
Energy interaction strategy for
multi-prosumer distribution
systems based on game theory

Wei Lou1, Shenglong Zhu1, Xu Zhuo2*, Shaorui Qin1, Baodong Li3,
Ya Zhou3, Jian Chen3 and Qiang Gao3

1Electric Power Research Institute of State Grid Anhui Electric Power Co., Ltd., Hefei, China, 2School of
Electric Engineering and Automation, Hefei University of Technology, Hefei, China, 3State Grid Anhui
Electric Power Co., Ltd., Chuzhou Power Supply Company, Chuzhou, China

In flexible distribution systems, the strong uncertainty of generation and load
demand poses challenges for energy interaction and resource coordination.
However, existing energy interaction strategies generally focus only on
economic benefits, neglecting safety performance, and are insufficient to
ensure the reliable operation of the system. To address these issues, this
paper proposes an energy interaction strategy for multi-prosumer flexible
distribution systems, considering the economic benefits of all parties and the
voltage safety of the system. First, a multi-agent energy interaction framework
based on the Stackelberg game is established, and a bi-level optimization model
for the distribution network operator and prosumers is constructed. Second, the
paper innovatively introduces soft open point-based power flow control
technology into the energy trading market. Then, the KKT conditions, dual
theory, linearization, and relaxation techniques are applied to transform the
original bi-level game problem into a single-level mixed-integer second-order
cone programming problem, improving computational efficiency. Finally, the
improved IEEE 33-bus distribution system is simulated and compared with two
other scenarios. The results show that the proposed strategy can significantly
improve the economic and safety performance of the energy interaction system,
optimize the power flow distribution, and effectively enhance power quality. The
approach offers a promising solution to the growing challenges of managing
distributed energy resources in the context of flexible and reliable grid operation.
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1 Introduction

With the proposal of the “dual carbon” goal, the widespread access of distributed energy
and flexible resources has significantly increased the participation of prosumers in the
power market (Yang et al., 2024). Under this background, the operation mode of power
distribution system is changing to multi-direction and multi-agent. Flexible distribution
systems refer to advanced distribution networks that integrate multiple energy resources
and flexible control technologies and are capable of dynamic reconfiguration and real-time
power flow adjustment to adapt to changing demand and supply conditions (Li et al., 2023).
By incorporating advanced control strategies, flexible distribution systems have the
potential to significantly enhance energy interaction capabilities, increase renewable
energy utilization, and provide strong support for system stability.
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Prosumers play a crucial role in reducing energy costs and
promoting renewable energy. Under coordinated feed-in tariffs,
prosumers can engage in energy trading with the distribution
network (DN) to maintain energy supply-demand balance,
thereby providing new support for enhancing the flexibility and
reliability of power systems (Seppälä and Järventausta, 2024).
However, as the share of prosumers in distribution systems
continues to grow, energy interactions among multiple entities
are becoming increasingly complex. The presence of intermittent
demand response (DR) introduces additional challenges to
maintaining power system balance. Consequently, there is an
urgent need for more advanced strategies to effectively regulate
and manage multi-agent energy interactions, ensuring the stability,
economic efficiency, and flexibility of distribution networks.

Existing energy interaction methods for multiple prosumers can
be broadly categorized into two types: direct control and regional
market-based control (Manchalwar et al., 2024). Direct control, also
referred to as prosumer-to-grid control, involves the upper-level
grid directly accessing information from individual prosumers and
directly managing all controllable resources for energy interaction as
needed. While this method is straightforward in operation, it suffers
from drawbacks such as transaction congestion, poor privacy
protection, and limitations on prosumers’ autonomy. In contrast,
regional market-based control is a distributed control approach
based on local energy trading markets and can be viewed as
prosumer-to-distribution network operator (DNO) control.
Under this framework, the DNO has pricing authority, and
prosumers can adjust their flexible resources proactively based on
the DNO’s pricing signals, thereby autonomously determining
energy exchange while indirectly influencing the DNO’s pricing.
This method balances the interests of all participants by
coordinating dispersed prosumers to form a regional platform for
energy generation and consumption, achieving resource sharing and
preserving prosumer autonomy. Moreover, it offers excellent
scalability. For instance, various approaches such as distributed
trading mechanisms for demand-side energy interaction (Lou
et al., 2023), optimization methods targeting models, solution
techniques, and information transmission (Hou et al., 2022),
dual-chain implementation methods for electricity rights trading
(Gao et al., 2024), and multi-agent deep learning-based energy
management techniques (Miyamoto et al., 2020) have been
explored. Although these studies have achieved significant
progress in energy interaction among multiple prosumers, they
also exhibit notable limitations. Lou et al. (2023); Hu et al.
(2022); Gao et al. (2024) neglect power quality issues and fail to
account for voltage regulation, which may impact system stability.
Similarly Miyamoto et al. (2020), focuses solely on power
optimization without integrating economic considerations in
market energy trading and distribution network regulation,
potentially limiting the economic benefits for participants.

Economic efficiency and system security are two critical
concerns for users, operators, and power grids. In practical
applications, economic and security objectives often conflict with
each other. For instance, prioritizing the economic benefits of
transactions between prosumers and the distribution network
operator (DNO) may compromise the reliability and safety of
system operations, potentially leading to severe voltage violations
or excessive utilization of grid assets (Tao et al., 2024). Moreover, the

autonomous nature of prosumers, coupled with intermittent and
concentrated power usage patterns, can result in imbalances
between generation and consumption. This imbalance often
causes power flow discrepancies across feeders, leading to
frequent feeder power fluctuations and increased system losses
(Liu et al., 2024). As a result, transaction control strategies that
balance economic efficiency and system security have become a
prominent research focus. Examples include transaction control
algorithms based on attention mechanisms (Zheng et al., 2021),
scheduling methods leveraging double-agent Q-learning (Liu et al.,
2023), and game-theoretic scheduling strategies (Xiao et al., 2024;
Guan and Hou, 2024; Zheng et al., 2024). These studies, through
either deep learning algorithms or game-theory-based approaches,
have demonstrated the ability to enhance DNO revenues, reduce
prosumers’ electricity costs, stabilize system operations, and
maximize social welfare. However, they have not adequately
addressed the challenge of handling surplus energy, leaving room
for further improvement in energy management strategies.

The concept of “clearing price” has been widely discussed in
recent studies (Izadi and Rastegar, 2024; Meng et al., 2024;
Mohammadreza et al., 2024; Wu et al., 2024), where game-
theoretic methods have been applied to achieve economic
dispatch and system regulation within energy communities (Izadi
and Rastegar, 2024). For instance, one study explored economic
coordination and regulation using game theory (Meng et al., 2024),
while another incorporated energy clearing and voltage regulation
through a leader-follower (Stackelberg) game-based pricing
mechanism to realize mutual benefits for the DNO and
prosumers. By leveraging “clearing price” as an interaction signal
within the Stackelberg game framework, these approaches facilitate
communication between the upper-level leader (DNO) and lower-
level followers (prosumers). This methodology prioritizes internal
transactions in local energy markets, effectively managing surplus
energy, promoting local energy utilization, and ensuring the
system’s economic efficiency. Additionally, the focus on price and
power exchange as communication variables ensures robust user
privacy protection (Mohammadreza et al., 2024). Despite their
ability to enhance system revenues and operational security, these
strategies lack consideration of active regulation in the distribution
network (DN). Addressing this gap is essential to further improve
system reliability and operational flexibility.

Network reconfiguration has been proposed as a method to
adjust the topology of distribution networks (DN) for power flow
optimization (Liang et al., 2024; Ashrafi et al., 2024), aiming to
reduce power losses, lower operational costs, and prevent voltage
violations. However, this approach is constrained by the operating
frequency of tie switches, the need for more advanced control
devices. Multi-Terminal Soft Open Points (MOP), are power
electronic devices designed for efficient power transmission in
electric power systems (Deakin et al., 2022; Taher et al., 2024; Li
et al., 2024). MOP actively regulates active and reactive power on
connected feeders, optimizes power flow distribution, and improves
resource allocation, thereby increasing the flexibility and reliability
of the network. Studies have demonstrated that MOP outperforms
traditional network reconfiguration in power flow regulation and
offers greater adaptability compared to conventional Soft Open
Points (SOP) (Deakin et al., 2022), as it enables simultaneous
control and optimization of multiple branch lines, providing
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more versatile power distribution capabilities. Nevertheless, research
and applications of MOP in the context of energy interaction remain
limited, suggesting significant potential for further exploration
in this area.

Therefore, based on the analysis of the aforementioned
background, this paper comprehensively considers the energy
interaction strategy between the DNO and multiple prosumers in
a flexible distribution system. This strategy involves factors such as
energy storage system (ESS) charging and discharging, MOP active
regulation, DR, internal pricing, and voltage stability. A game-
theoretic energy interaction model and strategy for multi-
prosumer distribution systems are proposed, and mathematical
methods such as Karush-Kuhn-Tucker (KKT) conditions are
utilized to simplify the model solution process. The KKT
conditions are a set of mathematical optimization conditions
widely used in optimization problems to characterize the
solutions of constrained nonlinear programming (Dempe and
Franke, 2019). Unlike traditional iterative methods, which
typically require extensive computation and data exchange
between decision-making layers, the KKT-based transformation
simplifies the optimization process by reducing the bi-level
optimization problem to a single-layer form. This approach not
only enhances computational efficiency but also ensures privacy by
limiting the exchange of sensitive data.

This paper proposes a multi-agent energy interaction strategy
based on MOP to solve the balance between economic benefits and
operational security, so as to promote the construction of new power
systems. Through the comparison with the existing research, the
innovation of this paper is as follows:

1) A multi-agent energy interaction framework based on the
Stackelberg game is developed in this study. Unlike most
research that focuses solely on economic aspects without
considering system security, or existing studies that
prioritize voltage regulation without addressing flexible
resource allocation, this work establishes an interaction
framework that considers economic benefits, power quality,
and demand response. This framework simultaneously
addresses the economic and security issues of the DNO-
multi-prosumer distribution network. Furthermore, in terms
of power flow optimization for the distribution network (DN),
this study introduces MOP for the active regulation of active
and reactive power on the connected feeders, which not only
reduces network losses but also prevent voltage over-limit rate,
further enhancing the system’s economic efficiency
and security.

2) Different from most traditional approaches that use iterative
methods to solve the Stackelberg bi-level optimization model
for price determination, this study employs KKT conditions,
dual theory, linearization techniques, relaxation methods, and
the Big-M method to transform the bi-level model into a
single-level mixed-integer second-order cone programming
(MISOCP) problem. This transformation allows for solving
the model using commercial solvers, thereby improving
solution efficiency.

The remainder of this paper is organized as follows: Section 2
introduces the energy interaction framework for the DNO-multi-

prosumer distribution system; Section 3 develops the DNO-
prosumer optimization model based on the Stackelberg leader-
follower game; Section 4 applies KKT conditions, linearization,
and relaxation techniques to transform the bi-level model into a
single-level model; Section 5 provides case studies and analysis;
Section 6 presents the conclusion.

2 Energy interaction framework for
multiple consumer distribution systems

2.1 Energy market interaction framework

An energy market interaction framework that considers energy
management issues between DNO and multiple prosumer is shown in
Figure 1. The figure includes the high-voltage (HV) grid, which provides
the required electrical energy and receives excess energy, the local energy
interactionmarket that distributes electrical energy and transmits energy
demand and price signals, and two key participants: the DNO, which
serves as an intermediary for transactions between the HV grid and
prosumers, and the photovoltaic prosumers who generate and consume
their own electricity.

FIGURE 1
Energy market interaction framework.
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As the energy interaction intermediary, the DNO acts as the
operator of the distribution network (DN) and the internal price
setter. Its responsibilities include: 1) overseeing the operation of the
distribution network to ensure system safety and stability while
meeting high-quality power requirements from users; 2)
participating in the energy market and engaging in energy
transactions with the HV grid to balance supply and demand
when internal imbalances occur; 3) coordinating internal energy
transactions by dynamically setting internal transaction prices based
on economic and safety considerations, referencing users’ electricity
demand and feed-in tariffs, and allocating internal energy to
improve consumption capacity.

As the main participants in the energy market, prosumers
consist of photovoltaic (PV) systems, loads (both fixed and
flexible), and energy storage systems (ESS). Among these, flexible
loads, also referred to as transferable loads, are controllable loads
that do not affect basic living needs, enabling demand response. This
allows prosumers to adjust their loads based on the transaction
prices set by the DNO and develop their own electricity
consumption strategies. Additionally, to enhance the network

optimization level of the DNO, Multi-Terminal Soft Open Points
(MOP) are installed within the distribution network (DN).

2.2 Energy interactive game framework

As shown in Figure 2, this paper explores a bi-level energy
trading framework based on the Stackelberg game, which shows the
leader-follower relationship between DNO and prosumers, and both
play interest games with exchanged power through clearing prices.

The upper-level leader, the DNO, can determine the operational
strategy of the MOP and the internal clearing prices based on time-
varying grid prices, feed-in tariffs, the exchange power between
prosumers and the DNO, and the operational status of the
distribution network (DN), aiming to maximize social welfare.
Meanwhile, the lower-level follower, the prosumer, can adjust its
electricity consumption and ESS charging/discharging strategy
according to the clearing prices set by the DNO, and determine
the exchange power with the DNO, in order to minimize its
own costs.

FIGURE 2
Energy interactive game framework.
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It can be observed that this is a bi-directional decision-making
problem, where the clearing price and exchange power serve as the
communication bridge between the upper and lower levels. The
DNO sets the clearing price based on the exchange power with the
prosumers, while prosumers respond to the DNO’s clearing price by
determining their own energy scheduling plans. Therefore, although
the DNO holds priority in the decision-making process, it must take
into account the demand response (DR) of each prosumer, thus
forming a leader-follower game of interests.

In summary, the proposed energy market interaction and game
framework effectively solves the complexity of energy trading in
flexible distribution networks involving multiple production-
consumers. By integrating dynamic clearing prices, DR, and
MOP-based network optimization, bidirectional coordination
between DNO and prosumers is achieved, ensuring joint
achievement of economic and operational objectives.

3 Energy interaction model of
distribution system for
prolific consumer

This chapter develops an energy interaction model based on the
aforementioned framework. First, the objective of minimizing the
DNO’s operational costs is defined, along with the constraints for the
distribution network (DN) operation. Next, the cost minimization
objective for prosumers is outlined based on their characteristics, and
the corresponding operational constraints are established. Finally, for the
bi-level game problem, instead of using the traditional iterative methods,
which are cumbersome, the study employs KKT conditions, the Big-M
method, second-order cone relaxation techniques, and dual theory to
transform the bi-level optimization model into a single-level model.

3.1 Optimization model of distribution
network operator

3.1.1 Optimization objective
The DNO, as the coordinator between the grid and users, has the

core objective of maximizing social welfare. This is specifically
manifested in minimizing the transaction costs between the
DNO, the HV, and prosumers, reducing network losses and
voltage fluctuations in the DN, and enhancing the economic
efficiency and stability of the system. Therefore, the objective
function of the DNO can be expressed as:

minFDNO � ao fGrid + floss − finc( ) + bvfvd (1)

fGrid � ∑NT

t�1

Xt −Wt

2
gt

∣∣∣∣ ∣∣∣∣ + Xt +Wt

2
gt( )Δt

floss � Closs ∑NT

t�1
∑
ij∈Ωl

rijI2t.ij +∑NT

t�1
∑NN

i�1
Pmop,loss
t,i

⎛⎝ ⎞⎠Δt

finc � ∑NT

t�1
∑Np

n�1
λtP

p
t,nΔt

fvd � ∑NT

t�1
∑NN

i�1
U2

t,i − ~U
2

ref

∣∣∣∣∣ ∣∣∣∣∣

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(2)

Equation 1 represents the general form of the DNO optimization
objective function, which is a linear weighted combination of
operational costs and voltage deviation minimization. Where, ao
and bv are the weight coefficients (Yang et al., 2023), which represent
the relative importance of each element in the objective, with their
sum being equal to 1; fGrid and finc represent the transaction costs
incurred between the DNO andHV, as well as the total revenue from
transactions between the DNO and the prosumers, respectively. floss

refers to the network loss cost of the DN, while fvd represents the
total voltage deviation. Equation 2 provides detailed expressions for
each component, where Xt and Wt denote the purchase and sale
prices of electrical energy between the DN and the HV grid,
respectively; gt represents the net load of the DN, with gt

indicating a positive value when the DN purchases energy from
the HV grid and gt indicating a negative value when the DN sells
energy to the HV grid; Closs refers to the cost coefficient associated
with network losses; rij and xij represent the resistance and
reactance of branch; It.ij denotes the current flowing through
branch ij at period t; Pmop,loss

t,i accounts for the active power loss
generated by the MOP during period t; NT, NN, and NP represent
the total time periods, total nodes, and total number of prosumers in
the DN, respectively; Δt denotes the time interval;Ωl refers to the set
of all branches; λt represents the clearing price in the internal energy
trading market at period t; Pp

t,n denotes the net load of the nth
prosumer at period t, which corresponds to its exchange power with
the DN; Ut.i is the voltage of bus i at period t; ~Uref is the reference
voltage of the buses.

3.1.2 Constraint condition
3.1.2.1 Network constraints of the DN

The DN is modeled using the widely adopted Distflow
branch model.

∑
ji∈Ωb

Pt,ji − rjiI
2
t,ji( ) + Pt,i � ∑

ik∈Ωb

Pt,ik (3)

∑
ji∈Ωb

Qt,ji − xjiI
2
t,ji( ) + Qt,i � ∑

ik∈Ωb

Qt,ik (4)

U2
t,i − U2

t,j − 2 rijPt,ij + xijQt,ij( ) + r2ij + x2
ij( )I2ij � 0 (5)

I2t,ijU
2
t,i � P2

t,ij + Q2
t,ij (6)

Pt,i � PPV
t,i + PMOP

t,i − PL
t,i + PL,move

t,i

+ Pess,c
t,i − Pess,d

t,i( ) (7)

Qt,i � QMOP
t,i − QL

t,i (8)

Equations 3, 4 represent the active and reactive power balance
for the branch, where Pt,ji andQt,ji are the active and reactive power
flowing through branch ij at time t, Pt,i and Qt,i are the active and
reactive power injected at bus i at time t. Equations 5, 6 represent the
voltage and branch current level constraints at bus i at period t.
Equations 7, 8 represent the active and reactive power balance at the
bus, where PPV

t,i , P
VSC
t,i , QVSC

t,i are the active and reactive power
injected into bus i at period t by the PV and MOP, respectively.
PL
t,i and PL,move

t,i are the fixed and transferable loads of the prosumer
at period t, with a positive value indicating an increase in load
demand and a negative value indicating a decrease. Pess,c

t,i and Pess,d
t,i

represent the charging and discharging power of the ESS at period t
at bus i.
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3.1.2.2 Security constraints of the DN
DN During normal operation, the bus voltage and branch

current cannot exceed the safety limit.

U2 ≤U2
t,i ≤ �U

2 (9)
I2t,ij ≤ �I

2 (10)

where, U and �U are the upper and lower limits of voltage of buses
respectively; �I is the maximum current limit of the branch.

3.1.2.3 Operation constraints of MOP
The ideal MOP of 4 feeder lines is shown in Figure 3, and PVSC

t,i in
the figure is the power of the feeder connected to MOP flowing to
MOP. It can be seen that it is determined by the feeder selection
switch state bi and the active power PVSC

t,i transmitted by VSCi, that
is, MOP controls PVSC

t,i and QVSC
t,i by controlling these two variables,

and then controls the active and reactive power of the
connected feeder.

�P
VSC
t,i + Pmop,loss

t,i � PVSC
t,i ,∀t, i ∈ ΩVSC (11)

∑Nm

i�1
�P
VSC
t,i � 0,∀t, i ∈ ΩVSC (12)

Pmop,loss
t,i � AVSC

i SLi ,∀t, i ∈ ΩVSC (13)���������������
PVSC
t,i( )2 + QVSC

t,i( )2√
≤ SVSCi ,

∀t, i ∈ ΩVSC

(14)

SLn ≤Bi,nSVSCi ,∀t, i ∈ ΩVSC,
n ∈ 1, 2, 3, ...Nm{ } (15)

∑N
n�1

Bi,n � 1,∀i ∈ ΩVSC (16)

− �Q
VSC
i ≤QVSC

t,i ≤ �Q
VSC
i ,∀t, i ∈ ΩVSC (17)

Equations 11–13 represent the power balance constraints, where
�PVSC
t,i denotes the active power on the DC side of the VSC at bus i at

period t, PVSC
t,i represents the actual transmitted active power ofVSCi at

period t, Pmop,loss
t,i is the active power loss of MOPi at period t, AVSC

i

represents the loss coefficient of VSCi, and ΩVSC denotes the set of
VSCs. Equations 14–17 describe the MOP capacity constraints, where
SLn represents the power transmission capacity of the branch n
connected to the MOP, SVSCi denotes the capacity of VSCi, QVSC

t,i is
the actual reactive power transmitted byVSCi at period t, �Q

VSC
i denotes

the reactive power output limit of VSCi, and Nm represents the total
number of branches connected to the MOP.

3.1.2.4 Price constraint
When determining the clearing price, the DNO must consider

the responses of the prosumers. To encourage prosumers to actively
participate in the internal energy market and ensure that they do not
bypass the DNO to trade directly with the HV grid, the clearing price
must satisfy certain constraints.

λt
min ≤ λt ≤ λt

max (18)
1
T
∑T
t�1
λt ≤

1
T
∑T
t�1
Xt (19)

Equation 18 specifies that λt must remain within the upper and
lower bounds λtmax and λtmin to prevent excessive pricing, which could
discourage prosumers from purchasing electricity and thereby affect
their normal daily activities. Equation 19 ensures that the average
clearing price does not exceed the average price of purchasing electricity
from the HV grid, thereby protecting the interests of users.

3.2 Optimization model of prosumer

3.2.1 Optimization objective
Prosumers can respond to the clearing price set by the DNO by

adjusting their electricity usage plans and energy storage utilization
in the internal energy trading market, with the objective of
minimizing their operational costs. Accordingly, the objective
function for an individual prosumer is formulated as follows:

min Jn � ∑T
t�1
λtP

p
t,nΔt +∑T

t�1
vDisc
n PL,move

t,i( )Δt
+∑T

t�1
ldeg Pess,c

t,i ηess,c + Pess,d
t,i

ηess,d
( )Δt (20)

Pp
t,n � PL

t,i + PL,move
t,i − PPV

t,i +∑Ne

e�1
Pess,c
t,i − Pess,d

t,i( ) (21)

Equation 20 represents the general formulation of the prosumer’s
optimization objective. The first term corresponds to the cost of
participating in energy transactions, the second term represents the
utility cost associated with load adjustments, and the third term
accounts for the degradation cost of ESS operation. where vDiscn

denotes the sensitivity coefficient of the prosumer n to load
variation discomfort, ηess,c and ηess,d represent the charging and
discharging efficiencies of the ESS, respectively, and ldeg indicates the
degradation coefficient of the ESS. Equation 21 is the exchanged power
between the prosumer and DNO, where a positive value represents the
transmission power from DNO to the prosumer.

FIGURE 3
MOP Topology view.
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3.2.2 Constraint condition
3.2.2.1 Constraints of ESS

ESS must meet the relevant constraints of energy storage, charge
and discharge power

0≤Pess,c
t,i ≤ uess

t,e P
c,rat
e

0≤Pess,d
t,i ≤ 1 − uess

t,e( )Pd,rat
e

{ (22)

St,e � St−1,e + Pess,c
t,i ηess,c

Capess
e

− Pess,d
t,i

Capess
e ηess,d

( )Δt (23)

Se
min ≤ St,e ≤ Se

max (24)
S1,e � SNT,e (25)

Equation 22 defines the charging and discharging power constraints
of the ESS, where uesst,e represents the operational state of the ESS e at
period t (1 for charging, 0 for discharging), Pc,rat

e and Pd,rat
e are the

maximum charging and discharging powers of the ESS e, respectively.
The constraints Equations 23, 24 are expressed as the energy storage
constraints of the ESS. where St,e represents the current energy stored in
the ESS e at period t, while St−1,e represents its energy level at the
previous period step, with the two having a recursive relationship. Semin

and Semax denote the lower and upper bounds of the ESS’s energy
storage, and Capess

e represents its maximum capacity. Constraint
Equation 25 is expressed as the equality between the initial energy
storage S1,e and the final energy storage SNT,e of the ESS.

3.2.2.2 Constraints on demand response
Prosumers can adjust their electricity demand based on the

clearing price set by the DNO; however, to ensure their basic living
needs, the following constraints must be satisfied:

Lmin ≤PL,move
t,i ≤ Lmax (26)

∑NT

t�1
PL,move
t,i � 0 (27)

Equation 26 indicates that the adjustment of the prosumer’s
transferable load cannot exceed the specified range [Lmin, Lmax].
Constraint Equation 27 shows that the total load demand of the
prosumer remains constant throughout the day.

4 Processing and transformation of
the model

The optimization objective and constraints in the above model
contain numerous nonlinear functions, which cannot be solved by
existing commercial solvers. Therefore, in this section, linearization
methods and second-order cone relaxation techniques are applied to
process the model, converting it into a mixed-integer second-order
cone programming (MISOCP) model. At the same period, to
simplify the model’s solution process, the bi-level optimization
model is converted into a single-level optimization model.

4.1 Linearization

4.1.1 Processing of quadratic terms
Due to the nonlinear forms, such as current and voltage

squared, in Equations 2–6, 9, 10, vt,i and lt,ij are used to replace

U2
t,i and I2t,ij. The transformed function looks like

Equations 28–34:

floss � Closs ∑NT

t�1
∑
ij∈Ωl

rijlt.ijΔt +∑NT

t�1
∑NN

t�1
PVSC,loss
t,i Δt⎛⎝ ⎞⎠ (28)

∑
ji∈Ωb

Pt,ji − rjilt,ij( ) + Pt,i � ∑
ik∈Ωb

Pt,ik (29)

∑
ji∈Ωb

Qt,ji − xjilt,ij( ) + Qt,i � ∑
ik∈Ωb

Qt,ik (30)

vt,i − vt,j − 2 rijPt,ij + xijQt,ij( )
+ r2ij + x2

ij( )lt,ij � 0
(31)

lt,ijvt,i � P2
t,ij + Q2

t,ij (32)
U 2 ≤ vt,i ≤ �U

2 (33)
lt,ij ≤ �I

2 (34)

4.1.2 Handling of absolute value terms
Due to the absolute value term of the voltage deviation

in Equation 2, an auxiliary variable Auxt,i is introduced
to linearize it. The converted function is shown in
Equations 35–38:

fvd � ∑NT

t�1
∑NN

i�1
Auxt,i (35)

Auxt,i ≥ 0 (36)
Auxt,i ≥ ~U

2

ref − vt,i (37)
Auxt,i ≥ vt,i − ~U

2

ref (38)

4.2 Second-order cone transformation

Even after linearization in Equation 32, quadratic nonlinear
terms in the form of lt,ijvt,i still exist. Therefore, further processing is
required, and the convex relaxation of the function is expressed
as follows:

2Pt,ij

2Qt,ij

lt,ij − vt,i

�����������
�����������
2

≤ lt,ij + vt,ij,∀t (39)

Similarly, Equation 14 also contains quadratic nonlinear
terms, and the transformed second-order cone constraint is
as follows:

PVSC
t,i( )2 + QVSC

t,i( )2 ≤ 2 SVSCt,i�
2

√ SVSCt,i�
2

√ (40)

Equation 41 is defined to verify the constraint effect. If the
gap value is sufficiently small, it is considered that the accuracy
after relaxation is reasonable, which also means that the initial
model can be transformed into a model that can be solved by
commercial solvers using the two processing methods
described above.

gap � lt,ij −
P2
t,ij + Q2

t,ij

vt,i

��������
��������∞ (41)
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4.3 Transformation of two-layer model

Based on the Stackelberg leader-follower game, and combining
the above framework and model, the following bi-level optimization
problem is formulated:

Upper level: minFDNO;
Subject to: Equations 7, 8, 11–13, 15–19, 29–31, 33, 34, 36–40;
Variables: λt, PVSC

t,i , QVSC
t,i , lt,ij, vt,i, Auxt,i

λt ↓↓ PP
t,n ↑↑

Lower level: min Jn;
Subject to: Equations 22–27;
Variables: PP

t,n, P
L,move
t,i , Pess,c

t,i , Pess,d
t,i , St,e;

For the two-layer optimization model, the traditional
iterative method is adopted, and the solving process is
relatively complicated.

Furthermore, considering user privacy and security, and to
avoid unnecessary information exchange between prosumers and
the DNO, this paper applies the KKT conditions to transform the
above bi-level model, thereby improving computational
efficiency and protecting user privacy.

Let μ be the dual variable for the inequality constraints of the
lower-level optimization problem, and λ be the dual variable for the
equality constraints of the lower-level optimization problem. As
shown in Equations 42, 43, the general form of the KKT condition
obtained by the transformation is:

∇L � PL,move
t,i , Pess,c

t,i , Pess,d
t,i , St,e, μi, λi( ) � 0 (42)

0≤ μ ⊥ g x( )≥ 0 (43)
where, ∇L is the Lagrange function written using the KKT
conditions (Zhu et al., 2022), g(x)≥ 0 representing the
inequality constraints in the optimization problem. The
specific expression is as follows:

1) Introduce the optimization objectives and
constraints of the lower prosumers to write the
Lagrange function:

∇L � ∑T
t�1
∑N
n�1

λt PL
t,i + PL,move

t,i − PPV
t,i +∑Ne

e�1
Pess,c
t,i − Pess,d

t,i( )⎡⎣ ⎤⎦Δt +∑T
t�1
∑N
n�1

vDisc
n PL,move

t,i Δt

+∑T
t�1
∑N
n�1

∑Ne

e�1
ldeg Pess,c

t,i ηess,c + Pess,d
t,i

ηess,d
( )Δt

−∑T
t�1
∑N
n�1

∑Ne

e�1
μess,c1,t,nP

ess,c
t,i − μess,c2,t,n Pess,c

t,i − uess
t,e P

c,rat
e( )[ ]

−∑T
t�1
∑N
n�1

∑Ne

e�1
μess,d1,t,n P

ess,d
t,i − μess,d2,t,n Pess,d

t,i − 1 − uess
t,e( )Pd,rat

e[ ]{ }
+∑T
t�1
∑N
n�1

∑Ne

e�1
μS1,t,n Semin − St,e( ) + μS2,t,n St,e − Semax( )[ ]

+∑T
t�1
∑N
n�1

μL,move
1,t,n Lmin − PL,move

t,i( ) + μL,move
2,t,n PL,move

t,i − Lmax( )[ ]
+∑N
n�1

λ1,n ∑T
t�1
PL,move
t,i

⎛⎝ ⎞⎠ +∑N
n�1

∑Ne

e�1
λ2,n S1,e − ST,e( )

+∑T−1
t�1

∑N
n�1

∑Ne

e�1
λ3,t,n St,e − St−1,e − Pess,c

t,i ηess,cΔt
Capess

e

− Pess,d
t,i

ηess,dCapess
e

Δt( )[ ]

(44)

2) Taking the partial derivative with respect to ∇L yields the
equality constraint:

∂L
∂PL,move

t,i

� λtΔt + vDisc
n Δt − μL,move

1,t,n + μL,move
2,t,n + λ1,n � 0 T ∈ 1, t[ ]

(45)
∂L

∂Pess,c
t,i

� λtΔt + ldegη
ess,cΔt − μess,c1,t,n + μess,c2,t,n − λ3,t,nη

ess,cΔt/Capess
e � 0 t ∈ 1, T − 1[ ]

λtΔt + ldegη
ess,cΔt − μess,c1,t,n + μess,c2,t,n � 0 t � T

{
(46)

∂L
∂Pess,d

t,i

�
−λtΔt + ldegΔt

ηess,d
− μess,d1,t,n + μess,d2,t,n − λ3,t,nΔt

ηess,dCapess
e

� 0 t ∈ 1, T − 1[ ]

−λtΔt − ldegΔt
ηess,d

− μess,d1,t,n + μess,d2,t,n � 0 t � T

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(47)

∂L
∂St,e

�
−μS1,t,n + μS2,t,n + λ2,n − λ3,t,n � 0 t � 1
−μS1,t,n + μS2,t,n + λ3,t−1,n − λ3,t,n � 0 t ∈ 2, T − 1[ ]
−μS1,t,n + μS2,t,n − λ2,n + λ3,t−1,n � 0 t � T

⎧⎪⎨⎪⎩ (48)

∂L
∂λ1,n

� ∑T
t�1
PL,move
t,i � 0 (49)

∂L
∂λ2,n

� S1,e − ST,e � 0 (50)

∂L
∂λ3,t,n

� St,e − St−1,e − Pess,c
t,i ηess,c

Capess
e

+ Pess,d
t,i /ηess,d
Capess

e

Δt � 0 t ∈ 1, T − 1[ ]
(51)

3) The inequality constraint is constructed by large M method

Since the complementary slack variables in the KKT condition
have nonlinear terms of the form μigi(x) � 0, a Boolean variable ε
and a maximum positive number M are introduced to construct the
following linear inequalities:

0≤Pess,c
t,i ≤ εess,c1 M

0≤ μess,c1,t,n ≤ 1 − εess,c1( )M{ t ∈ 1, T[ ] (52)

0≤ uess
t,e P

c,rat
e − Pess,c

t,i ≤ εess,c2 M
0≤ μess,c2,t,n ≤ 1 − εess,c2( )M{ t ∈ 1, T[ ] (53)

0≤Pess,d
t,i ≤ εess,d1 M

0≤ μess,d1,t,n ≤ 1 − εess,d1( )M{ t ∈ 1, T[ ] (54)

0≤ 1 − uess
t,e( )Pd,rat

e − Pess,d
t,i ≤ εess,d2 M

0≤ μess,d2,t,n ≤ 1 − εess,d2( )M{ t ∈ 1, T[ ] (55)

0≤ St,e − Semin ≤ εS1M
0≤ μS1,t,n ≤ 1 − εS1( )M{ t ∈ 1, T[ ] (56)

0≤ Semax − St,e ≤ εS2M
0≤ μS2,t,n ≤ 1 − εS2( )M{ t ∈ 1, T[ ] (57)

0≤PL,move
t,i − Lmin ≤ εL,move

1 M
0≤ μL,move

1,t,n ≤ 1 − εL,move
1( )M{ t ∈ 1, T[ ] (58)

0≤Lmax − PL,move
t,i ≤ εL,move

2 M
0≤ μL,move

2,t,n ≤ 1 − εL,move
2( )M{ t ∈ 1, T[ ] (59)

4) Single layer optimization model

Substituting Equations 45–51 into Equation 44 can be obtained
as follows:
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∇L � ∑T
t�1
∑N
n�1

λt PL
t,i − PPV

t,i( )Δt −∑T
t�1
∑N
n�1

μess,c2,t,nu
ess
t,e P

c,rat
e −∑T

t�1
∑N
n�1

μess,d2,t,n 1 − uess
t,e( )Pd,rat

e

+∑T
t�1
∑N
n�1

μS1,t,nSe
min −∑T

t�1
∑N
n�1

μS2,t,nSe
max +∑T

t�1
∑N
n�1

μL,move
1,t,n Lmin −∑T

t�1
∑N
n�1

μL,move
2,t,n Lmax

(60)
Equation 60 is combined with the upper DNO optimization

objective Equation 1 to obtain the optimization objective of the
single-layer optimization model as shown in Equation 61:

minF � ao fGrid + floss + fswitch −∑T
t�1
∑N
n�1

λt PL
t,i − PPV

t,i( )Δt⎡⎣ ⎤⎦ + bvfvd+

∑T
t�1
∑N
n�1

μL,move
1,t,n Lmin − μL,move

2,t,n Lmax( )
+∑T
t�1
∑N
n�1

−μess,c2,t,nu
ess
t,e P

c,rat
e − μess,d2,t,n 1 − uess

t,e( )Pd,rat
e[ ]

+∑T
t�1
∑N
n�1

μS1,t,nSe
min − μS2,t,nSe

max[ ]

(61)

Subject to: Equations 7, 8, 11–13, 15–19, 29–31, 33–34,
36–40, 45–59;

Variables: λt, PVSC
t,i , QVSC

t,i , PP
t,n, P

L,move
t,i , Pess,c

t,i , Pess,d
t,i , St,e;

By the above methods, the two-layer game optimization problem
has been transformed into a single-layer optimization problem.

5 Simulation and analysis

To verify the accuracy and feasibility of the proposed model,
programming was implemented using MATLAB R2021b software.
The optimization was solved in a 64-bit Windows environment,
utilizing the YALMIP toolbox and the Gurobi solver. The hardware
environment for optimization calculations was an Intel(R)
Core(TM) i9-13900 K @ 3.00 GHz processor with 128 GB
of memory.

5.1 Parameter setting

In the simulation tests, the modified IEEE-33 bus distribution
system is used for analysis, which includes five prosumers with PV
systems. Among them, the prosumers at buses 10 and 29 are
equipped with ESS, as shown in Figure 4. The whole DN
contains five PVS, two ESS and one four-feeder MOP. The
relevant parameters are shown in Table 1, and the other bus
branch parameters are the standard IEEE-33 bus system.

The DNO is set from the HV power purchase price reference
(Qiao et al., 2025), and the DNO selling price is set to 400 ¥/MWh,
without considering the reactive power influence of renewable

FIGURE 4
Diagram of the improved IEEE 33-bus system.

TABLE 1 IEEE 33-bus test system related parameters.

Entity Device Location Parameter

Prosumer 1 PV Bus 2 Power: 500 kW

Prosumer 2 PV Bus 10 Power: 500 kW

ESS Bus 10 Power: 0.5 MWh, Capacity: 0.2 MW, efficiency: 0.95

Prosumer 3 PV Bus 14 Power: 400 kW

Prosumer 4 PV Bus 21 Power: 400 kW

Prosumer 5 PV Bus 29 Power: 300 kW

ESS Bus 29 Power: 0.5 MWh, Capacity: 0.2 MW, efficiency: 0.95

DN MOP Bus 12, 22, 18, 33 Capacity: 0.75WVA
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energy. Other parameter Settings are shown in Table 2 (Yang
et al., 2023).

The PV output and load demand forecast of each prosumer are
shown in Figures 5A, B.

5.2 Results and analysis

In the energy trading market, DNO, as the leader, has the pricing
power, and the settlement price determined is shown in Figure 6.

As followers, prosumer adjust their electricity consumption
strategies according to the internal settlement price. The
transferable load of each prosumer is shown in Figure 7A, and
the total exchange power with DNO is shown in Figure 7B. The
charging and discharging power of ESS1 connected to prosumer 2 is
shown in Figure 8A, and the energy storage of each ESS is shown
in Figure 8B.

As observed from Figures 5–8, the formulation of the electricity
consumption strategy of the prosumer is affected by the clearing
price set by the DNO, which is specifically shown as follows:

Between 0:00 and 5:00, with zero PV output and low prosumer
loads, prosumers purchase electricity to maintain normal operations.
Clearing prices remain high due to economic principles but are capped
by time-of-use pricing. During this period, the ESS charges and the
prosumer increases the transferable load. From 3:00 to 5:00, as the
electricity price decreases, the ESS charging increases, resulting in a
sharp rise in the exchanged power. Between 6:00 and 8:00, the PV
generation and consumer load gradually rise, but the supply is still
insufficient, leading to an increase in the clearing price. At the same
time as the ESS discharges, the prosumer reduces the transferable load,
which reduces the exchanged power. Between 9:00 and 10:00, higher
PV generation and less load can achieve energy balance through
energy interaction and resource adjustment without purchasing
DNO, thus achieving price reduction and zero exchanged power.
From 11:00 to 13:00, peak PV output exceeds demand, enabling
prosumers to charge ESS, consume transferable loads, and sell
surplus energy to the DNO. Exchange power becomes negative,
and clearing prices drop to the minimum limit. Between 14:00 and
17:00, as PV generation and load are reduced, the supply temporarily
meets the demand and maintains the minimum price. After that, the
energy internal supply exceeds the demand leading to the clearing
price increase, prompting the prosumer to reduce the load and the ESS
discharge, so that the exchange power is positive. From 18:00 to 20:00,
insufficient PV generation and gradually rising electricity demand lead
to the maximum clearing price. The prosumer reduces the transferable
load and the ESS discharges, at which point, the exchanged power
reaches its peak. Between 21:00 and 24:00, demand remains high, but
prices stabilize due to time-of-use pricing. Prosumers remaining
transferable loads and discharge surplus ESS energy, reducing costs
and exchange power as load demand declines.

The voltage situation of each bus within 24 h of the test system is
shown in Figure 9. It can be seen that the per unit voltage value of

TABLE 2 Parameter settings.

Parameter Value Parameter Value

Δt 1 h �U 1.05p.u

ao 0.833 U 0.95p.u

bv 0.167 ~Uref 0.97 p.u.,1.03p.u

Closs 0.08 λtmin Wt

ldeg 2.7$/MWh λtmax Xt

FIGURE 5
Initial data of each prosumer: (A) PV output; (B) Load demand.
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each bus is within the expected range (0.96 p.u.–1.04p.u.), which
meets the safety of the system operation.

The gap value of 24 h is shown in Figure 10. Combined with the
definition of Equation 41, it can be found that the gap value of each
time period is at the level of 10-6, so it can be proved that convex
relaxation is accurate.

5.3 Scenario comparison and analysis

In order to verify the effectiveness and superiority of the proposed
strategy, the following three scenarios are set in this section:

Scenario 1: Only the economy of the system is considered, and
safety issues such as MOP power flow optimization,
power loss, and voltage deviation are not considered.

Scenario 2: The adjustment of MOP is not considered in the
proposed strategy.

Scenario 3: The strategy presented in this article.

As can be seen in Figures 11A, B and Figures 12 A, B, the voltage
quality of scenario 3 is better than that of the comparison scenario,
indicating that the proposed strategy can improve the stability of the
system. Moreover, the action of MOP is consistent with that of
energy storage, which indicates that MOP can optimize the power

FIGURE 6
Clearing price.

FIGURE 7
Load regulation strategies of prosumer: (A) Changes in transferable loads; (B) Exchange power.
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flow distribution and improve power quality by adjusting the active
and reactive power of the connected feeders.

The test results are compared as shown in Table 3, including
the system power loss cost (floss, including line power loss
and MOP power loss), the converted voltage deviation cost
(fvd), the total operating cost of DNO (FDNO), the total
operating cost of the prosumer (Jn) and voltage over-limit
rate. The voltage compliance range specified in this paper is
0.95p.u.–1.05p.u.

As shown in Table 3, the daily total operating cost of the DNO
in Scenario 1, which considers only economic benefits, is $13.95,
representing a reduction of approximately 83.9% compared to
$86.72 in Scenario 3. However, the voltage deviation cost
increases from $0.13 to $104.21, an increase of nearly

800 times, and the voltage over-limit rate increases from 0%
to 26.39%. This indicates that in scenarios where safety
performance is not considered, all controllable resources are
allocated to maximize profits. While this approach effectively
reduces system operating costs, it leads to significant grid
fluctuations, poor power quality, and substantial safety risks,
which are detrimental to the reliable operation of the system.

Compared to Scenario 2, Scenario 3 introduces the MOP,
which increases the power loss cost of the MOP by $30.94.
However, both network loss and voltage deviation costs are
reduced, resulting in a decrease in the total operating cost of
the DNO from $193.04 to $86.72, a reduction of approximately
55.1%. Moreover, the voltage over-limit rate is reduced from

FIGURE 8
ESS control strategy: (A) Charge and discharge power of ESS1; (B) Energy storage of each ESS.

FIGURE 9
Voltage profiles of all 33 nodes. FIGURE 10

Gap value.
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65.03% to 0. This demonstrates a significant improvement in
both economic efficiency and operational safety.

In summary, the proposed strategy not only addresses the
energy transaction challenges in multi-prosumer distribution
systems and ensures the economic benefits of all participants but
also enhances the safety performance of the system. Additionally, it
provides a novel solution for promoting local renewable energy
utilization and optimizing energy interactions.

6 Conclusion

This study investigates the energy interaction challenges in
flexible distribution systems with multiple prosumers. By
analyzing the factors influencing the economic benefits of the
DNO and prosumers, as well as the network security of the DN, a
Stackelberg game-based energy interaction strategy for multi-
prosumer distribution systems is proposed, considering both

FIGURE 11
Comparison of voltage per unit value: (A) Maximum voltage; (B) Minimum voltage.

FIGURE 12
Power output of MOP: (A) The output of active power; (B) The output of reactive power.
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economic and safety aspects. Unlike previous studies, this
strategy not only addresses the economic issues between the
DNO and prosumers but also optimizes DN operation by
regulating the MOP, ensuring system operational safety and
improving power quality. Additionally, the original bi-level
energy interaction model is transformed using KKT
conditions, enhancing computational efficiency. The main
conclusions are as follows:

1) Different from traditional energy interaction models for
multi-prosumer distribution systems, this paper proposes a
novel energy interaction strategy based on game theory,
considering the interests of all participants and the
operational safety of the system. This strategy not only
maximizes the benefits for all parties but also promotes
the local utilization of PV energy while protecting
user privacy.

2) The influencing factors in the energy interaction process
were analyzed, and the MOP was introduced into the
energy trading market. Different from traditional
interaction models that focus solely on the coordination
between the DNO and prosumers, this strategy also
considers power flow regulation in the DN. Although
the introduction of MOP increases device costs, it
significantly reduces power losses across the system,
improves power quality, and ensures the long-term
operation of the system.

3) Different from traditional iterative methods for solving bi-level
energy interaction game models to determine transaction
prices, this paper employs KKT conditions, dual theory,
linearization methods, and relaxation techniques to
transform the bi-level optimization model, simplifying the
solution process.

This study focuses on exploiting the potential of game theory
in enhancing energy interaction in flexible distribution systems
and innovating the introduction of interconnected devices to
improve the regulation performance of distribution networks,
but voltage overruns still exist. Therefore, future research should
be oriented to dynamic uncertainty and real-time operation,
and explore data-driven based intelligent control to further
optimize energy trading, improve scalability, and ensure
reliable grid operation.
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TABLE 3 Test data comparison.

Test result Scenario 1 Scenario 2 Scenario 3

floss ($) Line 9,560.51 209.19 72.00

MOP 0 0 30.94

fvd ($) 104.21 2.96 0.13

FDNO ($) 13.95 193.04 86.72

Jn ($) 2,704.10 2,700.75 2,712.97

Voltage over-limit
rate

65.03% 26.39% 0%
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