW, with a maximum
capacity of up to 35 MW.The cost that the load aggregator must pay
for load reductions also varies, with the average cost set at 1,000 THB
per megawatt (1 THB/kW). This means that for every megawatt
of reduced load, the aggregator pays 1,000 THB. To encourage
participation, additional conditions were also added, limiting each
participant to being called a maximum of three times per quarter.
The constraints on callable duration, size, and cost distribution

among participants are summarized in Figure 4, where the figures
illustrate the range of capabilities across the participant pool.

To evaluate the effectiveness of participant selection strategies
in demand response events, we conducted simulations to provide
clear insights into how the load forecasts can be used in practice. We
divided the simulations into two distinct scenarios to explore different
approaches to callingparticipants for load reduction.Thefirst scenario
represents a case where the number of demand response events is
relatively low compared to the number of available participants and
their capacity. In contrast, the second scenario involves a higher
frequency of demand response events relative to the total participants’
capacity, simulating a more intensive program. These two scenarios
were designed to reflect different operational contexts, allowing us to
assess the flexibility and robustness of the calling strategies in both low
and high-intensity demand response situations.

For the simulations, we assumed a penalty of 4,000 THB/MW
for any missing load reduction compared to a target load reduction
of 50 MW per event, while a pool of approximately 50 participants,
with each participant having distinct characteristics and constraints,
as described earlier. Each simulation was executed 100 times to
calculate average results and provide a comprehensive assessment of
the participant selection strategies.This repeated simulation approach
allows us to capture the variability in outcomes and ensures that the
results are not skewed by any single instance of random variation.
The results of each strategy are summarized in Table 1, 2. For further
visualization, the boxplots in Figures 5–8 represent a distribution of
the cost and the number of calls in each simulation trial.

Based on the results from the normal scenarios, the demand
response targets for2016 involvedatotaldurationof79 hor3,950 MW,
while for 2017, the targets amounted to 109 h or 5,450 MW. In the
high-risk scenarios, the targets for 2016 required a total of 115 h or
5,750 MW, and for 2017, the targets remained at 140 h or 7,000 MW.
From these outcomes, the following conclusions can be drawn:

• The duration-based strategy saw the fewest total participant
calls, minimizing the number of times participants were called
while still meeting the load reduction targets.

• The price-based strategy demonstrated a significant reduction
in overall costs by prioritizing the selection of participants
with the lowest cost per megawatt. However, this approach is
vulnerable to high-risk scenarios, particularly during periods
of resource scarcity, where it exhibits the least effective cost
reduction compared to other strategies

• The single forecast strategy resulted in slightly better cost
savings than the price-based strategy, requiring fewer
participant calls overall.

• The dual forecast strategy consistently outperformed the single
forecast strategy in all tested scenarios, providing the best
results regarding both cost efficiency and minimizing the
number of participant calls.

These findings suggest that in normal scenarios where the
participant pool is sufficient, aggregators can reliably select
participants to meet load reduction targets. In such cases, all
strategies demonstrate perfect reliability, consistently fulfilling
DRCC targets without issue. However, under high-risk scenarios
with tighter resource availability, our forecast-based strategies
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continue to perform strongly, outperforming the standard price-
based approach in both reliability and cost management. As
financial penalties can impact overall profitability, especially inmore
demanding conditions, the forecast-based strategies highlighted in
this study offer a more resilient and advantageous solution, ensuring
both economic efficiency and dependable performance.

5 Discussion and conclusion

This research has explored various strategies for selecting
demand response participants by integrating load forecasting
models, aiming to optimize costs and ensure reliable load
reductions. The strategies evaluated include the duration-based
strategy, price-based strategy, and forecast-based strategies. Among
the forecast-based strategies, the study employedXGBoost to predict
short-term load profiles and SARIMAX to forecast long-term load
duration curves. By combining these two models, the investigation
aimed to improve both the accuracy of load forecasts and the
efficiency of participant selection.

The duration-based strategy, which prioritized participants
capable of sustaining longer load reductions, proved highly effective
in reducing the frequency of participant calls. This strategy
simplified operational complexity, making it particularly valuable in
scenarios that required consistent and sustained load reductions. On
the other hand, the price-based strategy was focused on selecting
participants offering the lowest cost per megawatt of load reduction.
While it demonstrated significant cost-saving potential in normal
scenarios, it faced challenges in high-risk scenarios where limited
participant availability led to fewer achieved load reductions and
overall underperformance.

The single forecast strategy, which relied solely on XGBoost for
load profile forecasting, offered a balanced solution by achieving
notable cost savings and reducing the frequency of participant
calls. Its ability to adapt to fluctuations in load demand reduction
made it a more effective option compared to the price-based
strategy. However, the dual forecast strategy, integrating XGBoost
and SARIMAX, emerged as the most robust and efficient. By
leveraging SARIMAX’s long-term load duration predictions to
refine XGBoost’s short-term forecasts, this combined approach
delivered the highest accuracy in load predictions, minimized costs,
and reduced the participant calls. These advantages made the dual
forecast strategy the optimal choice across both standard and high-
risk scenarios.

In conclusion, this study underscores the critical role of
integrating accurate load forecasting with thoughtful participant
selection strategies to improve the performance of demand response
programs. The dual forecast strategy proves to be the most effective
approach, striking a balance between cost efficiency and operational
reliability. Future research could focus on further enhancing
forecast accuracy by incorporating advanced machine learning
techniques, exploring hybrid models that combine the strengths of
multiple algorithms, or integrating additional exogenous variables.
Moreover, adopting AI-driven strategies, such as reinforcement
learning or neural network-based participant selection, could enable
real-time and adaptive decision-making, enhancing flexibility and
responsiveness in demand response management. Expanding the
scope of simulations to include diverse market conditions and

participant characteristics would provide deeper insights into the
robustness and scalability of these strategies, addressing the growing
demands of modern energy systems while ensuring sustainable and
efficient grid management.
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