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Digital scenario generation and
harmonic signal tracing for
calibration of intelligent power
transducer

Jiaxing Ye*

Jiangsu Frontier Electric Power Technology Co., Ltd., Nanjing, China

An intelligent power transducer plays an important role in the acquisition,
monitoring, and control of data in power systems. A power transducer
faces challenges of reduced measurement accuracy and calibration difficulties
because of the surrounding field environment and the uncertainty of wind
and photovoltaic power output. In this study, a digital scenario generation
and harmonic signal tracing approach is proposed for the calibration of
an intelligent power transducer. The intelligent power transducer calibration
model integrates digital scenario construction. Then, based on the statistical
relationship between historical meteorological data and generated power, raw
data on wind and photovoltaic systems are clustered to construct digital
calibration scenarios. Kernel density estimation and Copula functions are
employed, and the generated scenario is reduced based on Kantorovich
distance synchronous back-substitution. Finally, after considering harmonic
factors in the reduced calibration scenario, a tracing method for calibration
signal with harmonics is proposed for transducer calibration in complex test
conditions. The study results demonstrate that the proposed method can
efficiently provide a reference signal for the measurement and calibration of
intelligent power transducers in a novel energy scenario and complex harmonic
environments.

KEYWORDS

digital scenario generation, harmonic signal tracing, intelligent power transducer,
calibration, kernel density estimation

1 Introduction

The electric power industry occupies an important position in the national economy.
To ensure stable operations of generators, power transducers are widely used to monitor
the electrical energy data and convert them into digital signals for the analysis or control
system; this helps users understand the operating conditions and adjust or optimize the
performance of the power system as required (Bucci et al., 2015). According to the
international standard IEC 60688 (2021), the stability of a power transducer is considered
after three times the supplier-provided time constant, but this requirement does not
always satisfy the need for rapid response to system failures in certain cases (IEC-60688,
2021). Compared with the traditional power transducer, an intelligent power transducer
not only enhances the response speed in the face of faults but also plays a key role
in data acquisition, remote monitoring, fault diagnosis, and remote communication,
thereby integrating with other intelligent systems to realize advanced energy management
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and control. However, factors like wind power variability,
device aging, inrush currents, and other uncertainties can
pose challenges such as reduced measurement accuracy,
output distortion, and protection malfunctions in response
to sudden power changes to intelligent power transducers
(Davoudkhani et al., 2023; Malinowski et al., 2015). Therefore,
enhancing the safety management of grid-related equipment and
operations becomes important, and regular testing and calibration
should be done in intelligent power transducers.

To address the abovementioned challenges, some researchers
performed power transducer testing and calibration. Poynting
Vector Probe was used to develop a power transducer (Fam, 1996)
and determine the active and reactive power of high-voltage lines
instead of the traditional transformer with an iron core. For data
acquisition (Ward et al., 2021), a particle filter methodology was
presented for continuous calibration of the physics-based model
element of a digital twin. This model is applied to a synthetic
problem with known calibration parameter values before use in
conjunctionwithmonitored data (Yang et al., 2023). Furthermore, in
another study a wind speed power transfer fluctuation partitioning
(PTFP) algorithm was constructed, which fully considers the wind
speed variation and power transfer characteristics, and boosts
prediction accuracy on all time scales (Zhang et al., 2022). It aims
to address the problems of heavy workload and low efficiency in
the manual on-site verification of gateway electric energy metering
devices, and analyze a method for developing a multi-channel
analog collector for remote verification of gateway electric energy
metering devices. This approach effectively ensured the safety of
operators and improved the level of gateway operationmanagement,
though it failed to realize the automatic generation of verification
scenarios (Huang et al., 2022). Zhang et al. proposed a method
that can realize efficient typical scene generation considering the
stochastic fluctuation in renewable energy output and load demand
(Zhang et al., 2021). In addition, probability prediction, kernel
density estimation, and deep learning models were constructed
with an attention mechanism to measure uncertainty and proposed
stochastic simulation based on probabilistic forecasting to generate
simulation scenarios (Hu et al., 2017). In another research, a kernel
density estimation (KDE) method estimated the parameters of
models with historical data (Wen, 2015). It used a real-time digital
simulator (RTDS) to perform digital modeling tests of the power
transducer, simulate the operation of the system, and evaluate the
impact of grid-side faults on the power transducer. However, this
method has some limitations as it considers fewer scenarios and
does not involve the impact of the current large-scale integration of
new energy sources into the grid.There is a need to further improve
the accuracy and applicability of power transducer measurement
and calibration in the complex background of new energy with
nonlinear output and harmonic disturbance (Zhang et al., 2024;
Aggarwal and Singh, 2020). In another study (Nosratabadi et al.,
2019), uncertainties of electricity consumption and wind/solar
generation were considered. Probability density functions (PDFs)
of output random variables were determined by choosing the
optimal bandwidth of the adaptive kernel density estimator (Sanjari
and Gooi, 2017). In addition, a 15-minute ahead PDF of the PV
output power was forecasted through the Gaussian mixture method
by combining several distribution functions and employing the
coefficients defined based on the parameters of the HMC-based

model (Yu et al., 2020). In another study, the current tracing
principle was used to establish a harmonic responsibility apportion
model that represents the influence degree of harmonic sources,
to precisely acquire data in harmonic environments (Zhang et al.,
1999). A method for correcting the fast Fourier algorithm using a
windowed interpolation algorithm or its improved algorithm was
proposed, which could mitigate leakage and effectively suppress
interference between harmonics and noise interference, thereby
facilitating more precise measurement of the amplitude and phase
of each harmonic voltage and current (Xi and Chicharo, 1996).
In another study, a method was proposed for correcting the ideal
sampling frequency,which can correct each sampling point to obtain
the sampling value at the ideal sampling frequency. This method
has low computational complexity, and its real-time performance is
better than that of the previous method and is suitable for online
measurement, but it can only reduce leakage by 50%.

However, still numerous issues plague the power transducer
calibration in the complex scenario of large-scale new energy grid
connection.

Thus, this paper proposes a digital scenario generation and
harmonic signal tracing method for the calibration of an intelligent
power transducer. First, an intelligent power transducer calibration
model based on digital scenario construction and integration is
proposed. Then, the wind and photovoltaic raw data are clustered
by the statistical relationship between historical meteorological
data and power generation, and the wind and photovoltaic digital
scenarios based on kernel density estimation and Copula function
are constructed, and also the generated scenario is reduced based
on Kantorovich distance synchronous back-substitution. Finally, a
harmonic signal tracing method is proposed to realize the tracing of
the complex transducer calibration signal, considering the harmonic
factors of the actual calibration scenario. The scenario generation
and harmonic signal tracing method could provide reference data
effectively for intelligent power transducer testing and calibration to
ensure the safe and stable operation of the power system.

2 Intelligent power transducer
calibration model based on digital
scenario construction and integration

Figure 1 depicts a modeling framework of the intelligent
power transducer calibration model based on the construction
and integration of digital scenarios. This model primarily contains
the transducer calibration platform, programmable standard power
source, and the measured intelligent power transducer. The
calibration platform and the standard power source are connected
to the measured intelligent power transducer.

The intelligent power transducer calibration platform
includes a scenario set, scenario generation system, data analysis
system, visualization system, and other parts. The scenario set
simulates different working conditions such as inrush current,
electromagnetic interference, and lightning strikes; considering
the large-scale integration of renewable power, the data of the
local wind, photoelectricity historical power and meteorological
data, a targeted set of complex scenarios is generated based on
wind and photovoltaic digital scenario generation technology by
using kernel density estimation and Copula function (Majdara and
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FIGURE 1
Modeling framework for calibration of an intelligent power transducer.

Nooshabadi, 2020). During verification, power staff can generate
random scenarios or specify harmonic voltage, current, and other
specific values with one click. Thereafter, the intelligent power
transducer performs data collection and analysis on both the
standard power source and the power transducer, calculating
the error of the tested instrument. Finally, this platform makes a
reliability assessment of the tested instrument, and when the error
value exceeds the standard range, a safety warning is given to notify
the relevant staff for maintenance and calibration, thereby providing
a visual representation of the results.

3 Digital scenario generation for wind
and photovoltaic power considering
meteorological factors

3.1 Relevance analysis of meteorological
factor

Renewable energy output has randomness, but its power
waveform has similar characteristics under similar weather. Taking
photovoltaic power generation as an example, the power output is
high and regular on sunny days, with small prediction errors, while
the power output is low and highly variable on overcast and rainy
days, with large prediction errors. Therefore, constructing a set of
typical output scenarios of renewable energy is necessary under
different weather conditions.

The current study used the Pearson correlation coefficient
(Shi et al., 2024) to analyze the correlation between wind
and photovoltaic power generation and meteorological
factors as Equation 1:

rxy =

n

∑
i=1
(Xi − ̄X)(Yi − ̄Y)

√
n

∑
i=1
(Xi − ̄X)

2√
n

∑
i=1
(Yi − ̄Y)

2

, (1)

where rxy denotes the Pearson correlation coefficient between
meteorological factors and power generation, Xi is the
meteorological factors, Yi is the power generation, ̄X is the mean
value of meteorological factors, and ̄Y indicates the mean value of

power generation. The meteorological factors are selected as solar
irradiance, wind speed, wind direction, temperature, and humidity.

Based on the statistical relationship between the historical
meteorological factors and power generation, the Wilks criterion
statistic is introduced to cluster the samples as shown in Equation 2:

Λ =
|E|
|E+H| ,

(2)

where E and H are the within-group and between-group sums
of squares and cross-product matrices, respectively, as shown in
Equations 3, 4:

E =
m

∑
i=1
[(Xi − ̄X)

′(Xi − ̄X) + (Yi − ̄Y)
′(Yi − ̄Y)], (3)

H = m
2
( ̄X − ̄Y)′( ̄X − ̄Y). (4)

Meteorological factors Xi and generation power Yi are each
taken in samples, and each of the two sets of samples can be
expressed, respectively, as shown in Equations 5, 6:

Xi = (Xi1,Xi2,Xi3, ⋅ ⋅ ⋅,Xip), i = 1,2,3 ⋅ ⋅ ⋅m, (5)

Yi = (Yi1,Yi2,Yi3, ⋅ ⋅ ⋅,Yip), i = 1,2,3 ⋅ ⋅ ⋅m, (6)

where p is the dimension of Xi and Yi. According to the F-
approximation theory, the statistics A of the Wilks criterion can be
transformed into statistics F as Equation 7.

F(P,2m‐P‐1) = 1‐Λ
Λ
⋅ 2m‐P‐1

P
, (7)

where F is the statistical relationship between the meteorological
factor and power generation. The meteorological factor clustering
criterion is converted into an F-test to assess the differences in
clustered samples and the segmentation andmerging of all scenarios
are accomplished.

3.2 Marginal distribution based on kernel
density estimation

This study employed the Copula function to generate wind and
photovoltaic power output scenarios, and the marginal distribution
of wind and photovoltaic power needs to be fitted first. The
nonparametric kernel density estimation method is applied to fit
a large number of samples, obtain the kernel density estimation
expression for wind and photoelectric power, and determine the
marginal distribution of wind and photoelectric power.

The kernel density estimation formula is provided in Equation 8:

̂f(a) = 1
Nh

N

∑
i=1

K(
a‐ai
h
), (8)

where N is the sample length, h is the sliding window length, and h
> 0; random variable A is the single wind and photovoltaic power
output, the sample point is (a1, a2, … an), K (·) is Epanechnikov
kernel function, mainly for the wind and photovoltaic power
marginal distribution fitting.

The kernel density estimation method does not require prior
assumptions about the distributions met by the sample data and is
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utilized to directly perform nonparametric estimation of the wind
power and photovoltaic power to obtain the respective probability
density functions. In addition to the kernel function that affects the
results of kernel density estimation, the parameter of sliding window
length h is also optimized.

MISE(h) = ∫E[ ̂f(a)‐f(a)]
2
dx, (9)

where E is the weight matrix. The overall kernel estimate can
be obtained by substituting h, which is derived from minimizing
the integral mean square error between the estimated and actual
values, into Equation 9.

3.3 Generation of wind and photovoltaic
scenarios based on Copula function

The Frank–Copula method is generally selected for wind and
photovoltaic scenario generation, and the main steps are as follows:

Step 1: Generate random numbers b1, b2, … bn in the
interval [0, 1].

Step 2: Make the first random variable marginal distribution
function value u1 = b1. Frank-Copula function C (·) is
used to determine the second random variable marginal
distribution function value u2, which is to find the
solution of Equation 10.

∂C(u1, u2, ⋅ ⋅ ⋅, un)
∂u1

= b2. (10)

Step 3: Determine the marginal distribution function value
un of the nth random variable, that is, to find the
solution of Equation 11.

( ∂
n‐1C(u1,u2,⋅⋅⋅,un)
∂u1∂u2⋅⋅⋅∂un‐1

)

( ∂
n‐1C(u1,u2,⋅⋅⋅,un‐1,1)
∂u1∂u2⋅⋅⋅∂un‐1

)
= bn. (11)

Step 4: Repeat the above steps k times to obtain marginal
distribution function values for k sets of n random
variables.

Step 5: Using the inverse function operation ci = Fi
−1 (ui), convert

(u1j, u2j, … unj) to the joint distribution function scenario,
where j = 1, 2, … , T, and T is the total number of days.

When analyzing thewind and photovoltaic power output, in step
5, the marginal distribution function of the two is derived based on
the Copula joint probability density, and then the inverse function
operation is performed separately. In this way, the generated
scenario fully takes into account the correlation between wind and
photovoltaic power generation.

3.4 Generated scenario reduction based on
Kantorovich distance synchronous
back-substitution

Based on the Kantorovich distance (Kini et al., 2022), the
original wind and photovoltaic scenarios are reduced, which can

better preserve the distribution characteristics of the original
scenarios. The Kantorovich distance can be determined as below:

Dk ⁢ (Ci,Ci
′) =min { ∑

sv∈Ci,sv,∈Ci
,

d (sv, sv
,)⁢η (sv, sv

,) |η ⁢ (sv, sv
,) ≥ 0,∀sv ∈ Ci,

∀sv, ∈ Ci
′; ∑

sv,∈Ci
,

η (sv, sv,) = Psv ,

∀sv ∈ Ci; ∑
sv∈Ci

η (sv, sv
,) = Psv, ,∀sv

, ∈ Ci
′ ⁢; },

(12)

whereCi is the set of original scenarios; Ci
′ denotes the set of deleted

scenarios; sv and sv′ are scenarios in Ci and Ci
′, respectively; Psv

and Psv′ are the probability of sv and sv′ in the scenario sets Ci
and Ci

′, respectively; Psv and Psv′ are the probabilities of sv and
sv′ in the set of scenarios; d (sv, sv′) is the Euclidean distance of
sv and sv′; and d (sv, sv′) is the product of the probabilities of
sv and sv′. The calculation process using the Kantorovich distance
is as follows:

Step 1: Use the original scenario set Ci to represent the set of Ni
retained scenarios, and Ci

′ to represent the set of Ni deleted
scenes. Determine the initial probability Psv of the retained
scenarios in Ci as 1/Ni, and the initial probability Psv

′ of the
deleted scenarios in Ci

′ as 1/Ni.

Step 2: Remove one scenario sv′ satisfying Equation 12
each time and put it into the set Ci

′ of deleted
scenarios as Equation 13.

Dk(Ci,Ci
′) =min[

Ni

∑
v=1

PsvPsv,d(sv, sv
,)]. (13)

Step 3: Change the number of original scenarios Ni = Ni − 1
and the number of deleted scenarios Ni

′ = Ni
′ + 1,

and pick the scenario sv that is closest to scenario sv′

as Equation 14.

sv = argmin[PsvPsv,d(sv, sv
,)]. (14)

Step 4: Modify the probability of the closest scenario sv to the
removed scenario sv′ as Psv = Psv + Psv′ to ensure that the
sum of probabilities of all the scenarios in Ci is 1. Then,
update the probability of each scenario in the set of deleted
scenarios to 1/Ni.

Step 5: Go to step 2 and repeat the iteration until the number of
scenarios in Ci meets the set number Nsv, taking Nsv = 1.

4 Harmonic signal tracing method

New power generation is affected by the environment because
the latter generates a large number of harmonic currents, with
reference to the statistical results of wind power historical data.
This paper sets the corresponding harmonic data according to
different scenarios, traces back the voltage and current fundamental
components information, and provides calibration data for the
intelligent power transducer. Thereafter, Set the kth harmonic
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voltage content as mk, the kth harmonic current content as nk, and
the phase difference of the kth harmonic as θ.

After generating wind and photovoltaic digital scenarios
considering meteorological factors, the active power P and reactive
power Q of the scenarios at each moment can be obtained as
Equations 15–17.

u(t) =
∞

∑
k=1

Uk sin(kωt+Φk), (15)

i(t) =
∞

∑
k=1

Ik sin(kωt− ϑk), (16)

P =
∞

∑
k=1

UkIk cosθk;Q =
∞

∑
k=1

UkIk sinθk, (17)

where Φk, ϑk are the phase differences between voltage and current,
respectively.

The RMS value of the grid-connected voltage between the
photovoltaic power station and the wind farm is U, which can be
obtained using Equation 18:

U = √U1
2 +
∞

∑
k=2

Uk
2 = √U1

2 +
∞

∑
k=2
(mkU1)

2. (18)

The RMS value of the voltage fundamental component is Ui as
Equation 19:

U1 = U/√1+
∞

∑
k=2

mk
2. (19)

In Equation 17, the first term represents the power component
generated by the same harmonic as Equation 20:
∞

∑
k=1

Uk ⁢Iksinkωt ⋅ sin (kωt‐θk)

=
∞

∑
k=1

Sk ⁢ [cos θk ⁢ (1‐cos2 ⁢ (kωt)) ‐ sin θk sin (2kωt)], (20)

where Sk is the complex power.
The average over a cycle is shown in Equation 21:

∞

∑
k=1

1
T
Sk

T

∫
0

[cos θk(1‐cos2(kωt))‐ sin θk sin (2kωt)] =
∞

∑
k=1

Sk cos θk.

(21)

In Equation 17, the second term is the power component
generated by different harmonics, which has an average value of 0
in one cycle.

According to the average instantaneous power theory, the total
active power of the load in a harmonic environment can be
calculated as Equation 22:

P = 1
T

T

∫
0

u(t)i(t)dt =
∞

∑
k=1

Sk cos θk =
∞

∑
k=1

Pk = P1 +
∞

∑
k=2

Pk = P1 +PHR.

(22)

Thus, the total reactive power of the load in a harmonic
environment is as Equation 23:

Q =Q1 +QHR. (23)

By solving Equation 24, the phase difference θi between
the voltage and current fundamental components can be
obtained, as well as the RMS value II of the current fundamental
component:

{{{{{{{{{{{
{{{{{{{{{{{
{

P = U1I1 cos θ1 +
∞

∑
k=2

UkIk cos θk

Q = U1I1 sin θ1 +
∞

∑
k=2

UkIk sin θk

Uk =mk ⋅U1

Ik = nk ⋅ I1

. (24)

5 Simulation results and analysis

5.1 Results of correlation analysis of
meteorological factors

The Pearson correlation coefficient proposed in the current
study is used to analyze the correlation between wind and
photovoltaic power and meteorological factors, combined with the
historical power generation data and measured meteorological data
of photovoltaic power stations and wind farms in a certain area.
The Pearson correlation coefficient value range is [−1, 1], when the
correlation coefficient is greater than 0, the two variables are positive
correlation; when it is less than 0, the two variables are in a negative
correlation. Furthermore, the larger the absolute value of the Pearson
correlation coefficient, the stronger the correlation between the two
variables.

Solar irradiance and photovoltaic power generation are highly
correlated, temperature and humidity have a strong correlation
with photovoltaic power, while wind speed, rate of change of wind
direction, and air pressure showaweak correlationwith photovoltaic
power. Photovoltaic power increaseswith increasing solar irradiance
and temperature, which is positively correlated; increasing humidity
leads to decreasing power, which is negatively correlated. Wind
speed is highly correlated with wind power. Air pressure and rate
of change of wind direction are also correlated with wind power,
and solar irradiance and humidity are weakly correlated. Wind
power increases with increasing wind speed; increasing air pressure
decreases wind speed, which leads to a decrease in power, which
shows a negative correlation. When the wind direction is stable,
the efficiency of a wind turbine is higher, and frequent adjustment
of the angle will affect the efficiency and amount of power
generation.

5.2 Generation and reduction of calibration
scenarios in wind and photovoltaic power
generation

Combining meteorological and environmental factors, the
kernel density estimation and Copula function are used to generate
wind and photovoltaic digital scenarios, the number of scenarios
is set to be 300, using a synchronous back-substitution scenario
reduction algorithm based on Kantorovich distance, and the
typical wind and solar power scenarios are clustered according to
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FIGURE 2
Wind and photovoltaic power generation scenarios. (A) Wind power generation scenarios. (B) Photovoltaic power generation scenarios.

FIGURE 3
Typical wind and photovoltaic power scenarios by scenario reduction. (A) Wind power scenarios. (B) Photovoltaic power scenarios.

weather conditions and reduced to 4 scenarios. The wind power
scenario generation and the Photovoltaic power scenario generation
are shown in Figure 2.

Rainy, overcast, sunny, and cloudy days are selected as four
typical weather scenarios, as shown in Figure 3.

For photovoltaic power generation, the power curve is larger
on sunny days compared to rainy and overcast days, and the curve
is more undulating on cloudy days. For wind power generation,
rainy days have relatively lower air pressure and higher wind speed,
and the wind power output is higher than that of other weather.
Under the sunlight, the surface is prone to temperature difference,
which leads to the generation and movement of airflow. During
the afternoon, the air temperature near the ground is the highest,
and the exchange between the upper and lower air is the most
intense, so the wind speed is the largest in the late afternoon, and
the wind power output is the largest, which is consistent with the
meteorological factors.

5.3 Harmonic signal tracing

Take the wind power scenario on a sunny day in spring as
an example, take the power data from 8:00 to 12:00, and consider
the influence of the third and fifth harmonics, set the harmonic
parameter as shown in Table 1, and take the rated voltage of the
wind farm as 220 kV, and the tracing results of the harmonic signal
are shown in Table 2:

Taking the scenario of wind power at 8:00 as an example,
the tracing results of the voltage fundamental and harmonic
components calibration signal are shown in Figure 4:

After inspection, the power value of the verification signal
obtained by tracing is significantly consistent with the original
power value of the wind and light scenes, verifying the accuracy
of the tracing result. In this process, by extracting and converting
the fundamental voltage and current, the correlation coefficient
method is used to accurately transform them, thereby generating
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TABLE 1 Harmonic parameter settings in the calibration scenario.

Time 8:00 9:00 10:00 11:00 12:00

Wind power/MW 56.73 25.10 51.20 76.48 62.23

Third harmonic voltage content/% 2.8 3.9 3.7 4.6 5.4

Third harmonic current content/% 5.3 2.6 6.2 4.4 5.1

Fifth harmonic voltage content/% 2.2 3.2 3.2 2.9 2.8

TABLE 2 Tracing results of calibration signals.

Time 8:00 9:00 10:00 11:00 12:00

Voltage fundamental components (kV) 219.86 219.72 219.73 219.67 219.59

Current fundamental components (A) 260.45 118.31 235.60 351.91 292.57

Power factor 0.9889 0.9638 0.9862 0.9869 0.9653

FIGURE 4
Tracing results of verification signals in harmonic environments. (A) Tracing results of voltage verification. (B) Tracing results of current verification.

secondary signals that can be used for detection and verification
of the intelligent power transmitter. These secondary signals
can meet the requirements of high-precision measurement while
ensuring the dynamic response characteristics in wind and
light scenes.

In order to further improve the reliability of the verification
system, the characteristics of power fluctuations in wind and light
scenes are combined to construct a highly targeted tracing model.
The model not only accurately describes the power characteristics
but also adjusts the key parameters (such as fundamental amplitude,
and phase deviation) in the tracing process in real-time by
introducing optimization algorithms to reduce the verification
error. Finally, the verification system showed excellent stability
and accuracy in both laboratory and field tests and can offer

reliable technical support for the application of intelligent power
transmitters.

6 Conclusion

This study aimed to address the problems of reduced
measurement accuracy and difficult calibration of intelligent
power transducers affected by the uncertainty of wind and
photovoltaic power output, complex field environment, and
other factors. Overall, it proposes a calibration technology based
on scenario generation and harmonic tracing for intelligent
power transducer. The main conclusions are drawn as follows:
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A scenario set is established based on the digital scenario
generation and integration of intelligent power transducer
calibration, and the calibration signals with the measured
transducer are carried out to realize intelligent error calibration
and warning.

Typical wind and photovoltaic scenarios are obtained
using scenario generation by kernel density estimation and
Copula function and scenario reduction by Kantorovich
distance synchronous back-substitution. The generated typical
scenarios reflect the actual output of new energy more
effectively, thereby providing a more realistic environment for
transducer calibration.

Through harmonic signal tracing, the calibration signal
parameters can be extracted in harmonic environments under
wind and photovoltaic power, which ensures reliable calibration of
intelligent power transducer in the complex scenario of large-scale
new energy grid connection.

Since the current study only considers the effect of
new energy output with harmonic on power transducer
calibration, more consideration is needed for different
transient conditions such as excitation inrush current,
electromagnetic interference, and lightning strike to improve the
scenario set.
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