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Short-term power load
forecasting in distribution
networks considering human
comfort level

Yong Li*, Hua Wang, Xianbin Huang, Juanyang Hao,
Wenting Lei and Quanlin Wang

Country State Grid Tianfu New Area Electric Power Supply Company, Chengdu, China

The growth of power demand and the increase of new energy penetration
have resulted in a heightened necessity for the precision of short-term power
load forecasting in distribution networks. The majority of current research on
short-term load forecasting is focused on the improvement of algorithms,
with relatively limited attention paid to meteorological factors. Furthermore,
research in this area typically focuses on a single meteorological factor,
namely, temperature, and does not sufficiently address the processing of
meteorological data features. In light of the aforementioned considerations,
this paper puts forth a human comfort model founded upon the ordering
relationship analysis method and the entropy weight method. Furthermore, it
employs the XGBoost algorithm to construct a short-term load forecasting
model, utilizing the human comfort score and historical load data as
inputs for forecasting the load. This approach is intended to enhance the
precision of the load forecasting. The experimental results demonstrate that
the proposed prediction model exhibits superior performance in short-term
load forecasting, achieving a significantly higher level of accuracy than
the baseline model. This model offers a notable advancement in practical
forecasting applications.

KEYWORDS

human comfort, ordering relation analysis, short-term load prediction, XGBoost
(extreme gradient boosting), entropy weigh method

1 Introduction

Accurate short-term power load forecasting is essential for the safe and reliable
operation of power grids, serving as a crucial guide for the scientific planning of power
generation scheduling and the optimization of resource allocation. However, achieving
high forecast accuracy remains a significant challenge due to the inherent variability of
weather conditions, the intermittency of renewable energy sources such as wind and
solar, and the complexity of electricity consumption patterns. Enhancing the precision
of short-term load forecasts, particularly under dynamic weather conditions, is pivotal
for maintaining stable power system operation and effectively balancing supply and
demand. Such improvements can provide more reliable decision support for power
system scheduling, facilitate better coordination between renewable energy generation and
load demand, and contribute to the efficient and sustainable management of the grid.
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A substantial corpus of research findings has been accumulated
with the objective of addressing the short-term power load
forecasting problem. This body of work has witnessed a transition
from the utilization of traditional mathematical statistical
methods to the deployment of machine learning methodologies
(Chongqing et al., 2017). The mathematical statistical methods
that have been employed include regression analysis (Jidong et al.,
2013), the autoregressive integral sliding average model (ARIMA)
(Zhou et al., 2023), the exponential smoothing method (Ji et al.,
2012), and so forth. These methods have the advantage of a simple
underlying principle and a faster calculation speed; however, they
are not without limitations in terms of their ability to handle
nonlinear relationships between variables. In light of the rapid
advancement of machine learning technology, scholars have
increasingly directed their attention towards the utilization of
machine learning in load forecasting. Among these, the Support
Vector Machine (SVM) is one of the most commonly employed
methods (Jiang et al., 2018). It utilizes a kernel function to address
linear indivisible problems, exhibits an efficient processing ability in
high-dimensional space, and gained considerable popularity during
the 1990s. As deep learning technology has evolved, the recurrent
neural network (RNN) has emerged as a prominent approach
for processing time-series data, garnering significant attention
and adoption in this domain. At present, the enhanced recurrent
neural networks, exemplified by Long Short-TermMemory (LSTM)
(Dai et al., 2023; Zhu et al., 2023) and Gate Recurrent Unit (GRU)
(Dai et al., 2024), are extensively utilized for short-term load
forecasting. The Sequence to Sequence (Seq2Seq) models, on the
other hand, has been mostly used to deal with time series in recent
years due to their flexibility in dynamically determining network
step sizes and effectively capturing the relationships between
sequences of varying lengths. Literature Dai et al. (2023) proposed
an approach for short-term power load prediction by improving
the Seq2Seq model based on bidirectional long-short term memory
(Bi-LSTM) network, augmented by an attention mechanism to
help the decoder focus on the key sequence information that
affects the prediction result, thereby improving the load forecasting
accuracy. Literature Dai and Yu (2024) employed Temporal
Convolutional Network (TCN) as the encoder and decoder within
the Seq2Seq framework, further optimizing the model parameters
using the Bayesian Optimization (BO) algorithm to enhance model
performance. Furthermore, Extreme Gradient Boosting (XGBoost)
has demonstrated efficacy in numerous data mining competitions
and is a prevalent tool in power system load forecasting (Chen and
Guestrin, 2016; Chuanjie et al., 2023; Dai et al., 2022).

Overall, research on short-term load forecasting has mostly
focused on algorithmic improvements, with various types of
combined forecasting methods emerging and network structures
becoming increasingly complex (Zhang et al., 2022; Wang et al.,
2023; Wang and Chong, 2022). However, meteorological factors,
as key variables with a significant impact on load, have been the
subject of relatively limited attention in related studies. Within
the extant framework of meteorological data processing, studies
are often constrained to the consideration of temperature as an
isolated variable. Furthermore, the majority of historical load
data and meteorological data are directly introduced into the
forecasting model as the input features of the model, which is
insufficiently in-depth in the processing of meteorological data

features and fails to fully explore and integrate the synergistic
effects of other multidimensional meteorological factors. For this
reason, the literature Qin et al. (2006) introduced the concept of
human comfort, conducted a comprehensive analysis of the role
of temperature, humidity and wind speed on human comfort, and
improved the training efficiency and prediction accuracy of the
neural network prediction model. However, the universality of this
comfort index model in different regions has yet to be verified.
Literature GAO et al. (2017) proposed a novel human comfort
concept, using hierarchical analysis and entropy weight method
to construct a human comfort evaluation model and an improved
random forest algorithm to establish a short-term load prediction
model. Nevertheless, the evaluation model employed in this
approach necessitates the manual rating of diverse meteorological
indicators, which is a considerable undertaking.

To address the above problems, this paper quantifies the
degree of affiliation of each meteorological indicator to human
comfort by constructing a fuzzy affiliation function, and determines
the reasonable weights of each meteorological indicator in the
evaluation of human comfort by using the combination of the
ordering relationship method and entropy weighting method, and
then constructs a human comfort evaluation model that integrates
multi-dimensional meteorological factors, such as temperature,
humidity, wind speed, etc. On this basis, the XGBoost algorithm
is employed to construct a short-term load forecasting model. This
model takes the human comfort score and historical load data as
its core input features, thereby improving the accuracy of the load
forecasting model by integrating the human comfort factor. The
model proposed in this paper was tested on an actual load dataset
and demonstrated superior prediction accuracy in short-term load
forecasting compared to the baseline model.This result validates the
efficacy of the proposed model in short-term load forecasting.

The remaining sections of this paper are organized as follows.
Section 2 introduces the fundamental concepts of the fuzzy
affiliation function, ordinal relationship method and entropy
weight method, which collectively form the basis of the human
comfort evaluation method. Section 3 presents an overview of
the fundamental concepts underlying the XGBoost algorithm and
outlines the specific steps involved in the prediction method
proposed in this paper. Section 4 presents the case study, including
an overview of the experimental data, the evaluation criteria
selected, and a comparison of the model results. Section 5 provides
a summary of the paper and presents the conclusions.

2 Human comfort evaluation model
based on ordering relationship
analysis and entropy weight method

2.1 Traditional human comfort index

A notable correlation exists between temperature and load
fluctuations, which are characterized by a relatively continuous,
regular and less volatile pattern. In contrast, humidity and
wind speed exhibit a high degree of randomness and significant
fluctuations, which presents a challenge in directly studying their
impact on load. Consequently, existing studies typically do not
analyze the direct impact of each meteorological factor on load
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separately. Instead, they tend to measure the coupling effect of
multiple meteorological factors by introducing a meteorological
composite index. The meteorological composite index is expressed
in various forms, with the human comfort index being the most
prevalent in studies of power systems.

The Human Comfort Index is a meteorological indicator that
is employed to evaluate the extent to which humans can tolerate
various weather conditions. It is constructed on the basis of the
complexmechanism of heat exchange between the human body and
the surrounding atmospheric environment, and comprehensively
considers the joint influence of key meteorological parameters,
such as temperature, relative humidity, wind speed, etc., in order
to reflect the human body’s perception of these meteorological
elements. There are various forms of specific calculations of
human comfort, and Equation 1 are used in Beijing, Nanjing
and Hangzhou (Qin et al., 2006):

Con f = 1.8Temp+ 0.55(1−Hmd) − 3.2√Wsp+ 27 (1)

It should be noted, however, that the human comfort index has
a specific scope of application. Furthermore, the universality of the
model remains to be verified, due to the considerablemeteorological
differences that exist between different regions.

2.2 Human comfort evaluation model
based on ordering relationship method and
entropy weight method

The definition of human comfort is inherently multifaceted,
encompassing subjective perceptions and objective environmental
factors. This complexity renders its portrayal through a purely
quantitative model challenging, as it is difficult to achieve precision
and unambiguity in such a context. In this context, fuzzy evaluation
theory, as an advanced mathematical tool, can achieve a scientific
evaluation of the complex concept of comfort by combining
qualitative and quantitative approaches.

2.2.1 Fuzzy affiliation function
The initial step in fuzzy evaluation is to ascertain the degree of

affiliation of the indicator in question. This is achieved through the
standardization of the indicator.

The fuzzy affiliation function represents a pivotal concept
within the theoretical framework of fuzzy logic. It is employed
to quantify the degree of attribution of elements within a fuzzy
set to a specific feature or attribute. The construction of a fuzzy
affiliation function entails the quantification of the degree of
affiliation of a fuzzy concept, achieved through the mapping of
the input value to a continuous range between 0 and 1. This
range expresses the degree of fuzzy attribution of a thing or
concept to a certain characteristic. In practice, the fuzzy affiliation
function can be modelled based on a variety of mathematical curves
or distributions, including the rectangular distribution function,
trapezoidal distribution function, exponential distribution function,
and Gaussian function. The adjustment of function parameters,
including peak position, standard deviation, and slope, enables the
capture and quantification of the affiliation of fuzzy concepts, thus
facilitating the application of fuzzy logic to real-world problemswith
fuzzy, uncertain, or ambiguous boundaries.

In consideration of the characteristics exhibited by
meteorological data, this paper employs a Gaussian combined
affiliation function and a gradient affiliation function as
the affiliation function for fuzzy evaluation, as illustrated in
Figures 1A, B respectively.

The trapezoidal membership function can be expressed as
Equations 2:

A =max(min(
x− v1
v2 − v1
,1,

v4 − x
v4 − v3
),0) (2)

where v1 and v4 are the lower and upper limits of the variable, and
v2 and v3 are the values at the ends of the interval, respectively.

The Gaussian combination membership can be
expressed as Equations 3:

A =

{{{{{
{{{{{
{

e−
(x−c1)

2

2σ12 ,x ≤ c1
1,c1 < x ≤ c2

e−
(x−c2)

2

2σ22 ,x ≥ c2

(3)

where c1 and σ1 are the mean and standard deviation of the left
Gaussian function, and c2 and σ2 are the mean and standard
deviation of the right Gaussian function, respectively.

2.2.2 Ordering relationship analysis method
The ordering relationship analysis method is a technique

for determining the relative importance of evaluation indicators
based on the evaluator’s subjective judgement. The method
establishes the ordering relationship between evaluation indicators
through the comparison of the relative importance of the
indicators by the evaluator, thereby determining the weight of
each indicator accordingly. In comparison with the hierarchical
analysis method, which requires consistency checking, the
ordering relationship method is more straightforward, requiring
significantly less calculation and offering a simpler, more
intuitive approach (Bin et al., 2022). Accordingly, this paper employs
the ordering relationshipmethod to ascertain the subjective weights,
with the calculation process outlined as follows:

2.2.2.1 Determine the order relationship
In order to calculate the value of human comfort at mmoments,

it is necessary to consider m evaluation objects involving n
meteorological indicators. In this context, the set of evaluation
indicators is noted as G = {G1,G2,…,Gn}.

When the importance ofGi indicators is not lower than that ofGj
indicators, it is noted asGi ≥Gj. In the event that the aforementioned
n indicators are in a state of relationship as Equations 4:

G1 ≥ G2 ≥ ... ≥ Gn (4)

Then the indicator set G = {G1,G2,…,Gn} is said to have
established the ordering relationship in accordance with the
'≥' operator.

The ordering relationship is primarily determined through the
evaluation of experts in relevant fields. Initially, experts select the
first important evaluation indicators based on experience, which are
recorded as G1∗. Subsequently, experts select the first important
evaluation indicators among the remaining indicators, and the
ordering relationship can be determined as G

∗
= {G1

∗
,G2
∗
,…,Gn

∗
}.
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FIGURE 1
(A) Trapezoidal membership function (B) Gaussian combination membership function.

TABLE 1 Ordering relation assignment method.

rj Principle

1.0 U j-1 is as important as U j

1.3 U j-1 is slightly more important than U j

1.6 U j-1 is slightly more important than U j

2.0 U j-1 is extremely more important than U j

2.2.2.2 Quantitative analysis of differences in the
importance of indicators

The importance of indicator Gj is expressed in terms of a
subjective weight, wsj, and the ratio of the importance of indicators
Gj-1 and Gj is denoted as rj is calculated from Equation 5.

rj =
ws,j−1

ws,j
, j = 2,3, ...,n− 1,n (5)

The ordering relations of rj can be assigned in accordance with
the specifications outlined in Table 1.

2.2.2.3 Calculation of subjective weights
The subjective weights of the indicators are calculated based

on the assignment of the experts to the ordering relations. Their
relationship is shown in Equation 6

{{{{{
{{{{{
{

wsn =
1

1+
n

∑
j=2

n

∏
k=j

rk

ws,j−1 = rjwj, j = n,n− 1, ...,3,2

(6)

According to the above equation, w1 town-1 can be calculated to
obtain the subjective weight vector W s = [ws1,ws2,…wsn]

T for each
meteorological indicator.

2.2.3 Entropy weight method
Entropy weight method is an objective assignment method

based on the information entropy theory, which determines the

weight of each indicator in the comprehensive evaluation by
calculating the information entropy value of each evaluation
indicator to measure the size of the information it contains.

The main steps for determining the objective weights through
the entropy weighting method are as follows:

(i) For the set of meteorological indicators G, record the value of
the j-th meteorological indicator at the i-th moment as uij, and
construct the attribute matrix U=(uij)m × n. Standardize the
evaluation indicator values based on Equation 7, and construct
the standardization matrix of the evaluation indicators:

qij =
uij − umin ,j

umax ,j − umin ,j
(7)

where is the indicator value after normalization of uij, umax,j and
umin,j are the maximum and minimum values of the Gj indicators
of all evaluation objects, respectively.

Thus, the normalization matrix of evaluation indicators is
obtained from Equation 8:

Q =(

(

q11 q12 ... q1n
q21 q22 ... q2n
... ... ... ...

qm1 qm2 ... qmn

)

)

(8)

(ii) Calculate theweight of the indicator value of the i-th evaluation
object under the j-th indicator through Equation 9:

pij = qij/
m

∑
i=1

qij(i = 1,2, ...,m; j = 1,2, ...,n) (9)

Thus, the following matrix is obtained:

P =(

(

p11 p12 ... p1n
p21 p22 ... p2n
... ... ... ...

pm1 pm2 ... pmn

)

)

(10)

Frontiers in Energy Research 04 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1514755
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Li et al. 10.3389/fenrg.2025.1514755

(iii) Calculate the entropy value of the j-th indicator in Equation 11.

ej = −
1

ln n

m

∑
i=1

pij ln pij, (j = 1,2, ...,n) (11)

(iv) Calculate the coefficient of variation of the j-th
indicator in Equation 12.

gj = 1− ej, (j = 1,2, ...,n) (12)

(v) Calculate the weight of the j-th indicator in Equation 13.

woj = gj/
n

∑
j=1

gj = (1− ej)/(n−
n

∑
j=1

ej),(j = 1,2, ...,n) (13)

Thus, the objective weight vector Wo = [wo1,wo2,…,won]T

is obtained.

2.2.4 Comprehensive scoring
There are obvious differences between the sequential

relationship method and entropy weight method in the guiding
ideology and the results of weight calculation. The sequential
relationshipmethod focuses on starting from the experts‘ experience
and emphasizes the experts’ judgement on the relative importance
between the indicators, whereas the entropy weight method is
more inclined to using data information and assigning values by
calculating the information entropy and the weights between the
indicators. In practical applications, the weights obtained by a
single method may have limitations. Therefore, to comprehensively
consider the subjective and objective weights and obtain more
comprehensive and accurate information about the weights of
the indicators, the Lagrange multiplier method is used for the
combination of the assignment to obtain the comprehensive
weights wj as in Equation 14:

wj =
√wsj ⋅woj

n

∑
j=1
√wsj ⋅woj

(j = 1,2, ...,n) (14)

The ordinary multiplication and addition operator is employed
to synthesize and obtain the human comfort evaluation score bi at
the moment being evaluated, as in Equation 15:

bi =
n

∑
j=1
(wj •Aj) (15)

Subsequently, the human comfort scores B = [b1,b2,……,bn] is
obtained for each moment.

3 Xgboost-based prediction model

This section may be divided by subheadings. It should provide
a concise and precise description of the experimental results,
their interpretation, as well as the experimental conclusions that
can be drawn.

3.1 XGBoost

XGBoost (eXtreme Gradient Boosting) is one of the boosting
algorithms. Its core idea is to integrate numerous weak classifiers
into a single, robust classifier.

The fundamental elements of XGBoost are decision trees. These
decision trees are the ‘weak learners’, which together form the
XGBoost. In the iterative process, the generation of the latter
decision tree will take into account the prediction results of the
previous decision tree. This entails that the bias of the previous
decision tree will be taken into account, so that the training samples
that were wrong in the previous tree will receive more attention
in the subsequent period. This is followed by the training of the
next tree, which is based on the adjusted sample distribution. The
tree model employed is the Classification and Regression Tree
(CART) model.

In the context of short-term load forecasting, the inputs to
the forecasting model are P, representing historical load data;
B, denoting human comfort values; and D, indicating holiday
characteristics (represented by 0/1, with 0 denoting weekdays and
1 representing holidays). Using the prediction model θ(−), the
following XGBoost model can be constructed by constructing
the mapping from the prediction input x to the prediction
object, as Equation 16:

ŷ = θ(x) =
K

∑
k=1

ft(x), fk ∈ F (16)

where: K represents the number of trees, fk denotes the function
model of the kth tree, and F signifies the function space, which is
constituted by decision trees.

The objective function of XGBoost is as Equations 17, 18:

Xobj = l(y, ̂y) +
K

∑
k=1

Ω( fk) (17)

Ω( fk) = γT+ λ
1
2
‖ω‖2 (18)

where: l(y, ̂y) is the loss function; Ω( fk) It is a regular term to
prevent overfitting; T is the number of leaf nodes; a ω vector
composed of regression values for the output of the leaf node; λ, is a
hyperparameter. γ

During iteration, the objective function is updated toEquation 19:

τ(k) = l(y, ŷ(k−1) + fk(x)) +Ω( fk) (19)

At fk = 0, the Taylor second-order expansion of the
loss function is performed, and the objective function is
approximate as Equation 20

τ(k) ≃ l(y, ŷ(k−1) + ft(x)) +
1
2
h f2k(x) +Ω( fk) (20)

It can be inferred Equation 21:

Xobj ≃
K

∑
k=1
[gj fk(x)) +

1
2
hj f

2
k(x)] +Ω( fk)

=
T

∑
j=1
[gjwj +

1
2
(hj + λ)w2

j ] + λT
(21)

where: g =
∂L(y,ŷ(k−1))

∂ŷ(k−1)
, is the first derivative; h =

∂2L(y,ŷ(k−1))
∂(ŷ(k−1))2

, which is
the second derivative.
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The optimal ω and objective function values are as
Equations 22, 23:

ω∗j = −
gj

hj + λ
(22)

Xobj = −
1
2

T

∑
j=1

gj
hj + λ
+ λT (23)

In the training process, the objective function gain is calculated,
the leaf node with the largest gain loss is selected, and the complete
decision tree is constructed until the limited number of layers
is reached.

3.2 Overall process

Theoverall flow of this paper is shown in Figure 2. Firstly, a fuzzy
affiliation function is constructed in order to quantify the degree
of affiliation of each meteorological indicator with regard to human
comfort. Subsequently, the combination of the ordering relationship
method and the entropy weight method is employed in order to
determine the reasonable weight of each meteorological indicator
in the evaluation of human comfort, thus enabling the calculation of
the value of the human comfort score. The data set comprising the
human comfort score and the standardized load, when considered
together, constitutes a training set. The XGBoost algorithm is then
employed for model training. After the model training is completed,
model inference is performed based on the weather forecast data
and other feature data to derive the load prediction results on the
forecast day.

4 Case analysis

4.1 Case setting

The data set used for illustrative purposes is derived from a local
power grid in Sichuan. It encompasses daily load data from July
2021 to October 2023, with a collection frequency of 15 min and a
total of 96measurement points.Themeteorological data are sourced
from Open-Meteo (Zippenfenig, 2023), with a time resolution of
1 h. Any missing values in the data set are supplemented by linear
interpolation, and the load data are normalized by z-score.

The experimental platform employed in this study is an Intel(R)
Core(TM) i7-7700 CPU with a main frequency of 3.60 GHz. The
proposed method was implemented using the Python language,
with the py-XGBoost framework for XGBoost and the PyTorch
framework for FNN.

4.2 Human comfort evaluation

In consideration of the comfort criteria set forth by ASHRAE-55
(American National Standards Institute, 2023) and ISO 7730 (ISO,
2005), the affiliation of temperature was selected to adhere to
the Gaussian combination affiliation function, with a mean and
standard deviation of the left Gaussian function of 22 and 10,
respectively, and a mean and standard deviation of the right

FIGURE 2
Overall forecasting flowchart.

Gaussian function of 24. Affiliation functions for humidity andwind
speed were also considered. The affiliation function for humidity
was found to be a trapezoidal function with the ends of the interval
at 30 and 60, while the Gaussian combined affiliation function was
selected for wind speed, with a mean and standard deviation of 0.
The values for the left Gaussian function are 2 and 0.8, while the
values for the right Gaussian function are 5.4 and 8.

The sequential relationship method was employed to determine
the subjectiveweights for the temperature, humidity, andwind speed
of the three evaluation indicators. The expert scoring method was
used to sort the indicators, and it was determined that the sequential
relationship for the temperature, humidity, and wind speed is in
accordance with the degree of importance, with r2 = 2, r3 = 1.
The calculation of the subjective weights of the indicators yielded
the following results: Ws = [0.5517, 0.2759, 0.1724]. Based on the
entropy weight method to calculate the objective weights, the final
result isWo = [0.3974,0.3163, 0.2862].Then the combined weightW
= [0.4750,0.2997, 0.2253].

Combining the affiliation and composite weights gives a score
for human comfort, and the results of human comfort calculations
at 12.PM on selected dates are extracted in Table 2.

As illustrated in the table, it can be observed that dates with
specific meteorological conditions, such as 14 April and 21 October,
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TABLE 2 Human comfort results on selected dates.

Date Temperature/°C Humidity/% Wind speed/(m/s) Human comfort score

2023.1.5 9.1 78 0.2 0.5779

2023.4.14 25.9 35 3.57 0.9768

2023.6.12 33.8 27 0.71 0.6202

2023.7.9 35.8 38 1.55 0.5936

2023.10.21 19.8 64 0.92 0.9699

2023.12.25 8.5 68 1.27 0.6341

have higher human comfort scores, as the temperature, humidity
and wind speed are within the optimal range. In contrast, the results
for 5 January and 25 December illustrate the impact of winter
conditions on human comfort. On both days, moderate wind speeds
were recorded, with the temperature being slightly higher on 5
January. However, the high humidity levels resulted in a greater
sensation of coldness, leading to lower human comfort scores and
a perception of greater discomfort on 5 January compared to 25
December. The results for 12 June and 9 July demonstrate that
high temperatures, even when accompanied by relatively suitable
humidity and wind speed conditions, can significantly impair
human comfort in a hot summer environment. The proposed
human comfort evaluation model is effective in quantifying and
accurately describing the complex and ambiguous concept of human
comfort by integrating and unifying meteorological indicators of
different scales.

The Pearson Correlation Coefficient (PCC) is employed as a
feature selection method to quantify the correlation between load
and eachmeteorological index, thereby identifying the features with
a strong correlation with load. The correlation coefficient between
two random variables X = [x1,x2,⋯,xn] and Y = [y1,y2,⋯,yn], is
calculated using Equation 24:

r =

n

∑
i=1
(xi − x)(yi − y)

√
n

∑
i=1
(xi − x)

2
n

∑
i=1
(yi − y)

2

(24)

where, x and y are the sequence mean values of sequence X and
Y respectively, xi and yi are the i-th element of sequence X and Y
respectively, r denotes the correlation coefficient of sequence X and
Y, the value of which ranges from −1 to 1, r > 0means that sequence
X and Y show positive correlation, and r < 0 means that sequence X
and Y show negative correlation, and the closer the absolute value of
r is to 1, it means that the correlation relationship between sequence
X and Y is stronger.

The correlation coefficients between each meteorological data
set and load data were calculated separately in order to obtain the
heat map, as illustrated in Figure 3. As illustrated in the figure, the
correlation coefficient between load and human comfort score is
the highest, at 0.7002. This value is higher than that of any single
meteorological indicator and also higher than that of the traditional

human comfort index. This indicates that the proposed human
comfort evaluation model effectively combines each meteorological
index and has the strongest correlation with load, and the training
algorithm canmore easily capture the high correlation between load
and human comfort score, which is more conducive to the training
of the model.

4.3 Comparison of results

In order to provide a quantitative evaluation of the deterministic
prediction performance of the model, this paper employs three
indicators: mean absolute percentage error (MPAE), root mean
square error (RMSE), and coefficient of determination (R2). The
first two are evaluation indices for the effect of error, with a smaller
value indicating a higher level of prediction accuracy.The latter is an
evaluation index for the effect of fitting, with a larger value indicating
a stronger prediction model. The specific calculation formula is as
Equations 25–27:

EMAPE =
1
N

N

∑
i=1
|yi − ̂yi|/yi (25)

ERMSE = √
1
N

N

∑
i=1
(yi − ̂yi)

2 (26)

R2 = 1−
N

∑
i=1
(yi − ̂yi)

2/
N

∑
i=1
(yi − y)

2 (27)

Meanwhile, in order to verify the effectiveness of the model
proposed in this paper, FNN (Feed-forward Neural Network) is
selected as the baseline model to compare and analyze with the
model in this paper.

For this purpose, the prediction model 1 is set: the training
algorithm adopts XGBoost algorithm, and the dataset is only load
data and daily feature data.

Prediction model 2: The training algorithm adopts XGBoost
algorithm, and the dataset is load data and temperature data.

Predictive model 3: The training algorithm adopts XGBoost
algorithm, and the dataset is load data and traditional human
comfort index data.

Predictive model 4: The model of this paper, the training
algorithm adopts XGBoost algorithm, the dataset is load data and
human comfort score proposed in this paper.
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FIGURE 3
PCC Heatmap.

Predictive model 5: FNN model is used, the dataset is load data
and human comfort score proposed in this paper.

The experiments are divided into training set and test set
according to 0.8:0.2, and the XGBoost learning rate is set to 0.1, the
number of iterations is set to 100, the range of random sampling ratio
is set to 0.3, the maximum depth of the tree is set to 5, the minimum
weight of the leaves is set to 10, the sample sampling ratio is set to
0.3, and the number of iterations is set to 100.The training algorithm
of the FNN model is BP back-propagation, which is made up of
three fully-connected layers, with 1,024 nodes of the first hidden
layer, and the number of nodes of the first hidden layer is 1,024.
Hidden layer nodes is 1,024 and the second hidden layer nodes is
512, ReLU is used for the activation function, Adam optimizer is
used for the optimizer, the learning rate is 0.001, and the maximum
training period is 1,000.The results of each prediction model on the
test set are shown in Table 3.

As evidenced by the data presented in the table, the model
proposed in this study demonstrates the highest level of prediction
accuracy. In comparison to the baseline model, the mean absolute
percentage error (MAPE) was reduced by 1.6877, the root mean
square error (RMSE) was reduced by 56.5554, and the coefficient of
determination (R2) was improved by 0.06.These results demonstrate
a notable enhancement in the prediction accuracy. Furthermore,
an evaluation of the same algorithm for Models 1, 2, 3, and 4
demonstrated that the human comfort assessment model exerted
a beneficial influence on the enhancement of prediction accuracy
to a certain extent. Model 2 reduced the error compared to
model 1, indicating that temperature has a significant influence

TABLE 3 Predictive Model comparison results.

Predictive models EMAPE/% ERMSE R2

1 3.5651 108.5776 0.9186

2 3.2242 94.1996 0.9408

3 2.9363 81.3866 0.9574

4 2.9095 79.1073 0.9600

5 4.5972 135.6627 0.9005

in load forecasting, and increasing temperature data can improve
the accuracy of load forecasting. Model 3 has a smaller error
compared tomodel 2, indicating that the traditional human comfort
index is effective in comprehensively evaluating meteorological
data, which is more effective than the single use of temperature
data. Model 4, based on Model 3, not only consolidates the
aforementioned trend but also achieves a further improvement
in prediction accuracy through the introduction of the human
comfort evaluation model proposed in this study. The performance
of this model exceeds that of the traditional human comfort
index model, thereby verifying the effectiveness of the model
presented in this paper.

Figures 4A-F, 5A-F show the prediction results and error
comparisons for each predictionmodel for the random 6 days in the
validation set, respectively. As illustrated in the figure, each model
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FIGURE 4
Comparison chart of predictive model results.

learnt the shape of the load curve better, and the trend of load change
was basically consistent with the true value. Among them, the FNN
model deviates most significantly from the true value in the load
trough period, and its performance is the most unsatisfactory. In
contrast, the model proposed in this paper has the highest fit with
the real value in most of the time, and the best prediction accuracy.
On the whole, the model in this paper performs well in learning the
shape of load curve and predicting the trend of load change, and
achieves better prediction accuracy, which verifies the effectiveness
of this paper’s model in short-term load forecasting. The model
proposed in this paper can more accurately capture the dynamic
characteristics of load change, provide more reliable prediction data
for grid scheduling, so as to reasonably allocate various types of
generation resources, optimise the scheduling strategy of renewable
energy, improve the capacity of renewable energy consumption,
reduce frequency fluctuations and power imbalance caused by load
fluctuations, improve the reliability and flexibility of the power grid,
and have a strong practical application value.

5 Conclusion

This paper proposes a human comfort model that
comprehensively considers various meteorological indicators such
as temperature, humidity and wind speed, constructs a human
comfort model based on the combination of ordering relationship
method and entropy weight method, and establishes a short-term

load prediction model based on the XGBoost algorithm. The
following conclusions are obtained by analyzing the examples:

(1) The human comfort evaluation model based on the ordering
analysis method and entropy weighting method proposed
in this paper integrates the expert experience and data
information, and the index weighting information is more
comprehensive and accurate. Compared with the traditional
human comfort index prediction model, the prediction model
in this paper achieves higher prediction accuracy, indicating
that the human comfort evaluation model proposed in this
paper has stronger applicability in load forecasting.

(2) The model in this paper performs well in learning the
shape of the load curve and predicting the trend of load
change, and achieves better prediction accuracy, which verifies
the effectiveness of this paper’s model in short-term load
prediction.

Although our proposed short-term load forecasting method has
improved the forecasting accuracy to a certain extent, it still faces a
number of key issues that need to be addressed. The first challenge
lies in the method’s strong dependence on accurate weather forecast
data, and whether it can effectively identify errors and maintain
high forecast accuracy when faced with inaccurate weather forecast
data needs to be further explored. Secondly, although we validated
the effectiveness of the proposed method by training and testing
it on a real dataset in a region of Sichuan, the broad applicability
and stability of the method in more diversified application scenarios
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FIGURE 5
Comparison chart of prediction model errors.

still need to be thoroughly verified. For this reason, in order to
comprehensively evaluate and demonstrate the general applicability
of the proposed method, we plan to extend it to a wider range of
datasets and other related application areas such as photovoltaic,
wind energy prediction, and electricity price prediction in our
future work. In addition, we will work on further optimizing the
proposed predictionmodel by integratingmore advanced intelligent
optimization algorithms to make it more flexible and adaptable
to changing and complex scenarios, thus improving its predictive
performance and robustness.
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