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Smart grids are modernizing the future of providing energy for everyone,
allowing us to increase the efficiency of power generation, transmission, or
distribution using information and communication technologies. However, the
network structure of smart grids makes them vulnerable to varying levels of
cyber threats. This paper provides a broad overview of cyber threats against
smart grids, considering attack surfaces, communication network layers, and the
core security triad of confidentiality, integrity, and availability. This survey also
outlines emerging threats and covers current protection, prevention, detection,
mitigation, and recovery measures, focusing on emerging technologies such as
artificial intelligence and large language models (LLMs) in smart grid security.
We analyze and show how previous work has tackled and approached similar
themes in this area. Amongst our contributions are categorizing the critical parts
of smart grids that are most vulnerable to attack, several threat taxonomies, and
a review of the increasing importance of LLMs for enhancing grid security. This
evaluation underscores the need for effective and robust security technologies
to avoid the compromises that result from more sophisticated cyber attacks.

KEYWORDS

cybersecurity, cyber attacks, intrusion detection, smart grids, large language models
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1 Introduction

Smart grids combine information and communication technologies (ICT) to
provide an efficient, reliable, and sustainable electric energy service, aiming for
greater systemic or multisectoral decarbonization (Ghiasi et al., 2023). This increased
interconnection and dependence on digital systems in smart grids expand the attack
surface for cyber threats. Smart grid cybersecurity serves as the front-line defense against
potential denial-of-service attacks, data integrity breaches, and unauthorized control
interventions (El Mrabet et al., 2018).

The integration of artificial intelligence (AI), machine learning (ML), and deep
learning (DL) approaches into smart grid cybersecurity has garnered significant
attention. AI-powered solutions are easily scalable and can help organizations detect,
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analyze, and respond to cyber threats (Gunduz and Das, 2020).
ML approaches have been applied to intrusion detection and
anomaly detection, enabling systems to recognize patterns that
may indicate cyber attacks when anomalies occur (Berghout et al.,
2022). DL models, such as convolutional neural networks
(CNNs) and recurrent neural networks (RNNs), utilize layer-
wise feature extraction from high-dimensional data to achieve
advanced detection accuracy in complex, large-scale data
landscapes (Ruan et al., 2023).

However, three main limitations highlight the need for more
flexible and contextual cyber threat detection solutions. The first is
the dependence on extensively labeled datasets for training, which
are often sparse in specific disciplines like smart grid cybersecurity
due to the absence of long-standing records detailing cyber attacks.
The second is the inability of current models to adapt dynamically
to the evolving trends of vulnerabilities exploited by threat actors.
The third is their “black box” nature and resource-intensive
operation, generating results with limited explainability (Divakaran
and Peddinti, 2024).

There is a growing need for more adaptive, interpretable, and
data-efficient approaches in cybersecurity, which large language
models (LLMs) can address. LLMs have potential applications in
cybersecurity-related tasks such as anomaly detection, vulnerability
assessment, and log analysis (Ferrag et al., 2024), helping to detect
complex attack patterns and enable automated decision-making
by processing vast and heterogeneous information. However, the
applicability of LLMs in smart grid cybersecurity remains largely
unexplored, presenting a research gap.

One major challenge posed by LLMs is their propensity for
producing “hallucinations.” Therefore, it is crucial to address these
inaccuracies before LLMs can be reliably deployed in critical
infrastructure scenarios such as smart grids (Li et al., 2024b).
To mitigate such issues, several methods have been proposed,
including fine-tuning LLMs on domain-specific data (Liu et al.,
2024), employing reinforcement learning from human feedback
(RLHF) (Liu et al., 2024), utilizing retrieval-augmented generation
(RAG), leveraging Knowledge Graphs (KGs) (Ibrahim et al., 2024),
and incorporating verification layers that cross-checkmodel outputs
against trusted data sources. This paper aims to explore existing
research on integrating LLMs with smart grid cybersecurity and
identify gaps for further investigation.

1.1 Related surveys

Several surveys have examined the cybersecurity landscape of
smart grids in recent years, each contributing unique perspectives.
One notable review paper (Gunduz and Das, 2020) focuses on
the cybersecurity of Internet of Things (IoT)-enabled smart grids,
categorizing cyber attacks by their impact on confidentiality,
integrity, and availability. It identifies IoT-based communication
systems as both beneficial and vulnerable, particularly concerning
critical infrastructure threats. The survey categorizes attack types,
assesses network vulnerabilities, and evaluates defense strategies.
It presents IoT-driven cybersecurity solutions and outlines future
research directions, emphasizing the importance of protecting smart
grids as crucial infrastructure for national security.

The review in Ding et al. (2022) addresses cyber threats in smart
grids by analyzing hardware, software, and data communication
vulnerabilities. It categorizes attacks and highlights potential
solutions, particularly blockchain and AI techniques. The paper
examines historical cyber attacks, such as ransomware and SCADA
(Supervisory Control and Data Acquisition) system breaches, and
advocates for advanced detection and response measures. Future
directions focus on addressing protection gaps for evolving grid
complexities and integrating distributed energy sources.

The survey in Tala et al. (2022) investigates cyber attacks on
smart grids, focusing on open system interconnection (OSI) model
layers and categorizing attacks by their impact on network security.
It proposes a classification for detection and countermeasures,
addressing attacks across different layers of the communication
model. The study emphasizes confidentiality, integrity, availability,
and accountability. It reviews techniques such as ML and
cryptographic methods for mitigating cyber threats and discusses
open challenges, including detection and defense strategies tailored
to smart grids.

The work in Tatipatri and Arun (2024) explores cyber
attacks on power systems, focusing on impact, detection,
and mitigation methods. It examines IoT and machine-to-
machine communications within smart grids, emphasizing
security vulnerabilities in data transmission and IoT components.
The review covers cryptographic solutions, blockchain, and
artificial intelligence for securing communication channels. Key
contributions include insights into real-world cyber incidents and
the economic impacts of attacks on deregulated energy markets, as
well as specific recommendations for improving grid resilience. This
paper builds on these findings by exploring the integration of LLMs
and advanced ML techniques, which offer promising capabilities
for adaptive cybersecurity in smart grids. Table 1 summarizes the
related surveys in the literature.

1.2 Research contributions

In this paper, the following contributions to the study of
cybersecurity in smart grids, with a particular emphasis on the
potential and challenges of LLMs, are provided:

• This paper provides an overview of smart grid architectures
and their unique cybersecurity needs, focusing on their layered
structures and specific security requirements for maintaining
grid resilience against cyber threats.

• It categorizes and analyzes various cyber threats relevant to
smart grids using multiple taxonomies, focusing on vectors,
target layers, and CIA principles.

• The paper also investigates current cybersecurity techniques
for smart grids, focusing on protection, prevention, detection,
mitigation, and recovery mechanisms, with a particular
emphasis on machine learning-based models.

• The paper examines and analyzes the role of LLMs in
cybersecurity, surveying current literature on their general
applications and potential benefits for smart grid security.

• The paper identifies challenges in applying LLMs to smart
grid security, including issues related to model reliability, data

Frontiers in Energy Research 02 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1531655
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Ibrahim and Kashef 10.3389/fenrg.2025.1531655

TABLE 1 Comparison of cybersecurity surveys for smart grids.

Criteria Gunduz and Das
(2020)

Ding et al. (2022) Tala et al. (2022) Tatipatri and Arun
(2024)

Focus IoT-enabled smart grid
vulnerabilities, attack types,
and defenses

Threat taxonomy, blockchain,
and AI-based defenses

Cyber-attack classification on
OSI layers and detection
techniques

Cyber-attack impact,
detection, and mitigation in
power systems

Attack Taxonomy CIA triad categorization
(Confidentiality, Integrity,
Availability)

Taxonomy by system
vulnerabilities and threat types

Categorized by OSI model
layers

Focus on distribution-level
attacks, emphasizing
real-world cases

Emerging Techniques IoT-based security solutions,
cryptography

Blockchain, AI, ML ML, cryptography,
accountability focus

Blockchain, cryptography,
IoT-based secure
communication

Challenges Identified IoT vulnerabilities in public
communication networks

Distributed energy resource
vulnerabilities, SCADA system
risks

OSI-layer accountability,
advanced threat detection

IoT dependency risks, secure
transmission and data integrity

Future Directions Enhanced IoT security
measures, multi-layer defenses

Blockchain integration,
adaptive AI strategies

Detailed OSI layer defenses,
accountability in smart grids

Real-world case applications,
cryptographic enhancements

Unique Contribution IoT vulnerabilities and
solutions, CIA-based
taxonomy

Blockchain and AI solutions
with a focus on SCADA

OSI model-driven attack
taxonomy and accountability

Emphasis on economic
impacts, cryptographic
methods

integrity, interpretability, and the risk of adversarial attacks like
data poisoning and “hallucination.”

• Based on our analysis, we suggest future directions for research
and development in smart grid cybersecurity.

1.3 Organization

The rest of the paper is organized as follows: Section 2
provides a detailed overview of the smart grid architecture,
including key components and cyber-physical interfaces. Section 3
categorizes cybersecurity threats. Section 4 reviews current
cybersecurity techniques and discusses their limitations. Section 5
focuses on the potential of LLMs in grid security, pointing out
their advantages and limitations. Section 6 provides summaries
of future research directions. Finally, Section 8 concludes
our findings.

2 Smart grid overview

In this section, we delve into the architecture and the
fundamental components of the smart grid, providing an
understanding of its cybersecurity requirements. This includes
examining the main hardware systems that support key grid
operations and outlining the architecture model proposed by
the National Institute of Standards and Technology (NIST).
Furthermore, the communication networks, protocols, and
technologies integral to smart grid operations will be discussed
in terms of their vulnerabilities and the specific cybersecurity
challenges posed by the grid’s multiple networking and distribution
mechanisms.

2.1 Smart grid architectures

The advent of smart grids has enabled instantaneous
communication between different entities in the grid, allowing
demand management, local generation, and monitoring, among
other functionalities. This transformation has become crucial
to meeting the growing electricity demand, integrating clean
energy sources, and addressing challenges in the current energy
market (Yadav et al., 2016). To ensure effective and efficient smart
grid operations, there needs to be a well-defined architecture
focusing on standards, data exchange, and security aspects. The
smart grid architecture consists of three interconnected layers:
the physical layer, the cyber-physical layer, and the cyber layer,
as illustrated in Figure 1.

The physical layer includes core infrastructure for energy
generation, transmission, and distribution, such as power plants,
substations, and distribution networks. Although essential for
electricity delivery, this infrastructure relies heavily on control
systems, making it vulnerable to cyberattacks that could disrupt
power flows or destabilize operations, particularly through
distributed energy resources (DERs).

The cyber-physical layer bridges the physical infrastructure and
digital control systems, incorporating sensors, actuators, phasor
measurement units (PMUs), and smart meters to provide real-time
data for automated decision-making.However, these interconnected
devices increase the vulnerability to data falsification and injection
attacks, which can mislead grid operators and disrupt stability. The
extensive deployment of IoT in this layer broadens the attack surface,
as unsecured devices can serve as entry points for attackers.

The cyber layer serves as the digital backbone, consisting
of SCADA, energy management systems (EMS), distribution
management systems (DMS), and communication protocols such
as IEC 61850 and DNP3 (Distributed Network Protocol 3) that
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FIGURE 1
Smart grid layered architecture.

facilitate data exchange between field devices and control centers.
The reliance of this layer on network communication makes
it susceptible to man-in-the-middle attacks, data breaches, and
ransomware, allowing attackers to intercept, alter, or injectmalicious
commands into critical systems. Together, these layers enable smart
grid functionality but necessitate robust, multi-layered defenses to
mitigate sophisticated cyber threats.

Additionally, a widely recognized model by NIST partitions
the smart grid into seven broad domains, which define its
core functionalities: bulk generation, transmission, distribution,
customers, markets, service providers, operations, and distribution
control (Gopstein et al., 2021). This model helps classify the grid’s
vast interconnectedness while emphasizing that communication
between devices and across domains must be secure and
seamless. Figure 2 depicts the seven domains of the smart grid
as proposed by NIST.

The cybersecurity needs of the smart grid are complex and
multifaceted. Demand response (DR) is a key technology that helps
manage electricity demand by requesting consumers to reduce
consumption during peak periods. However, it also introduces risks,
as attackers can inject false signals into the DR system, potentially
destabilizing the electricity grid (Gunduz and Das, 2020; Ding et al.,
2022). DERs, such as solar and wind-based energy sources,

diversify non-centralized energy generation and strengthen the grid.
However, cyberattacks targeting DERs can harm grid integrity,
induce instability, and disrupt power distribution (Liu et al., 2023).

Smart grids have transformed power utilities by improving
disaster recovery, enabling cost-effective energy consumption, and
reducing power outages. Smart meters and advanced metering
infrastructure (AMI) facilitate detailed data exchange between
suppliers and consumers, but incorrect information or unauthorized
access can pose threats to grid integrity and consumer data privacy
(Achaal et al., 2024). SCADA-based grid framework systems, which
integrate remote terminal units (RTUs) and PMUs, face significant
threats from cyberattacks, as they play a crucial role in maintaining
grid stability (Tala et al., 2022).

EMS and DMS are essential for controlling transmission and
distribution networks, managing energy flow, identifying faults,
and minimizing energy wastage. Attacks on these systems could
lead to resource mismanagement, power outages, and system
destabilization (Ding et al., 2022; Tatipatri and Arun, 2024).

Despite the increasing demand for IoT-supported
functionalities in smart homes and grids, low security awareness
presents a significant challenge. The growing number of integrated
devices provides attackerswithmore opportunities to exploit control
systems, making cyber warfare an emerging threat for smart energy
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FIGURE 2
NIST smart grid model (Gopstein et al., 2021).

grids. Implementing robust control systems and security measures
will enhance the ability to remotely monitor and manage critical
energy sector infrastructures (Singhal et al., 2021).

2.2 Communication networks and
protocols in smart grids

Communication networks are vital for integrating smart grid
components, enabling data transmission, remote control, and real-
time monitoring. However, each network type presents unique
security challenges that must be addressed.

Wide Area Networks (WANs) connect central management
systems with DERs and substations, ensuring rapid data transfer
but posing risks of interception (Elkhorchani et al., 2013). Field
Area Networks (FANs) link field devices like sensors and meters
for local monitoring but are vulnerable to interference and
unauthorized access (Budka et al., 2014).

Local Area Networks (LANs) in substations connect SCADA
system RTUs and other control devices but face risks of
cyber and physical attacks, potentially impacting grid stability
(Tala et al., 2022). Home Area Networks (HANs) connect
consumer devices for DR and energy management but are
susceptible to eavesdropping and jamming due to weak encryption
(Xiaocheng et al., 2023). Neighborhood Area Networks (NANs)
aggregate multiple HANs for improved system visibility but require
strong security measures (Noorwali et al., 2016).

Smart grid communication relies on various protocols with
distinct security challenges. DNP3 lacks encryption, making it
vulnerable to interception (Padilla et al., 2014). IEC 61850
ensures secure substation communication but has implementation

inconsistencies (Kush et al., 2010). Modbus lacks built-in security,
making it susceptible to data injection and man-in-the-middle
attacks (Kush et al., 2010). Zigbee, used for low-power wireless IoT
devices, is prone to signal spoofing and jamming (Elkhorchani et al.,
2013). MQTT, widely used in IoT applications, requires additional
encryption and access control (Salvadori et al., 2013).

Both wired and wireless technologies are used for data
transmission. Power line communication (PLC) and fiber optics
offer secure, high-speed transmission but can be compromised
(Salvadori et al., 2013). Wireless technologies like LTE/3G,
WiMAX, and WiFi facilitate communication but are vulnerable
to interception and interference (Elkhorchani et al., 2013).

To protect the smart grid from cyber threats, robust encryption,
authentication, and continuous monitoring are essential, ensuring
secure communication and resilience against attacks.

2.3 Cybersecurity requirements and
challenges for smart grids

Smart grids are data-centric systems that require sophisticated
cybersecurity strategies to protect against cyber warfare. These
strategies include the triangle of CIA, accountability, safety,
and resilience (Arpilleda, 2023). Confidentiality is crucial to
prevent unauthorized access to sensitive data, while integrity
ensures data accuracy and unmodifiedness, preventing false data
injection attacks and disrupting grid operations. Redundancy
planning, load balancing, and DoS detection are widely applied
to ensure availability (Gunduz and Das, 2020). Authentication
and authorization processes are essential for user identity and
access control, with multi-factor authentication and role-based
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access control being helpful security improvements (Gunduz and
Das, 2020).

Accountability is necessary to track activities within the smart
grid, allowing for detailed investigations following security events.
Safety and criticality aim to prevent physical damage or widespread
disruption, as the grid infrastructure supports public welfare.
Systems must be designed to withstand catastrophic events from
external forces such as cyber and natural attacks (Gunduz and
Das, 2020).

Smart grids must also be resilient and survivable, enabling
them to resist and recover from cyber attacks. Resilience
involves developing systems that can quickly adapt to
and reduce interruptions, while survivability ensures the
system continues functioning even in damaged conditions.
Identification of affected zones, redundancy, and other
multilayered defense methods increase the grid’s resilience and
survivability (Tala et al., 2022).

The distributed and interconnected characteristics of smart
grids present new cybersecurity threats, with interoperability
between devices and legacy systems and infrastructure being
significant challenges (Arpilleda, 2023). To safeguard smart
grids, a holistic strategy beyond traditional security procedures
is needed, including complex and multi-layered defense
systems, continuous surveillance, and interaction between
relevant parties (Ghiasi et al., 2023).

3 Cyber threats in smart grid

The variety of interrelated systems that make up smart grids
subject them to a wide spectrum of cyber threats targeting
multiple elements and data flows. Cyber threats in smart grids
have been categorized based on several criteria, including
security objectives that the threat impacts, layers that the threat
targets, domains affected by the threat, attack vectors, and the
level of expertise required to deploy an attack. The following
subsections will also cover these classifications, their principal
attacks, and the problems encountered in their detection and
elimination.

3.1 Classification of cyber threats in smart
grids

This subsection investigates different classifications of cyber
threats in smart grids, as shown in Figure 3.

• Classification Based on the CIA Triad: Cyber threats to smart
grids are typically categorized according to their impact on the
CIATriad (Confidentiality, Integrity, andAvailability) (Gajanan
and Kirar, 2022). This aspect of security encompasses
various dimensions, each categorized under the subsequent
areas:

• Confidentiality: A major objective of attackers is to
obtain sensitive data, such as consumer usage statistics
and configurations of the grid. Data breaches and
eavesdropping are among the most common threats
against confidentiality, which can lead to privacy

violation or disclosure of operational data (Gajanan and
Kirar, 2022; Qureshi et al., 2023).

• Integrity: Integrity threats can modify data or disrupt
the accurate flow of data within the grid, leading to
erroneous operational decisions. For example, false data
injection (FDI) attacks can mislead SCADA systems
or demand forecasting models by injecting false data
to destabilize the operations of the grid (Gajanan and
Kirar, 2022; Qureshi et al., 2023).

• Availability: Availability-related threats are designed to
disrupt the use of grid services. Common examples
include denial of service (DoS) and distributed denial
of service (DDoS) attacks, which flood systems
with traffic and can result in outages (Gajanan and
Kirar, 2022; Qureshi et al., 2023).

Table 2 summarizes the CIA triad attacks.

• Classification Based on Layers of Attack: Smart grid threats can
also be categorized by their target layers: cyber layer or cyber-
physical layer, as summarized in Table 3.

• Cyber Layer Attacks: These attacks target IT infrastructure,
such as communication networks, data systems, and software
applications. Phishing, malware, and SQL injection attacks
compromise the digital components of the grid, potentially
giving attackers access to control systems or sensitive
information (Simonthomas et al., 2024).

• Cyber-Physical Layer Attacks: These attacks focus on the
elements that connect the digital and physical realms, such
as SCADA systems and distributed energy resources. For
instance, if power generation becomes unstable because of the
SCADA system or any control device, there is a significant
likelihood of other devices malfunctioning or equipment being
disrupted (Simonthomas et al., 2024).

• Classification Based on NIST Model Domains: According
to the NIST model, the smart grid comprises seven
domains: generation, transmission, distribution, customers,
markets, service providers, and operations. Each domain has
specific functions and is vulnerable to various cyber threats
(Ding et al., 2022). Table 4 summarizes these attacks.

• Generation: Cyber attacks on power generation, especially
renewables, disrupt energy output by tampering with control
signals, affecting supply-demand balance and damaging assets
(Ding et al., 2022; Tala et al., 2022).

• Transmission: High-voltage networks, including
substations and PMUs, face MITM and DoS attacks,
leading to grid instability and potential blackouts
(Ding et al., 2022; Tala et al., 2022).

• Distribution: Attacks on smart transformers and
SCADA systems disrupt energy delivery, increasing
outage risks. Unauthorized access to control devices
can trigger malfunctions across connected equipment
(Ding et al., 2022; Tala et al., 2022).

• Customer: Smart meter tampering and intrusions into Home
Area Networks (HANs) compromise billing accuracy and user
privacy, potentially exposing in-home devices to attackers
(Ding et al., 2022; Tala et al., 2022).
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FIGURE 3
Classification of cyber threats in smart grids.

• Markets: Cyber threats in energy trading manipulate
real-time prices and disrupt demand-response programs,
leading to financial losses and market instability
(Ding et al., 2022; Tala et al., 2022).

• Service Providers: Supply chain attacks exploit third-party
relationships to inject malware or breach defenses, making
this domain highly vulnerable to system-wide compromises
(Ding et al., 2022; Tala et al., 2022).

• Operations: Attacks on real-time management systems like
SCADA and EMS (e.g., ransomware) can shut down grid
operations, causing load imbalances and widespread blackouts
(Ding et al., 2022; Tala et al., 2022).

• Classification Based on Attack Vectors: Cyber threats
in smart grids can also be categorized by their attack
vectors, each exploiting unique vulnerabilities (Uma
and Padmavathi, 2013). Table 5 summarizes these
vectors.

• Network-Based Attacks: Exploit weaknesses in
communication protocols, overwhelming channels with
DoS/DDoS or intercepting messages via MITM attacks.
These threats disrupt real-time grid communication,
compromising stability (Uma and Padmavathi, 2013;
Singh et al., 2016).

• Data-Based Attacks: Manipulate grid information to distort
decision-making. Examples include False Data Injection
(FDIAs), AI data poisoning, and protocol corruption, making

detection difficult due to subtle alterations (Uma and
Padmavathi, 2013; Singh et al., 2016).

• User-Based Attacks: Leverage social engineering, phishing, and
credential theft to gain unauthorized access. Attackers use
compromised credentials for long-term infiltration (e.g., APT
campaigns), enabling further network or data breaches (Uma
and Padmavathi, 2013; Singh et al., 2016).

• Classification Based on Depth of Knowledge Required: Smart
grid threats can also be classified by the expertise needed to
execute them, as summarized in Table 6. This classification
highlights the accessibility of different attack types to various
threat actors (Qureshi et al., 2023).

• Low Knowledge (Opportunistic Attacks): Require minimal
expertise, often leveraging free tools for phishing or
malware injection without smart grid-specific knowledge
(Ding et al., 2022; Qureshi et al., 2023).

• Moderate Knowledge (Intermediate Attacks): Demand
familiarity with smart grid systems, control protocols, and
software vulnerabilities. Attacks on smart meters and HANs
involve data manipulation and basic programming skills
(Ding et al., 2022; Qureshi et al., 2023).

• High Knowledge (Advanced Attacks): Require deep
understanding of control protocols, network configurations,
and grid operations. APTs and coordinated attacks, often state-
sponsored, involve prolonged infiltration and complex evasion
tactics (Ding et al., 2022; Qureshi et al., 2023).
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TABLE 2 Classification of cyber threats based on the CIA triad.

Classification Description Example attacks

Confidentiality Protects access to sensitive data, such as user data and grid configuration Data breaches, eavesdropping

Integrity Ensures data accuracy and protects against unauthorized alterations FDI, data tampering

Availability Ensures system and data availability to authorized users DoS, DDoS, service disruption

TABLE 3 Classification of cyber threats based on layers of attack.

Layer targeted Description Example attacks

Cyber Layer Focuses on IT infrastructure, networks, and software systems Phishing, malware, SQL injection

Cyber-Physical Layer Targets the integration between digital systems and physical control components SCADA tampering, remote device manipulation

TABLE 4 Cyber threats across the NIST smart grid domains.

Domain Description Example attacks

Generation Targets generation facilities, including renewable sources, to disrupt
energy output or stability

Manipulation of generation settings, command injection

Transmission Involves high-voltage networks like substations, where attacks can disrupt
large-scale distribution

man-in-the-middle (MITM) attacks, denial of service (DoS)

Distribution Focuses on delivering electricity to consumers; attacks here cause
localized disruptions

tampering with smart transformers, load misconfigurations

Customer Targets consumer devices such as smart meters and HANs, risking
privacy and billing accuracy

Data tampering in smart meters, unauthorized HAN access

Markets Manipulates energy pricing and trading mechanisms, impacting financial
stability and supply-demand balance

Price manipulation, unauthorized access to market data

Service Providers Exploits third-party services to introduce malware or breach data, posing
supply chain risks

Supply chain attacks, third-party data breaches

Operations Attacks on real-time management systems like SCADA and EMS can
disrupt grid functionality

Ransomware, SCADA tampering, and unauthorized control

3.2 Cyber threats in smart grids

Smart grids face numerous cyber threats across three key layers:
physical, cyber-physical, and cyber.These attacks disrupt operations,
steal sensitive data, or manipulate grid information, jeopardizing
integrity and security. Table 7 summarizes key attacks and their
properties.

• False Data Injection (FDI) Attacks: Attackers manipulate
control system data, leading to incorrect decisions
and grid instability, targeting the cyber layer
(Khare et al., 2023; Jin, 2024).

• Denial of Service (DoS/DDoS) Attacks: Overwhelm control
systems with traffic, rendering services unavailable, affecting
the cyber layer (Naqvi et al., 2024).

• Man-in-the-Middle (MITM) Attacks: Intercept and modify
communication, compromisingdata integrity and confidentiality
in the cyber layer (Tala et al., 2022; Gao et al., 2023).

• Smart Meter Tampering: Unauthorized modification of meters
to alter consumption data, breaching integrity in the physical
layer (Tala et al., 2022;Ilokanuno, 2024).

• Puppet Attacks: Use infected devices as proxies to
perform hidden actions, targeting the cyber-physical layer
(Tala et al., 2022; Yi et al., 2014).

• Message Replay Attacks: Replay valid messages to
mislead systems, threatening data integrity in the
cyber layer (Sriranjani et al., 2023).

• Masquerade Attacks: Attackers impersonate legitimate
devices, compromising credibility in the cyber layer
(Tala et al., 2022; Tatipatri and Arun, 2024).
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TABLE 5 Comparison of attack vectors in smart grids.

Attack vector Description Common examples

Network-Based Exploits vulnerabilities in communication protocols and network
connections, disrupting real-time communication across grid systems

DoS/DDoS attacks, MITM attacks

Data-Based Focuses on compromising data integrity, affecting grid decision-making
processes by altering critical information

FDIAs, data poisoning for AI models, manipulation of control signals

User-Based Involves social engineering and credential exploitation to gain
unauthorized access to control systems, often as the initial step in
broader attack campaigns

Phishing, social engineering, exploitation of user credentials

TABLE 6 Classification of cyber threats based on depth of knowledge required.

Depth of knowledge Description Example attacks

Low Knowledge Opportunistic attacks using basic tools and minimal understanding of grid operations Phishing, basic malware

Moderate Knowledge Intermediate attacks requiring some knowledge of smart grid operations FDI, data tampering

High Knowledge Advanced attacks requiring in-depth expertise, often from skilled or organized adversaries APTs, coordinated DoS with FDI

• Eavesdropping & Traffic Analysis: Monitor network traffic
to collect sensitive data, breaching confidentiality in the
cyber layer (Pandey and Kalra, 2022).

• Advanced Persistent Threats (APTs): Long-term
infiltration for observation and control, compromising
the cyber-physical layer (e.g., Stuxnet, Industroyer)
(Chen et al., 2014).

• Adversarial Machine Learning Attacks: Manipulate ML
models used in anomaly detection, affecting the cyber layer’s
integrity (Zhang et al., 2024).

• Coordinated Attacks: Simultaneous or sequential multi-layer
attacks (e.g., combining DoS with FDI) amplify impact across
all tiers (Ding et al., 2022).

These evolving cyber threats emphasize the need for robust,
multi-layered security strategies to protect smart grids from
sophisticated adversarial techniques.

3.3 Complexity of attack detection and
mitigation

Several critical cyber incidents have exposed vulnerabilities
in smart grid infrastructure. The 2010 Stuxnet malware (Baezner
and Robin, 2017) demonstrated the potential for malware to
disrupt critical systems. The 2015 Ukraine power grid attack, using
BlackEnergymalware, leveraged spear phishing to infiltrate SCADA
systems, causing a blackout for 230,000 people (Alert, 2016). In
2016, Industroyer malware exploited industrial protocols to shut
down substations (Geiger et al., 2020). The 2017 Triton/Trisis
malware (Giles, 2019) targeted safety systems, while a 2019
DoS attack exposed renewable energy vulnerabilities (Walton,
2019). The 2021 Colonial Pipeline ransomware attack (Easterly
and Fanning, 2023) further highlighted threats to critical

infrastructure. These incidents underscore the evolving cyber
threats to smart grids and the need for proactive, multi-layered
defenses.

4 Cybersecurity techniques in smart
grid

Protection of smart grids from cyber threats and attacks
requires a multi-stage strategy. Protecting the assets against
vulnerabilities, preventing attacks that exploit vulnerabilities,
detecting intrusion in real-time as well as reducing or
recovering the impact of an attack are some ways this could be
achieved.

4.1 Protection and prevention techniques

Smart grid cybersecurity consists of protection and prevention
techniques that aim to harden the infrastructure to possible threats
before they occur. This subsection will examine different protection
and prevention techniques.

The authors in Vidya et al. (2023) presented a smart grid
analyzer that simulates and analyzes the effects of cyber attacks
on components like PMUs and IP camera sensors, identifying
vulnerabilities in the smart grid. It used various security measures
such as attack trees, attack graph generation, attack success
probability, attack cost, and attack impact to assess the vulnerabilities
and risks of cyber attacks. It also employed a common vulnerability
score system (CVSS) to rank vulnerability severity with PMUs as
the most sensitive components of power grid stability. The study
combined the graphical security model with different metrics to
survey the attacks in detail, thereby increasing knowledge about
possible attack channels and informing IT specialists’ preparation
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for cybersecurity. The study uses a database that assists in inputting
reconfiguration, allowing smart grid topology analysis under
different attack strategies. It also stressed the need for cybersecurity
actions such as having network intrusion prevention systems (NIPS)
and firewalls against potential threats.

PMUs is used (Pourahmad and Hooshmand, 2023) to improve
the security of power networks against cyber attacks. The method
deployed optimal PMU placements to minimize the risk of attack
and not compromise network observability using the Tabu Search
algorithm (TS). The minimum number of PMUs necessary for full
network observability and their optimal locations for enhanced
cybersecurity were determined. The methodology consisted of an
attack optimization problem that assesses potential disruptions
originating fromcyber attacks using the attack criterion based on the
infinite norm of the attack vector. Simulations were conducted on
IEEEbus networks, namely, IEEE 14-bus, IEEE 30-bus, and IEEE 57-
bus networks within this study. The proposed method’s effectiveness
in shielding against cyber attacks is measured by two evaluation
metrics: the number and location of PMU deployments in the
network. H, denoted as the attack criterion, is another important
metric that helps determine how far-reaching a possible attack can
be within a given network. Observability conditions are assessed
to ensure the network remains detectable and manageable even
with probable attacks. Compared with previous works, simulation
results verified that this technique outperforms them, proving its
worthiness in improving network security.

A comprehensive and ongoing risk assessment methodology
for smart grid systems is presented (Sharma et al., 2023). It uses
attack-defense trees (ADTs) to show the complex interconnections
between threats and responses across distributed components. The
research stressed the importance of continuous risk evaluation and
adaptation as a response to evolving threats and system states, which
will aid in making security protection decisions by analyzing the
sensitivity of system risk to various attack and defense scenarios to
optimize security measures. Furthermore, this method encouraged
standardized security andprivacy protection taxonomies to facilitate
security certifications. Evaluation metrics within the framework of
the proposed approach focused on quantitative assessment of cyber
risks in smart grid systems. Thus, it was validated using a real-life
case study scenario, proving its usefulness for initial risk calculations
and continuing assessments.

The research in Kumar et al. (2024) introduced a novel approach
to secure smart grid systems by integrating cryptographic methods
and AI techniques. They proposed an intelligent IDS that employed
a combination of ML algorithms, including Convolutional Neural
Networks (CNNs) and XGBoost Classifiers, to enhance anomaly
detection and cyber attack identification. The Cryptographic
algorithms, including Asymmetric algorithms like Rivest Shamir
and Adleman (RSA) and Secure Hash Algorithm (SHA-512), were
utilized to secure IoT devices. They utilized a dataset with 128
features and 29 types of estimations from PMUs to analyze smart
grid data. The evaluation metrics used in the study included
accuracy, F1 score, recall, and precision, which were critical for
assessing the performance of ML algorithms in detecting cyber
attacks on smart grids. The Random Forest Classifier achieved a
higher performance compared to the XGB Classifier.

Table 8 summarizes the prevention and protection techniques
discussed in this section.

4.2 Detection techniques

Detection techniques are critical in identifying cyber threats
within smart grid systems as early as possible, enabling timely
responses to minimize potential damage. In this subsection, we
will investigate various detection techniques, examining their
methodologies, effectiveness, and potential for application in smart
grid cybersecurity to provide a comprehensive understanding of
their role in enhancing grid resilience. Table 9 provides a summary
of the detection methods presented in this section.

The research (Rahul et al., 2024) introduced a novel hybrid
DL model, CMGFD-DL, for intrusion detection in smart grids,
achieving a test accuracy of 98.20%. This model integrated
convolutional and recurrent layers to enhance detection capabilities
against cyber threats.The study utilized the Edge-IIoT cybersecurity
Dataset, encompassing diverse IoT devices and attack categories,
providing a rich foundation for evaluating intrusion detection
mechanisms. The evaluation of the proposed intrusion detection
model employs several key performance metrics, including
accuracy, precision, and recall, which are essential for assessing
its effectiveness in identifying cybersecurity threats. The proposed
model demonstrates robustness and reliability, contributing
significantly to the field of smart grid security by addressing the
unique challenges posed by emerging technologies.

The work in Mobini et al. (2024) investigated a cyber-attack
detection technique in smart grids using the windowed online
dynamic mode decomposition (WODMD). It focused on three
criteria for detection: the absolute Frobenius norm difference of
system matrices, the absolute norm difference of the eigenvalue
vector, and the one-step-ahead prediction error. The WODMD
method is purely data-driven, operates online without prior
learning of attack scenarios, and demonstrates superiority over
three commonly used model-free methods in simulation studies.
The study evaluated the proposed WODMD-based cyber-attack
detectionmethod using an IEEE 14-bus power system as the dataset.
The dataset comprises voltage phase angles considered as states, with
one bus designated as the reference. The evaluation of the cyber-
attack detection problem is framed as a binary classification issue,
assessed through various metrics.The evaluation of the cyber-attack
detection problem is framed as a binary classification issue, assessed
through various metrics.

Authors in Naqvi et al. (2024) proposed a novel reconstructive
DL technique for detecting DDoS attacks in smart grid networks,
whichminimizes disruptions during introducing new attack classes.
It explored three types of autoencoders for DDoS attack detection:
deep autoencoder, extreme learning machine autoencoder, and
marginalized denoising autoencoder. It evaluated the proposed
method using standardized benchmark datasets, namely, UNB
ISCX Intrusion Detection Evaluation 2012 dataset, and UNSW-
NB15 dataset. The evaluation metrics employed for assessing the
proposed method include false positive (FP), true negative (TN),
false negative (FN), and true positive (TP) rates. These metrics are
crucial for calculating overall accuracy. The model demonstrated
its effectiveness in achieving high accuracy without requiring full
model retraining.

The authors in Sweeten et al. (2023) highlighted the critical
need for advanced intrusion detection systems (IDS) in smart power
grids due to increasing cyber attacks targeting this infrastructure.

Frontiers in Energy Research 11 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1531655
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Ibrahim and Kashef 10.3389/fenrg.2025.1531655

TABLE 8 Comparative analysis of protection and prevention techniques in smart grid Cybersecurity.

Ref Focus of technique Dataset used Key metrics Notable features

Vidya et al. (2023) Vulnerability analysis using
Attack Trees and Graphs for
PMUs and IP sensors

Internal database for smart
grid simulations

Attack Success Probability,
Attack Cost, Attack Impact,
CVSS

Uses graphical security models
to identify vulnerabilities,
emphasizes NIPS and firewalls
for protection

Pourahmad and Hooshmand
(2023)

Optimal PMU placement to
minimize attack risk

IEEE 14-bus, IEEE 30-bus,
IEEE 57-bus networks

Number and location of
PMUs, Attack Criterion (H)

Uses Tabu Search Algorithm
for optimal PMU placement,
ensures network observability
under cyber threats

Sharma et al. (2023) Risk assessment using
Attack-Defense Trees (ADTs)

Real-world smart grid scenario Quantitative cyber risk
assessment

Emphasizes continuous risk
evaluation, promotes
standardized protection
taxonomies for certification

Kumar et al. (2024) Integration of cryptographic
methods and AI in IDS for
smart grids

Dataset with 128 features, 29
types of PMU estimations

Accuracy, F1 Score, Recall,
Precision

Combines CNNs and XGBoost
with cryptographic methods
like RSA and SHA-512 for
enhanced security

They proposed solution involved amulti-modal IDS that fuses cyber
and physical data, leveraging graph neural networks (GNNs) to
enhance detection performance by exploiting spatial and temporal
correlations. They developed a cyber-physical power system testbed
that emulates the power grid’s physical and cyber layers using
OPAL-RT and RT-Lab, based on the ModbusTCP protocol. A
comprehensive multi-modal dataset was created, covering normal
operations and operations under cyber attacks, including false
data injection (FDI) and ransomware attacks. Experimental results
demonstrated that the GNN-based IDS significantly outperformed
benchmark models, achieving a 5%–13%

The work in Shahid et al. (2023) proposed a novel detection
technique called the nonlinear function-based variable dummy
value model (NF-VDVM) to address the limitations of the
existing variable dummy value model (VDVM) for detecting false
data injection (FDI) attacks. NF-VDVM is designed to handle
the vulnerabilities of the VDVM technique, particularly against
attackers who can use multivariate linear regression to predict
dummy values. The model was evaluated using the IEEE 14-bus test
system, demonstrating its capability to enhance the security of the
smart grid’s measurement infrastructure. Data generation for this
system is based on standard realistic load curves for four different
seasons: winter, summer, spring, and fall. The evaluation metrics
included the accuracy of attack detection and the system’s resilience
against stealth FDI attacks, ensuring the security of the smart grid’s
measurement. The findings indicated that the proposed method
improves detection accuracy against stealth FDI attacks.

The authors in Habib et al. (2023) employed a hybrid ML
approach for detectingDDoS attacks in smart grid systems, explicitly
targeting PMU data within the wide-area measurement system
(WAMS). Various ML algorithms are utilized, including Support
Vector Machine (SVM), Artificial Neural Network (ANN), Logistic
Regression (LR), Naive Bayes (NB), and Random Forest (RF). The
study utilized a dataset from the Kaggle data center, designed
explicitly for DDoS attack detection inWAMS.This dataset included
both “normal” and “malicious” PMU data, essential for training

various ML algorithms. The performance of these algorithms is
evaluated based on accuracy, precision, recall, and F1-score, with the
hybrid model achieving the highest accuracy.

4.3 Mitigation and recovery techniques

Mitigation and recovery techniques focus on minimizing the
impact of detected cyber threats and swiftly restoring smart grid
operations to normal. In this subsection, we will investigate various
mitigation and recovery techniques.

The research in Zhu et al. (2022) presented a generalized data
recovery model to address the challenges posed by false data
injection attacks (FDIA) in smart grids. This model could be
activated immediately upon detecting an attack, eliminating the
need for impractical assumptions typically required by previous
methods. It utilized the Measurement Data Inertia (MDI) concept
to infer preliminary measurement values post-attack, enhancing
recovery accuracy. An optimization model is introduced to
refine the recovery process, ensuring the recovered data is
closely aligned with real values. The recovery efficiency was
evaluated using an indicator system that incorporates various error
criteria, including Mean Absolute Error (MAE) and Mean Square
Deviation (MSE). Extensive simulations performed on the IEEE
30-bus benchmark demonstrated that the proposed model can
recover data closely to real values, enhancing the cybersecurity of
smart grids.

The work in Cao et al. (2022) focused on a distributed resilient
mitigation strategy for false data injection attacks (FDIA) in
cyber-physical microgrids, addressing the vulnerabilities posed
by cyber threats to physical system operations. It introduced a
synchronous mitigation framework that utilized local detection
to ensure data reliability and maintain control over reactive
power in microgrids. The study categorized FDIAs into deception
and disruption attacks, analyzing their impacts on voltage
and reactive power stability. Simulations were conducted
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using MATLABSimulink to validate the effectiveness of the
proposed strategies. The proposed methodology aimed to
restore system performance while minimizing communication
overhead, enhancing the resilience of microgrid operations.
Simulations validated the distributed resilient consensus cooperative
control method’s effectiveness under deception and disruption
attacks.

Authors in Rahiminejad et al. (2023) proposed a cyber
attack recovery scheme that focuses on enhancing the resilience
of smart grids following cyber attacks on substations. The
framework aimed to obtain the optimal recovery path based on the
attacker’s capability, including multi-stage attacks. The research also
incorporated practical power system limitations and characteristics,
such as generator Automatic Generation Control (AGC) capability
and transient stability, enhancing overall system resilience. The
proposed evaluation metrics encompassed five distinct metrics,
four related to Power-side Resilience (PsR) and one to Cyber-
side Resilience (CsR). PsR metrics include load restoration, reserve
recovery, line capacity recovery, and reliability. The final cyber-
physical resilience metric is termed CPARM, which integrates
these metrics to assess the overall resilience of the smart grid.
The evaluation also considered the maximum potential damage
from cyber attacks, ensuring a comprehensive physical and cyber
resilience assessment. The proposed approach was tested on the
39-bus New England test system and compared with existing
methods to demonstrate its effectiveness in improving system
resilience by 22%.

A novel multi-stage cyber intelligence technique (MSCIT) is
designed in Muneeswari et al. (2024) to enhance security against
multi-stage cyber attacks targeting the smart grid. It proposed a
system comprising a pre-processing stage where a Chebyshev filter
was used to filter the signals coming through the noise from an
intrusion detection system (IDS) sensor. A set of components for
risk identification, estimation, and evaluation were included in the
MSCIT system as well, which in unison amplifies the capability of
flagging possible threats. For comprehensive treatment, the security
identification block utilized a cyber database to assess the risks. If
a risk is not recorded, the data is forwarded to a Bi-LSTM network
for such an attack to be investigated more closely. The methodology
is software based on a MATLAB simulator, and evaluation metrics
are precision, F1-score, specificity, accuracy, and detection rate,
which are essential measures. The research involved the DARPA
2000 dataset, well-known to cybersecurity researchers.The obtained
experimental results proved that the efficiency of the MSCI method
was as high as 99%, which is a considerable improvement over CDS,
AD-IOT, SVM, and other existing methods.

The study (Wang et al., 2020) proposed the reconstruction of
the operating states to improve the resilience of cyber-physical
smart grids (CPSG) against any prospective cyber attacks. The
scheme incorporated an attack separation mechanism, a state
forecasting algorithm, and a state recovery approach to filter out
the prospective threat. Worst-case analysis and P-Q decomposition
were employed in the attack separation method to determine
and mark grid states that were out of the normal. They used
the state forecasting algorithm, a particle filtering technique to
estimate the actual operating levels of the marked states, thus
eliminating the adverse effects that cybernetic attacks would
have caused. The state recovery mechanism’s approach concerned
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TABLE 10 Comparative analysis of mitigation and recovery techniques in smart grid cybersecurity.

Ref Focus of technique Dataset used Key metrics Notable features

Zhu et al. (2022) Data recovery model for False
Data Injection Attacks (FDIA)

IEEE 30-bus benchmark Mean Absolute Error (MAE),
Mean Square Deviation (MSE)

Uses Measurement Data
Inertia (MDI) to infer
preliminary values and
optimization for accurate data
recovery

Cao et al. (2022) Distributed resilient mitigation
for FDIA in microgrids

MATLABSimulink for
cyber-physical microgrids

System reliability, voltage
stability, reactive power control

Introduces a synchronous
mitigation framework with
local detection and
categorization of deception
and disruption attacks

Rahiminejad et al. (2023) Cyber attack recovery scheme
to improve resilience
post-attack

39-bus New England test
system

Power-side Resilience (PsR),
Cyber-side Resilience (CsR),
CPARM metric

Incorporates multi-stage attack
recovery, considering
generator AGC and transient
stability

Muneeswari et al. (2024) Multi-Stage Cyber Intelligence
Technique (MSCIT) for
multi-stage attacks

DARPA 2000 dataset Precision, F1 Score, Specificity,
Accuracy, Detection Rate

Chebyshev filter for
pre-processing IDS data,
Bi-LSTM Network for attack
verification

Wang et al. (2020) State reconstruction for
Cyber-Physical Smart Grids
(CPSG) against cyber attacks

IEEE 9-, 14-, 30-, 57-, and
118-bus power systems,
Dongguan dispatch center
load data

Operating state accuracy Combines attack separation,
state forecasting (particle
filtering), and state recovery
for enhanced security

getting the forecasted states’ corrected states by filtering out the
smearing effects of uncontaminated states. The works employed
various datasets, including the IEEE standard 9-, 14-, 30-, 57-
, and 118-bus power systems, to test the proposed scheme for
state reconstruction. System load curves were collected from the
Dongguan dispatch center in China, representing actual operating
conditions in the power industry by constructing the typical daily
load curve.

The list of mitigation and recovery techniques discussed in this
section is summarized in Table 10.

4.4 Challenges and limitations

As smart grids grow more sophisticated and interdependent,
securing them becomes increasingly difficult for existing
cybersecurity systems. One such issue includes the never-ending
changes in the methods used by attackers, which advance quicker
than older mechanisms such as intrusion detection systems based
on recognizing specific signatures and incapable of zero-day attacks
or APTs (Achaal et al., 2024). In addition, ML and DL models that
are often deployed for the detection of anomalies are model-driven
and require large sets of features. Nonetheless, both limited past
cyber attack events in the area of smart grid and the overwhelming
presence of normal operations biased those datasets, thereby hurting
the models, performance (Divakaran and Peddinti, 2024). Another
critical limitation is the lack of interpretability in ML and DL
systems, which frequently function as “black boxes,” making their
decisions challenging to understand and trust—a major concern in
critical infrastructures such as smart grids (Naiho et al., 2024).

Resource constraints exacerbate these challenges, as many
cybersecurity solutions require significant computational power,
which is incompatible with the limited processing capabilities of
edge devices commonly deployed in smart grids. One of the issues
is caused by the limited scaling up of traditional structures that
integrate protection against the entire set of the rapidly growing
thousands of grid elements, such as DERs, IoT, and other devices
(Zhang et al., 2020). In addition, ML and DL models are susceptible
to so-called adversarial attacks, in which slight perturbations of the
input data can evade the detection systems, thereby threatening
the overall security of the grid (Lakhani and Rohit, 2024). Also,
these methods are context-blind, which means they cannot identify
advanced multi-stage attacks exploiting specific features of the
operations of smart grid systems.

Furthermore, many existing solutions have high false positive
rates, which overwhelm operators with frequent alerts and cause
desensitization or alert fatigue, increasing the likelihood that critical
incidents are missed (Zhang et al., 2020). Another weakness
is in real-time capabilities, where some of the techniques have
high latencies and computational requirements, which have a
great impact on timely detection and response that are critical
in averting avalanche collapses in smart grids (Gunduz and
Das, 2020). These constraints together emphasize the necessity
for developing more dynamic, contextually relevant, and cost-
effective approaches to ensure cybersecurity, thus making it possible
to use LLMs (Ferrag et al., 2024). The problem of the current
smart grid cybersecurity paradigm can be addressed due to the
possibilities afforded by LLMs due to their ability and capacity to
deeply understand context, synthesize data, and adapt to changing
conditions.
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5 The role of large language models in
cybersecurity

The emergence of AI and NLP has shown that LLMs could be
used to better the efforts of cybersecurity practice. The section will
provide an overview of the basic principles of LLM, their typical use
case scenarios within the cybersecurity domain, and evaluate their
promise, but also the present shortcoming in particular the area of
smart grid systems security.

5.1 Background on large language models

LLMs have fundamentally altered the realm of NLP by,
without a doubt, demonstrating the ability to understand,
generate, and evaluate intricate human language. By employing
the transformer architecture (Vaswani et al., 2017), LLMs like
GPT (Zaboli et al., 2024a), BERT (Kenton and Toutanova, 2019),
or T5 (Raffel et al., 2020) can concentrate on whole sequences
of text through self-attention mechanisms. Through this self-
attention mechanism, it is evident that LLMs can understand many
contexts within long texts, hence producing more coherent and
relevant responses. Unlike previous models like Recurrent Neural
Networks (RNNs), transformers can handle and operate on a text
sequence more efficiently and simultaneously scale, increasing the
potential of LLMs (Vaswani et al., 2017).

The scale is an essential feature of LLMs: The models in question
consist of billions of parameters, or learned weights, which refine
understanding and generating. The convexity of GPT-3, which has
175 billion parameters, brings unique abilities such as few-shot or
zero-shot learning, making it possible to address entirely new tasks
with minimal to zero data for the target task. Also, the increase in
the volume of LLMs is associated with the improvement of reasoning
processes in these models, directing and being able to be instructed
to ‘think’ in a chain of reasoning, which improves their precision
in performing complex tasks. The onset of these capabilities makes
LLMs ideal in a wide range of tasks, as they are able to perform text
generation and evenmore complex tasks, finding theirway out of even
complex problems (Brown et al., 2020). LLMs are generally created in
two phases: initial training and subsequent refinement. During the
pre-training stage, LLMs learn language structures and concepts by
sifting through a substantial corpus, enabling them to articulate fluent
language (Liu et al., 2024). Fine-tuning improves the task completion
of the model, for example, by answering questions or summarizing,
so that it is trained to available labelled data related to fulfilling such
tasks.This two-stepmechanismallowsLLMs tobeutilizedasuniversal
and task-oriented instruments; hence, their usage flexibility across
various tasks increases (Liu et al., 2024).However, theuseof LLMsalso
raises some relevant ethical problems. Since LLMs are trained using
large volumes of data from different sources, they may reproduce the
biases embedded in that data, resulting in biased and possibly harmful
results (Liu et al., 2025). Additionally, considerable environmental
and economic costs are associated with the large energy required
to train these models. Individuals in the profession work actively to
solve these problems, for example, by employing bias reduction or
energy-efficient training processes (Asesh and Dugar, 2023). LLMs
represent amoremature stage in the development of AI-implemented
language understanding systems, as they have demonstrated a notable

performance in language-focused tasks that require the incorporation
of many contexts. Their potential impact in various areas, especially
cyberspace protection, enables them to be key technologies for any
language-orientedbigdata inanalysis, generation, andcomprehension
in innovative and complex ways.

5.2 Applications of LLMs in cybersecurity

The cybersecurity community progressively acknowledges LLMs’
capabilities, leading to their adoption for analyzing extensive datasets,
identifying emerging threats, and improving automated response
functionalities. The study by Ferrag et al. (2024) goes into detail
on the use cases and the reasons for the adoption of LLMs,
considering that such tools have the capability of reducing work
overload for cybersecurity personnel through automating activities
such as vulnerability scanning, networkmapping, and the exploitation
of known vulnerabilities. This research includes the performance
evaluation of 42 LLMs on some cybersecurity datasets to identify
the strongholds and the deficiencies of these models and define
the scope of future research. This paper examined prompt injection
and data poisoning issues that emerged through LLM use and
researched approaches intended to secure such models. Besides
identifying bottlenecks, the general discussion favoured the crucial
point of devising safe and efficient models with the implementation
of LLMs. The latter concerns advanced technologies such as half-
quadratic quantization and reinforcement learning with human
feedback that could effectively enhance cybersecurity measures in
real-time against new risks.

A novel technique in Mudassar Yamin et al. (2024) was
introduced that utilized LLMs to create rolling and complex
scenarios of cybersecurity exercises that improved the training
and the awareness by mimicking various cyberspace threats, both
existent and new. This approach also stems from Turing’s work
on machine intelligence, and it attempts to apply some form of
machine intelligence simulation to human intelligence. The study
highlighted the capability of LLMs to create complex scenarios that
question conventional cybersecurity training approaches, turning
the intrinsic “hallucination” of LLMs into a beneficial aspect.
The produced scenarios were subjected to a thorough evaluation,
encompassing assessments with GPT models and expert analysis
to guarantee their authenticity and pertinence, utilizing a RAG
methodology to enhance the intricacy of the tasks.

Authors in Bhatt et al. (2024) proposed CYBERSECEVAL2,
which is a benchmark suite developed to evaluate cybersecurity
vulnerabilities of LLMs considering prompt injection and
interpreter abuse attack. Adversarial methods, including gradient
and heuristic optimization techniques, were used to induce attack
behavior within the LLMs. All evaluated LLMs exhibitedweaknesses
to prompt injections, with success rates between 26% and 41%,
highlighting a considerable difficulty in maintaining compliance
with systemprompts.The investigation underscored the significance
of quantifying the false refusal rate (FRR) to comprehend the
safety-utility balance in LLM responses to cybersecurity-related
tasks. The findings showed that while LLMs are responsive to
benign requests, they do, however, have significant weaknesses
when inflating injections are used. Hence, further developments
in enhancing security are more necessary during their use.
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The authors in Tseng et al. (2024) described an automated AI
agent for analysts to work with cyber threat intelligence (CTI)
reports in security operations centers (SOCs), which today is rather
time-consuming and requires effort. This agent used the capabilities
of GPT-4 and other LLMs to extract information and create regular
expressions (RegEx) for building the necessary SIEM rules by itself.
The procedure involved a purification phase intended to improve
the accuracy of the recognized identified indicators of compromise
(IOCs) and build relationship graphs to depict interrelations among
the different IOCs. The investigation underscored the constraints
of current ML methods in adapting to the progression of attack
techniques, stressing the necessity for more sophisticated solutions.

A framework named SEVENLLM (Ji et al., 2024) aimed at
benchmarking, eliciting, and improving the capabilities of LLMs
in analyzing and responding to cybersecurity incidents. Developing
a bilingual educational corpus, SEVENLLM-Instruct, successfully
addressed the problem of the scarcity of quality, cohesive datasets
through a cybersecurity text-based approach. With the original
texts as raw material, supervised corpora were created to train
different foundational LLMs with a multi-task learning objective
using automatic retrieval of tasks from a task pool. A new evaluation
benchmark, SEVENLLM-Bench, has been developed tomeasure the
performance of LLMs in CTI, addressing the existing gaps between
traditional domains and cybersecurity. Thorough investigations
on the specialized benchmark, SEVENLLM-Bench, validate
SEVENLLM’s effectiveness in enhancing analytical capabilities and
delivering strong responses to emerging cyber threats.

The usage of LLMs within cybersecurity was
brought forth in Divakaran and Peddinti (2024), where the authors
suggest that LLMs could be used to improve or even automate
some security classifiers. The aim was to use LLMs to augment
the data so that many training samples could be created without
large data collection effort. The study investigates the applications
of LLMs in phishing detection, highlighting systems such as D-
Fence and ChatSpamDetector that leverage LLMs for efficient
email classification. They also discussed the continuous endeavours
to reduce risks linked to LLMs via frameworks and cooperative
initiatives among corporations and governmental bodies.

The authors in Li et al. (2024b) drew attention to the primary
weaknesses of LLMs in the context of smart grid applications, with a
particular focus on bad data injection and knowledge extraction. It
notes that evenLLMs can be exploited by adversaries to insert textual
information of fabric nature or to withdraw domain confidential
knowledge, thus creating a risk to data confidentiality. The analysis
argues that there is a need to evaluate these risks before deploying
LLMs in critical infrastructure deployments, as new attack vectors
may emerge with the accelerated development of LLM technologies.
Future studies should focus on tracking such emerging threats.

The work in Huang and Zhu (2023) presents PenHeal, a two-
stage framework utilizing LLM technology that independently
detects and addresses security vulnerabilities via its integrated
Pentest Module and Remediation Module, thereby improving the
automation of penetration testing and vulnerability remediation
processes. The combination of the two modules is enhanced
by methods like Counterfactual Prompting and an Instructor
module, which directs the LLMs by leveraging external knowledge.
This enables the framework to investigate various possible attack
routes thoroughly, thus enhancing the overall efficiency of

identifying and addressing vulnerabilities. Experimental results
demonstrated that PenHeal enhanced vulnerability coverage by
31%, boosted the effectiveness of remediation strategies by 32%,
and decreased associated costs by 4% in comparison to baseline
models, highlighting the framework’s considerable influence on
cybersecurity practices.

ShieldGPT (Wang et al., 2024b) is a framework designed to
help overcome DDoS attacks using LLMs to facilitate detection
and answering mechanisms. ShieldGPT consisted of four main
components: attack detection, traffic representation, domain-
knowledge injection and role representation. It also provided a
representation scheme that could capture both global and local
traffic features effectively and prompt the generation of easy-to-
understand and specific explanations and mitigation measures.
Preliminary results showed that ShieldGPT effectively provided
helpful information and strategies for dealing with DDoS attacks.

The study (Guastalla et al., 2023) explored the efficacy of LLMs,
including OpenAI’s ChatGPT variants (GPT-3.5, GPT-4, and Ada),
in improving the detection capabilities of DDOS attacks, showcasing
their promise as a solution for network security challenges. The
findings indicated that LLMs, incredibly when fine-tuned, attained
impressive accuracy rates of around 95%on theCICIDS 2017 dataset
and nearly 96% on the Urban IoT Dataset for aggressive DDoS
attacks, surpassing conventional neural networks such asmulti-layer
perceptrons (MLP) trained with comparable data.

Net-GPT (Piggott et al., 2023), an LLM-driven offensive
chatbot crafted to comprehend network protocols and carry out
MITM attacks on communications between unmanned aerial
vehicles (UAV) and ground control stations (GCS), highlighting
the capabilities of LLMs in the realm of cybersecurity threats.
The results demonstrated the generative performance of Net-GPT
which was on average 95.3% with Llama-2-13B and 94.1% with
Llama-2-7B. Furthermore, it emphasized the efficacy of low-end
models like Distil-GPT-2 that, with a speed improvement of 47
folds, can achieve 77.9%predictive ability of Llama-2-7Bmodel.This
illustrates the trade-offs between model size, speed, and accuracy in
edge-computing environments.

AURORA (Wang et al., 2024a), an automatic end-to-end
framework for constructing and emulating cyber attacks. This
system autonomously develops multi-stage cyber attack plans
derived from CTI reports, establishes the required emulation
infrastructures, and carries out the attack procedures independently,
thereby greatly minimizing the time needed for attack simulation.
By integrating 40% more attack techniques than earlier solutions,
AURORA enhanced the diversity and quality of constructed attacks.
This has been evaluated by designing and deploying more than 20
cyber attacks encompassing the whole cycle, thus establishing the
efficiency and effectiveness of advanced cyber attacks simulation.

Table 11 summarizes the efforts in utilizing LLMs in
cybersecurity.

5.3 Exploring LLMs for smart grid
cybersecurity

The increasing application of LLMs and natural language
processing (NLP) in smart grid cybersecurity is welcomed as it
enhances the security and protection of crucial resources. While
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TABLE 11 Summary of surveyed literature on LLM applications in cybersecurity.

Ref Focus area Key contribution Use case/Application

Ferrag et al. (2024) Performance Evaluation of LLMs Evaluated 42 LLMs on cybersecurity
datasets; introduced techniques like
RLHF

Automating vulnerability scanning and
network mapping

Mudassar Yamin et al. (2024) Cybersecurity Training Leveraged LLMs to create complex
cyber scenarios for training purposes

Simulation of advanced cyberspace
threats for training

Bhatt et al. (2024) Vulnerability Benchmarking Developed CYBERSECEVAL2
benchmark suite for LLM
vulnerabilities

Assessment of LLM weaknesses against
prompt injections

Tseng et al. (2024) CTI Automated AI agent for processing CTI
reports in SOCs

Extracting IOCs and automating SIEM
rule creation

Ji et al. (2024) Bilingual Cybersecurity Framework Created SEVENLLM framework and
evaluation benchmark for LLMs in
cybersecurity

Improved analysis and response for CTI

Divakaran and Peddinti (2024) Phishing Detection Explored LLM applications in
augmenting phishing classifiers like
D-Fence

Automating email classification for
phishing detection

Li et al. (2024b) Smart Grid Security Highlighted risks like bad data injection
and knowledge extraction in LLMs

Critical infrastructure protection using
LLMs

Huang and Zhu (2023) Penetration Testing and Remediation Introduced PenHeal framework for
automating penetration testing and
remediation

Enhanced automation of penetration
testing

Wang et al. (2024b) DDoS Mitigation Developed ShieldGPT framework to
detect and mitigate DDoS attacks

Addressing DDoS attacks with
LLM-driven detection

Guastalla et al. (2023) DDoS Detection Showcased LLMs’ performance in
detecting DDoS attacks on datasets like
CICIDS

Improved accuracy in network security
challenges

Piggott et al. (2023) Offensive Cybersecurity Introduced Net-GPT chatbot for
simulating offensive tasks like MITM
attacks

Simulated MITM attacks on UAV
communications

Wang et al. (2024a) Cyber attack Simulation Developed AURORA framework for
end-to-end emulation of cyber attacks

Automated multi-stage cyber attack
construction

LLMs are extensively used in cybersecurity concerning threat
recognition, logging, and reporting irregularities, their use in
smart grid cybersecurity seems still under-researched. Employing
LLMs for information assurance has emerged as a hot area of
investigation. Still, there are relatively few studies that seek to
respond to the information assurance challenges in smart grids using
LLMs. This section reviews the literature on the subject to assess
the status of LLM deployment within the context of smart grid
information security, along with the issue’s boundaries that require
more investigation.

The authors in Zaboli et al. (2024a) advocated for using LLMs
such as ChatGPT, to enhance the augmentation of cybersecurity
within the IEC 61850-based communication in digital substations.
The paper also provides evidence of a comparison between different
LLMs based on performance evaluation metrics including the true
positive rate (TPR), the false positive rate (FPR), the false negative
rate (FNR), and the precision and F1 score. From the analysis results,

it was found out that LLM ChatGPT 4.0 was more integrated with
the detection of anomalies in IEC 61850 communications than other
LLMs, including Anthropic’s Claude 2 and Google BardPaLM 2,
attaining TPRs of 98.18% for GOOSE (Generic Object Oriented
Substation Event) and 96.67% for SV (Sampled Value) messages
at the maximum trained levels. The paper developed a hardware-
in-the-loop (HIL) testbed to fabricate and retrieve datasets for
GOOSE and SV communication, which enabled the realistic
case studies.

The authors in Zaboli et al. (2024a) extended their work in
Zaboli et al. (2024b). They introduced an extended task-oriented
dialogue (ToD) system named CyberGridToD, which utilized LLMs
for anomaly detection (AD) in multicast messages within digital
substations. It automates decision-making processes by simulating
human choice patterns, which may reduce error rates over time
as it learns from new data. The study used two main datasets:
GOOSE and SV packets, which are essential for communication
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TABLE 12 Comparative analysis of LLM-based cybersecurity applications in smart grids.

Ref Attack Dataset used Metrics used Models used

Zaboli et al. (2024a) Anomaly detection in IEC
61850-based communications

GOOSE and SV datasets
generated using
hardware-in-the-loop (HIL)
testbed

TPR, FPR, FNR, Precision,
F1-Score

ChatGPT 4.0, Claude 2,
Google Bard PaLM 2

Zaboli et al. (2024b) Anomaly detection in
multicast messages within
digital substations

GOOSE and SV packets for
communication in digital
substations

TPR, FPR, FNR, Precision,
accuracy, F1-Score,
PercMarkedness,
Informedness, MCC

Anthropic Claude Pro model,
Microsoft Copilot AI

in digital substations. The evaluation metrics used in the proposed
LLM-based ToD framework include true positives (TPs), true
negatives (TNs), false positives (FPs), and false negatives (FNs), true
positive rate (TPR), and false positive rate (FPR). Advanced metrics
such as markedness, informedness, and Matthews correlation
coefficient (MCC) were employed to evaluate the model’s reliability
and decision-making quality (Zaboli et al., 2024b). Compared
to traditional human-in-the-loop (HITL) processes, the model
outperformed them regarding scalability, adaptability, and error
rate. It set a new standard for evaluating intrusion detection
systems (IDSs) with less effort and greater adaptability than previous
methods (Zaboli et al., 2024b).

Table 12 summarizes the LLM-based models based on the
attached type, datasets, metrics, and models.

5.4 LLMs as an enabler of cyber attacks

While LLMs play a pivotal role in enhancing cybersecurity
defenses, they also introduce new attack vectors that adversaries can
exploit. Cybercriminals leverage adversarial prompt engineering,
fine-tuning, and automation capabilities of LLMs to scale
cyberattacks, bypass security mechanisms, and enhance malware
generation.These capabilitiesmake LLMs an enabler of cyber threats
such as phishing, malware obfuscation, adversarial AI attacks, and
automated reconnaissance.

One of the most significant threats posed by LLMs is
their ability to generate highly sophisticated phishing emails
and conduct automated social engineering attacks. By leveraging
advanced prompt engineering techniques, adversaries can craft
persuasive and highly targeted phishing emails that evade traditional
security filters by mimicking legitimate communication patterns
(Brown et al., 2020; Fakhouri et al., 2024). Fine-tuning LLMs on
leaked corporate email datasets further enhances the personalization
of phishing attacks, increasing the likelihood of credential theft
and unauthorized access to SCADA (Supervisory Control and Data
Acquisition) systems.

Beyond phishing, LLMs can optimize malware development
by automating code generation, obfuscation, and polymorphism.
Fine-tuned models trained on cybersecurity datasets, such as
VirusTotal and CISA Malware Archives, can assist attackers in
creatingmalware that evades signature-based detectionmechanisms
(Chen et al., 2021; Pearce et al., 2025). By leveraging transformer-
based architectures such as GPT-4, Codex, and LLaMA, threat

actors can generate or modify malware variants in real-time,
making detection and mitigation significantly more challenging.
Additionally, LLMs enable reverse engineering by analyzing
firmware, software binaries, and network logs, aiding adversaries
in identifying zero-day vulnerabilities within smart grid control
systems. The ability to generate dynamic exploit code using AI
significantly lowers the technical expertise required to launch
cyberattacks.

A growing concern is adversarial attacks on AI-driven
cybersecurity mechanisms, such as IDS and anomaly detection
models. Attackers can craft adversarial examples—subtly modified
inputs designed to deceive AI-based security defenses (Biggio
and Roli, 2018; Zhang and Li, 2019). By fine-tuning LLMs on
cybersecurity logs and attack patterns, adversaries can manipulate
IDS models into misclassifying malicious traffic as benign,
allowing stealthy and persistent access to critical infrastructure.
Furthermore, reinforcement learning-based fine-tuning enables
attackers to optimize AI-generated attack methods based on
system responses, making traditional defense mechanisms less
effective.

LLMs are also used to automate reconnaissance and
vulnerability exploitation. AI-driven cyber agents can process
cybersecurity knowledge bases, network topologies, and open-
source intelligence (OSINT) datasets to generate detailed attack
plans (Browne et al., 2024; Mishra et al., 2022). This includes
extracting organizational structures from employee profiles and
leaked databases, automating penetration testing by identifying
misconfigurations and security gaps, and generating step-by-
step attack execution scripts, reducing the need for manual
attack planning. Moreover, LLMs can automate vulnerability
exploitation by generating tailored payloads for system-specific
weaknesses, significantly lowering the barrier to entry for
cybercriminals.

Despite their increasing use in cybercrime, LLMs also have
inherent limitations that impact their effectiveness in adversarial
applications. First, data constraints hinder their efficiency, as
attackers require high-quality datasets, such as real-world exploit
samples and leaked credentials, to fine-tune LLMs effectively
(Ferrag et al., 2024; Ji et al., 2024). However, access to proprietary
threat intelligence is often limited. Second, hallucination issues
present a significant challenge, as LLMs frequently generate
incorrect or misleading attack strategies, reducing their reliability
in real-world hacking scenarios (Li et al., 2024b). Third, as
cybersecurity tools integrate adversarial training, AI-generated
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attacks are becoming more detectable, requiring attackers to
constantly refine their methods.

In summary, LLMs present a dual-use challenge in
cybersecurity—while they enhance defensive strategies,
they also empower cybercriminals by automating phishing,
malware development, adversarial attacks, and reconnaissance.
Understanding these adversarial applications is critical for
developing proactive AI-driven countermeasures and securing
smart grid infrastructures against AI-enabled cyber threats.

5.5 Critical analysis of LLMs in
cybersecurity

Despite their capabilities, LLMs face several limitations that
hinder their widespread adoption in cybersecurity defense.
These challenges stem from data availability constraints, security
vulnerabilities, model limitations, and integration difficulties, all of
which must be addressed to ensure LLMs contribute effectively to
smart grid security.

One of the primary obstacles to using LLMs in cybersecurity is
the limited availability of high-quality training data. Cybersecurity
threats are dynamic and complex, requiring extensive and up-
to-date datasets for effective training. However, organizations are
often reluctant to share cybersecurity-related data, leading to data
scarcity that hampers the development of robust cybersecurity LLMs
(Ferrag et al., 2024; Ji et al., 2024). The non-sharing of threat
intelligence and network security data slows the generation of
relevant datasets, making it difficult to train effective LLM-based
threat detection systems.

Additionally, LLMs introduce new cybersecurity vulnerabilities.
One major risk is adversarial attacks, in which maliciously crafted
inputs manipulate LLMs to generate incorrect or misleading
outputs. These attacks pose a significant threat to AI-driven
cybersecurity systems, as threat actors can exploit them to
bypass automated detection mechanisms or manipulate security
recommendations (Ferrag et al., 2024; Ji et al., 2024). Prompt
injection attacks represent another major concern, as attackers
can exploit vulnerabilities in LLM-generated responses to
extract confidential information or manipulate system behavior,
leading to data leaks, unauthorized access, or misinformation
(Ferrag et al., 2024; Ji et al., 2024).

A critical limitation of LLMs in cybersecurity is the
phenomenon of hallucination, where models generate coherent but
factually incorrect ormisleading information. In cybersecurity, even
minor inaccuracies in threat intelligence reports or vulnerability
assessments can lead to misguided decisions and system
compromise (Ferrag et al., 2024; Li et al., 2024b). Hallucination
mitigation strategies, such as fact verificationmechanisms, retrieval-
augmented generation (RAG), and reinforcement learning from
human feedback (RLHF), are essential for improving LLM
reliability (Li et al., 2024b).

6 Future research directions

The integration of LLMs in the cybersecurity of smart grids
presents several promising research directions to enhance resilience,

adaptability, and security. To fully develop the potential of LLMs
in smart grid security, future research must focus on their
robustness, explainability, integration with emerging technologies,
and protection against evolving cyber threats. Key areas that require
further exploration include:

• Development of Robust and Explainable LLM Models: Future
research should aim at improving the robustness of LLMs
against adversarial attacks, ensuring interpretability and
trustworthiness in cybersecurity applications. This includes
designing explainable AI (XAI) frameworks that provide
insights into LLM decision-making, enabling operators to
validate responses effectively (Jha, 2023).

• Advanced Anomaly Detection Mechanisms: LLMs can be
further optimized for anomaly detection in smart grids by
leveraging self-learning mechanisms that identify novel cyber
threats in real-time. This entails enhancing adaptive security
systems capable of detecting and mitigating evolving cyber
threats without frequent retraining.

• Integration with Emerging Technologies: Combining LLMs
with blockchain, edge computing, and federated learning can
enhance security frameworks by improving data integrity,
decentralization, and efficient threat detection. Blockchain
can ensure tamper-proof logs, while edge computing can
enable real-time processing of security data closer to
the source (Jha, 2023).

• Standardized Frameworks and Best Practices: Establishing
standardized guidelines and best practices for the deployment
of LLMs in smart grid cybersecurity is crucial. Future
research should develop regulatory-compliant frameworks to
ensure interoperability and reliability while addressing ethical
considerations in AI-driven security applications.

• Privacy-Preserving Techniques: Ensuring data privacy while
using LLMs in cybersecurity is critical. Techniques such
as differential privacy, secure multiparty computation,
and homomorphic encryption should be explored to
enhance data confidentiality without compromising model
performance (Li et al., 2024a).

• Defensive Strategies Against LLM Exploitation: Research
should focus on developing advanced threat models to protect
LLMs against data poisoning, prompt injection, and adversarial
perturbations. Implementing validation mechanisms and
real-time anomaly detection can prevent LLMs from being
manipulated by attackers (Nakhleh et al., 2024).

• Addressing Hallucinations in LLMs: To mitigate the risks
posed by LLM hallucinations in smart grid applications,
retrieval-augmented generation (RAG) and knowledge
graphs (KGs) should be incorporated to ground LLM
outputs in reliable datasets, ensuring factual accuracy
(Ibrahim et al., 2024; Perković et al., 2024).

• Advancements in Energy Sector Cybersecurity: Future research
should consider the application of LLMs in protecting
critical energy infrastructure such as industrial control
systems (ICS), SCADA systems, microgrids, and islanding
operations. Additionally, the potential of energy honeypots
for deception-based cyber defense mechanisms should
be explored.
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By focusing on these research directions, LLM-based security
solutions can be significantly enhanced, making smart grids more
resilient against cyber threats while maintaining high levels of
efficiency and reliability.

7 Future research directions

The integration of LLMs in the cybersecurity of smart grids
presents several promising research directions to enhance resilience,
adaptability, and security. To fully develop the potential of LLMs
in smart grid security, future research must focus on their
robustness, explainability, integration with emerging technologies,
and protection against evolving cyber threats. Additionally, it is
critical to explore the role of LLMs in securing energy infrastructure,
including industrial control systems (ICS), SCADA environments,
microgrids, islandingmechanisms, and energy honeypots. Key areas
that require further exploration include:

• Development of Robust and Explainable LLM Models:
Future research should aim at improving the robustness of
LLMs against adversarial attacks, ensuring interpretability
and trustworthiness in cybersecurity applications. This
includes designing explainable AI (XAI) frameworks that
provide insights into LLM decision-making, enabling
operators to validate responses effectively (Jha, 2023;
Arrieta et al., 2020).

• Advanced Anomaly Detection Mechanisms for Smart Grids:
LLMs can be further optimized for anomaly detection in smart
grids by leveraging self-learning mechanisms that identify
novel cyber threats in real time. Reinforcement learning (RL)
techniques can be employed to continuously train LLM-
based anomaly detection models on real-world cyber threats
(Mukherjee et al., 2023). Future research should explore how
RL-enhanced LLMs can adapt to evolving attack patterns in
ICS/SCADA environments and microgrid operations (Yadav
and Paul, 2021).

• LLMs for ICS and SCADA Security: Industrial control systems
(ICS) and SCADA environments are critical components of
smart grids that require specialized cybersecurity measures.
Future research should focus on how LLMs can be fine-
tuned on ICS-specific datasets to detect anomalous commands,
unauthorized access, and cyber-physical threats (Yadav and
Paul, 2021). Additionally, AI-driven threat modeling can
enhance SCADA resilience by predicting attack vectors before
exploitation occurs (Bhamare et al., 2020).

• LLMs for Microgrid and Islanding Cybersecurity: With
the increasing adoption of decentralized energy networks,
microgrid security has become a key concern. Future
studies should investigate how LLMs can assist in microgrid
anomaly detection, network segmentation security, and
protection against false data injection attacks (FDIAs)
in islanding scenarios (Zhang et al., 2021). Additionally,
AI-based decision support systems for energy transition
planning during islanding events should be explored
(Dutta et al., 2021).

• Energy Honeypots for Deceptive Cyber Defense: Deploying
LLM-assisted honeypots in smart grid infrastructures can

serve as a deception-based security strategy. Future research
should examine how generative AI can create realistic
honeypot environments to attract and analyze adversaries,
thereby improving threat intelligence (Mashima and An,
2019). Additionally, integrating LLM-driven deception
tactics with ICS/SCADA security can enhance early threat
detection (Mashima and An, 2017).

• Integration with Emerging Technologies: Combining LLMs
with blockchain, edge computing, and federated learning can
enhance security frameworks by improving data integrity,
decentralization, and efficient threat detection. Blockchain can
ensure tamper-proof logs, while edge computing can enable
real-time processing of security data closer to the source
(Zhuang et al., 2021; Alazab et al., 2022).

• Standardized Frameworks and Best Practices: Establishing
standardized guidelines and best practices for the
deployment of LLMs in smart grid cybersecurity is crucial.
Future research should develop regulatory-compliant
frameworks to ensure interoperability and reliability while
addressing ethical considerations in AI-driven security
applications (Jawhar et al., 2024).

• Privacy-Preserving Techniques: Ensuring data privacy while
using LLMs in cybersecurity is critical. Techniques such
as differential privacy, secure multiparty computation, and
homomorphic encryption should be explored to enhance
data confidentiality without compromisingmodel performance
(Li et al., 2024a; Gentry, 2009).

• Defensive Strategies Against LLM Exploitation: Research
should focus on developing advanced threat models to protect
LLMs against data poisoning, prompt injection, and adversarial
perturbations. Implementing validation mechanisms and
real-time anomaly detection can prevent LLMs from being
manipulated by attackers (Nakhleh et al., 2024; Ghimire and
Thapaliya, 2024).

• Addressing Hallucinations in LLMs: To mitigate the risks
posed by LLM hallucinations in smart grid applications,
retrieval-augmented generation (RAG) and knowledge
graphs (KGs) should be incorporated to ground LLM
outputs in reliable datasets, ensuring factual accuracy
(Ibrahim et al., 2024; Perković et al., 2024).

By focusing on these research directions, LLM-based security
solutions can be significantly enhanced, making smart grids more
resilient against cyber threats while maintaining high levels of
efficiency and reliability.

8 Conclusion

The electric grid’s incorporation of smart grid technology has
improved performance and increased sustainability. However, the
addition of ICT poses complex challenges in terms of cybersecurity
that must be dealt with to protect critical infrastructure. This
article takes a comprehensive analysis of cyber warfare with a
focus on smart grids, detects and analyses countermeasures and
investigates the potential value of LLMs for enhancing the grid’s
security with LLMs. This review emphasizes the range and variety
of cyber attacks, including data integrity attacks of the FDI type and
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complex multi-layered advanced persistent threats (APTs). Existing
countermeasures for mitigating, for example, those based on
machine-learning algorithms for intrusion detection and employing
cryptographic means, are promising but have limitations, such as
high demand for computation power and complexity of sharing
understandable results. As new technologies advance, for example,
in LLMs, it can change the dynamics of anomaly identification,
pattern recognition and responsemechanisms in real time.However,
several questions, such as themodel’s reliability, the hallucinations of
the models and the context in which the models will be deployed,
should be answered before more extensive application in critical
infrastructure. Looking ahead, robust strategies for smart grids
could be implemented by applying adaptive ML models. These
strategies could be revolutionary in conjunction with advanced
domain-specific fine-tuning and verification processes for LLMs.
Joint efforts among the experts and decision-makers in the relevant
industries will have to be made against the weaknesses in detecting,
preventing, and recovering threats. Multi-facetted cybersecurity
structures coupled with smart grids can change the face of energy
distribution while ensuring operational safety and reliability.
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