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Demand response has significant potential for enhancing energy utilization,
thereby contributing to the advancement of integrated energy systems (IES).
In this paper, an optimal IES dispatch model fully incorporating flexible loads on
the demand sides is established. Firstly, based on time-of-use (ToU) electricity
pricing, a flexible two-dimensional integrated demand response (IDR) model is
presented, which is characterized by considering tightly spatial-temporal
coupling characteristics of different loads. Subsequently, a day-ahead dispatch
model for IES, incorporating ToU-based IDR, is developed to minimize the total
operational cost. In this model, the optimal ToU pricing scheme is determined by
comparing their economic efficiencies. The Particle Swarm Optimization (PSO)
algorithm is then applied to solve the complex dispatch problem. Finally, the case
study is conducted and the comparative results confirm that: 1) implementation
of the IDR in time-space dimension can flatten the loads curves; 2) the time-
space IDR significantly promotes the economic benefits of IES dispatch; 3) the
proposed dispatch model is able to coordinate and optimize various types of
energy and flexible loads.
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1 Introduction

Energy shortages and environmental pollution have been critical challenges in the
development of countries worldwide. In terms of the utilization of renewable energy, the
ongoing development and deployment of renewable energy sources such as wind power,
photovoltaics, and hydroelectric power generation have become hot topics. Traditionally,
the power system scheduling has focused primarily on the supply side, coordinating the
output of various types of generators to minimize scheduling cost. The research on power
system optimal scheduling mainly includes unit combination methods, multi-time scale
optimization scheduling strategies, and uncertain scheduling of the power grid. From the
perspective of improving energy efficiency, the integrated energy system (IES) technology
has emerged (Zhang et al., 2022; Dou et al., 2024). IES is an important form of coupling
multiple energy sources such as electricity, gas and heat, enabling the comprehensive
planning and unified dispatch of different energy systems. IES facilitates cascaded energy
utilization, which not only improves energy efficiency but also promotes the integration of
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renewable energy sources. Scholars began to explore the flexibility of
user-side scheduling, aiming to enhance the grid’s regulation
capacity. This is referred to demand-side response. The demand
response technologies in IES are evolving toward large-scale
integrated demand response (IDR) (Zhang et al., 2022; Dou
et al., 2024; Hossein Yaghmaee, 2024; Li et al., 2023; Gu et al.,
2023; Wang et al., 2023; Feng et al., 2020; Yang Cui et al., 2022; Yang
et al., 2020; Duan et al., 2022; Yang Li et al., 2022; Liang et al., 2022;
Shao et al., 2021). IDR is a promising approach, which adjusts
energy consumption patterns based on temporal characteristics and
price signals within the IES. By improving the flexibility of energy
consumption, IDR has emerged as a crucial technology for balancing
supply and demand, gaining significant attention in recent years.

IDR plays a pivotal role in advancing energy conservation,
reducing emissions, and supporting the achievement of carbon
emission reduction goals. IDR achieves cascaded energy utilization
and enhance energy efficiency through the conversion between
different forms of energy and the complementary characteristics of
load energy consumption patterns. Significant research has been
conducted on IDR strategies and the optimal operation
considering IDR in IES. Reference (Zhang et al., 2022; Dou et al.,
2024) proposes an IES optimization scheduling model that
incorporates IDR and dynamic energy prices, aiming to maximize
the economic benefits for both users and suppliers while considering
the interests of multiple stakeholders. Reference (Zhang et al., 2022;
Dou et al., 2024) introduces a low-carbon economic dispatch model
for source-load coordination in IES, which accounts for generalized
electric-thermal demand response. This model improves carbon
capture at power plants during peak load periods, thus balancing
economic and environmental objectives. Reference (Zhang et al.,
2022; Dou et al., 2024) suggests an optimization approach for the
source-network-load scheduling in IES through IDR participation.
This method decouples the operation mode of combined cooling
heating, and power (CCHP) systems and wind curtailment, thereby
enhancing the integration of wind power within the system. Reference
(Zhang et al., 2022; Dou et al., 2024) presents an optimization method
for electricity and natural gas coupled systems that accounts for IDR
uncertainty based on opportunity constraints. Reference (Zhang et al.,
2022; Dou et al., 2024) explores the uncertain optimization scheduling
problem of community IES considering comprehensive demand
response and electric vehicles, with the goals of minimizing system
operating costs. Reference (Zhang et al., 2022; Dou et al., 2024)
conducts a detailed classification study on load types in IDR,
establishing models for uncontrollable loads, transferable loads,
reducible loads, and substitutable loads, and conducting systematic
two-level optimizations. Reference (Zhang et al., 2022; Dou et al.,
2024) introduces an IDR model for electric-power systems based on
energy hubs, which optimizes both upper-level unit combination and
lower-level economic scheduling.

Although IDR technology has become a significant research focus
and has yielded valuable results, there are issues that need further
exploration. The major motivations of this paper are shown as follows.
1) Current research primarily concentrates on adjusting load profiles
on the time dimensional IDR, with insufficient attention given to load
adjustment strategies on the spatial dimension. Therefore, IDR
considering the substitution characteristics of different energy across
different domains remains underdeveloped. 2) The electricity, heating,
and cooling loads within IES exhibit flexible characteristics, which not

only help reduce peak-to-valley differences but also contribute to
deducing operational costs alongside generation. Integrating
comprehensive IDR across various dimensions with IES dispatch
represents a promising pathway for enhancing the efficiency of IES
operations. 3) Demand-side participation in the optimized operation
of IES presents a complex, nonlinear, multidimensional, uncertain, and
multi-party optimization challenge. How to solve the IES dispatch
model with IDR is an important issue.

In conclusion, the main contributions of this paper are shown as
follows. 1) This paper proposed a two-dimensional IDR model based
on ToU price scheme to further explore the elasticity of demand sides.
It conducts in-depth research on the time-shiftable characteristics of
flexible loads and the spatial energy complementary substitution
dynamics. 2) The paper explores the potential contributions of the
demand side to IES dispatch optimization. An optimal IES dispatch
model incorporating comprehensive IDR is developed with the goal of
enhancing the economic benefits. 3) Finally, the effectiveness of the
two-dimensional IDR mechanism proposed in this paper and the
practicality of the IES scheduling method considering IDR are verified
through simulation cases.

The rest of the paper is organized as follows. The two dimensional
IDR in IES is established in Section 2. Section 3 proposes the IES
dispatch model integrated with IDR strategy, which is followed by
model solution algorithm description in Section 4. Case study is given
in Section 5. Finally, conclusion is shown in Section 6.

2 Integrated demand response
modeling in IES

Flexible load plays an important role in peak-load shifting,
promoting renewable energy consumption and increasing IES
economic benefits. In proposed IES dispatch with IDR problem,
three forms of loads are covered, which are electricity loads, heating
loads and cooling loads. The consumers can change their energy
usage behaviors by price-based IDR. Not only can they directly
decrease or shift a portion of the loads, but also change the form of
the energy through the coupling devices (Liu et al., 2020; Siqing et al.,
2024; Chen et al., 2022; Safta et al., 2017; Zeng et al., 2018; Wu et al.,
2017; Cheng et al., 2022).

In ToU based IDR, the goal is to determine the optimal
electricity price for the valley period (ρvalley), the off-peak period
(ρoff−peak) and the peak period (ρpeak) in Equation 1.

ρ �
ρPeak

ρOff−peak
ρValley

⎡⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎦ � ρave 1 + σ( )
ρave

ρave 1 − σ( )
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ (1)

where ρ is the electricity matrix in a typical day, ρave is the average
price. σ represents the ration of up and down in peak period and the
valley period, respectively.

2.1 Time-space dimension based IDR

In IES, controllable loads on the demand side represent a
valuable flexible resource. Demand response can not only adjust
energy consumption in the time dimension through load shedding
and load shifting, but also in the spatial dimension by enabling the
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flexible switching between different forms of energy consumption,
including electricity, gas, heating, and cooling, thereby facilitating
complementary substitution of energy sources (Liu et al., 2020;
Siqing et al., 2024; Chen et al., 2022; Safta et al., 2017; Zeng et al.,
2018; Wu et al., 2017; Cheng et al., 2022). In the time dimension,
users adjust their energy consumption patterns and shift energy use
to periods of lower prices based on electricity price signals. In the
spatial dimension, the price curves for electricity and natural gas
typically exhibit temporal variations. During peak pricing periods
for a specific energy form, users can shift alternative energy sources,
optimizing their energy consumption decisions and enabling flexible
adjustments in response to spatial price variations. The specific
model for two-dimensional demand response within IES is
formulated as Equation 2:

dDR,af
* t( ) � dDR,ini

* t( ) + ΔdDR,Te
* t( ) + ΔdDR,Sp

* t( )
*∈ electricity, heat, cool{ } (2)

where dDR,af
* (t) is the load demand after IDR; dDR,ini

* (t) is the initial
load demand before IDR; ΔdDR,Te

* (t) is the load increment in time
dimensional IDR; ΔdDR,Sp

* (t) is the demand response load increment
in spatial dimensional IDR.

2.1.1 IDR in time dimension
In time-dimensional IDR (TE-IDR) model, the relationship

between user response and electricity/gas prices is represented by
the demand price elasticity. Demand price elasticity is defined as the
sensitivity of users’ electricity consumption to changes in electricity
prices, specifically representing the relationship between the rate of
change in consumption and the rate of change in electricity or gas
prices. At any certain moment, the energy consumption of users is
not only influenced by the current price of the energy, but also by the
price of the energy at previous or future time points (Zhang et al.,
2022; Cheng et al., 2022). The price elasticity is defined as
Equation 3:

E t, t′( ) � ∂d t( )/d0 t( )
∂ρE t′( )/ρE,0 t′( ) (3)

where E is the elasticity, d(t) and d0(t) are the electricity load demand
after and before the IDR, respectively, and ρE and ρE,0 are the
electricity price after and before the IDR, respectively.

For 24 h in a day, self and cross elasticity values can be
formulated as the matrix in Equation 4:

Δd 1( )
do 1( )
Δd 2( )
do 2( )

...

Δd 24( )
do 24( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
�

E 1, 1( ) ... E 1, 24( )
... ... ...

E 24, 1( ) ... E 24, 24( )
⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦ ×

ΔρE 1( )
ρE,o 1( )
ΔρE 2( )
ρE,o 2( )

...

ΔρE 24( )
ρE,o 24( )

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(4)

In multi-energy system, the price-based load responsive model
in Equation 5 base on cross elasticity of different loads in multiple
periods (24 h) is:

d* t( ) � d0
* t( ) × 1 + ∑24

t′�1

ρE t′( ) − ρE,0 t′( )
ρE,0 t( ) ETe

* t, t′( )⎛⎝ ⎞⎠
*∈ electricity, heat, cool{ }

(5)

Therefore, in the time dimension, the energy demand for
electricity, heating and cooling loads participating in the demand
response is in Equation 6:

ΔdDR,Te
* t( ) � d0

* t( ) × λuser∑24
t′�1

ρE t′( ) − ρE,0 t′( )
ρE,0 t( ) ETe

* t, t′( )) (6)

where ETe
* is the elasticity coefficient of different load in time-

dimensional IDR; λuser is the participation percentage of
customers in a IDR program.

2.1.2 IDR in spatial dimension
Energy prices and load curves vary across different forms of

energy. Users can choose the energy source that best aligns with their
quality requirements, taking into account the relative price
differences between various energy types. This enables the
complementary substitution of energy in the spatial dimension,
thereby promoting the rational utilization of resources and
achieving flexibility in IES regulation. Equations 7, 8 show the
coupling characteristics between loads:

dE t( ) � dEE t( ) + dEH t( ) + dEC t( )
dH t( ) � dHH t( ) + dHE t( ) + dHC t( )
dC t( ) � dCC t( ) + dCE t( ) + dCH t( )

⎧⎪⎨⎪⎩ (7)

dξ,ξ′ t( ) � −dξ′,ξ t( ) (8)
where E, H and C stand for electricity, heating and cooling
symbol, respectively; dE(t), dH(t), dC(t) represents load demand
of electricity, heating and cooling, respectively;
dξ,ξ′(t)(ξ, ξ′ ∈ E, H, C{ }) are coupling between two forms
of loads.

In the space-dimensional IDR (SP-IDR), the energy load
increment for electricity, heating, and cooling loads involved in
IDR is expressed as Equation 9:

ΔdE
DR,Sp t( ) � λuserηEHdEH t( ) + λuserηECdEC t( )

ΔdH
DR,Sp t( ) � λuserηHEdHE t( ) + λuserηHCdHC t( )

ΔdC
DR,Sp t( ) � λuserηCEdCE t( ) + λuserηCHdCH t( )

(9)

where λuser denotes the probability of selecting an energy
complementary alternative for various types of loads at time t;
ηξ,ξ′(t)(ξ, ξ′ ∈ E,H, C{ }) represents the energy conversion
coefficients between different energy types.

In price-based IDR, transformable loads adjust the form of
consumed energy based on the price difference signal between
electricity and gas prices. For simplicity, electricity, heating, and
cooling loads are converted to gas demand either directly or
indirectly. In this context, the space-dimensional IDR is regarded
as a virtual energy converter. Considering the coupling
characteristics of the loads, the price-based IDR in the space
dimension can be expressed as Equation 10.

ΔdDR,Sp
* t( ) � d0

* t( ) × λuser
ρE t( ) − ρG t( )

ρG t( ) ESp
* t( )

*∈ electricity, heat, cool{ } (10)

ΔdDR,Sp
* t( ) � η*,g · ΔdGas

DR,Sp t( ) (11)

where d0*(t) is the load demand under basic electricity price and gas
price; ESp

* denotes the elasticity coefficient of different load in spatial-
dimensional IDR; ρG is the natural gas price; η*,g represents the
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conversion efficiency of electricity/heating/cooling loads to gas
demand; ΔdGasDR,Sp is the amount of load increment converted to
the natural gas loads.

3 IES dispatch formulation with two-
dimensional IDR

The IES dispatch problem is crucial for the development of
energy systems. In an IES, parts of generations and controllable
loads are both adjustable units. The specific IES architecture in this
paper is illustrated in Figure 1. It mainly includes power to gas
(P2G), combined cooling heating power (CCHP) system, electric
boiler (EB), electric chiller (EC), absorption chiller (AC) and gas
boiler (GB). For electricity load, it is serviced by main power grid,
P2G and CHP. If there is any remaining electricity, it will be sold
excess power to the gird. The heating and cooling load must be
supplied by coupled devices. For heating load, it is jointly provided
by the EB, GB and CCHP. For cooling load, it is supplied by EC,
CCHP and AC. Meanwhile, consumers can change the energy
demand by ToU-based IDR.

3.1 Problem description

Various load curves generated by price-based IDR under
different energy prices lead to distinct optimal dispatch results.

Therefore, if the electricity price is taken as the variables of IES
dispatch problems, the adjustment of IES will be improved.
However, treating electricity prices as decision variables in the
dispatch model result in excessively large computational scales
and low calculation efficiency. The structure of the IES dispatch
problem incorporating IDR is illustrated in Figure 2. Different
electricity price schemes are used as input variables, and a set of
load curves is generated under two-dimensional IDR. Then,
based on these different load curve schemes, the IES dispatch
model considering IDR is developed. Next, the best IES dispatch
solution under a load curve is obtained based on PSO algorithm.
Finally, the most economic dispatch scheme with different load
curves is selected and optimal ToU electricity price is
determined.

3.2 IES dispatch considering IDR

3.2.1 Objective functions
Based on the established time-space dimensional IDR, the load

curves are optimized. The goal of the IES dispatch is to achieve
economically optimal operation for supplying various type of loads
[Liu et al., 2020]. It considers the operation costs of different
components in the IES, which can be expressed as Equations 12–15:

minf � ∑T
t�1
COpe t( ) (12)

FIGURE 1
IES structure.
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The operation cost Cope represents the operation cost in a typical
day. It consists of purchased cost of electricity and gas Cpur, as well as
the income generated from the sale of electricity Csel.

Cope t( ) � Cpur t( ) − CSel t( ) (13)
Cpur t( ) � ρpur,Gas t( ) Vgas t( ) + ΔdGas

DR,Sp t( )( ) + ρpur,Ele t( )Ppur t( )
(14)

CSel t( ) � ρSel,Ele t( )Psel t( ) (15)

where ρpur,Gas and ρpur,Ele are purchased price of gas and electricity
from natural gas system or main grid; ρSel,Ele is the price of electricity
sold to main grid; Ppur and Psel are purchased power frommain grid
and sold power to main grid respectively; Vgas is the volume of gas
purchased from natural gas system; ΔdGasDR,Sp(t) represents the
amount of the electricity/heating/cooling load converted to gas
demand in space-dimensional IDR.

3.2.2 Decision variables
In IES dispatch process, the primary goal is to optimize the

quantities of electricity and natural gas to be purchased or sold, as
well as the operation of the coupling devices. Therefore, in IES
dispatch model considering IDR, the decisions variables are
represented by matrix in Equations 16–18:

X � σ, Xope[ ] (16)
Xope � Xope 1( ), Xope 2( ), ......, Xope t( ), ....Xope T( )[ ] (17)

Xope t( ) � Ppur t( ), Psel t( ), PP2G t( ), PEB t( ), PEC t( ), Vgas t( ),[
VCCHP t( ), VGB t( ), HAC t( )]t � 1, ..., T (18)

where T (T = 24) is the time slots number in a typical day.

3.2.3 Constraints
The IES purchases electricity and natural gas from the external

network to meet the load demand, while the heating and cooling
loads are supplied by the coupling equipment (Safta et al., 2017;
Zeng et al., 2018; Wu et al., 2017; Cheng et al., 2022; Lu et al., 2021).
To ensure the system operates efficiently, the following energy
balance constraints must be satisfied, including power balance
(Equation 19), gas balance (Equation 20), heating balance
(Equation 21), and cooling balance (Equation 22).

Ppur t( ) − Psel t( ) � PP2G t( ) − PCCHP t( ) + PEB t( ) + PEC t( ) + dE t( )
(19)

Vgas t( ) + VP2G t( ) � VCCHP t( ) + VGB t( ) (20)
HCCHP t( ) +HEB t( ) +HGB t( ) � HAC t( ) + dH t( ) (21)

CCCHP t( ) + CAC t( ) + CEC t( ) � dC t( ) (22)
where PP2G and VP2G are input and output of P2G device; VCCHP is
the input of device CCHP, PCCHP,HCCHP and CCCHP are electricity
output, heating output and cooling output of device CCHP;
PEB,HEB are input and output of EB device; PGB,HGB are input
and output of GB device; PEC, CEC are input and output of EC
device; HAC, CAC are input and output of AC device.

The energy conversion of different coupling devices is shown in
Equations 23–30:

VP2G � ηP2GPP2G (23)
PCCHP � ηPVCCHP (24)

FIGURE 2
Block diagram of IES dispatch considering IDR.
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HCCHP � ηHVCCHP (25)
CCCHP � ηCVCCHP (26)
HEB � ηEBPEB (27)
HGB � ηGBPGB (28)
CEC � ηECPEC (29)
CAC � ηACHAC (30)

where ηP2G is energy conversion efficiency of P2G; ηP, ηH and ηC are
energy conversion efficiency of CCHP; ηEB is energy conversion
efficiency of EB; ηGB is energy conversion efficiency of GB; ηEC is
energy conversion coefficient of EC; ηAC is energy conversion
coefficient of AC.

The IES can directly purchase or sell electricity to/from the
external power grid. However, simultaneous purchasing and selling
of electricity is not permitted. The constraint is shown in Equation 31.

Ppur t( ) · Psel t( ) � 0 (31)

Equipment operation limits constraints are shown in Equation 32.

Pi,min ≤Pi t( )≤Pi,max (32)
where Pi,max and Pi,min denote the maximum and minimum output
value of the ith device, respectively.

4 Model solution

In this paper, an optimal IES dispatch model considering time-
space dimensional IDR is proposed. Firstly, IDR model of time-
space dimensions based on price elasticity is developed. The ToU
electricity prices are adjusted by modifying the peak-valley price
differential. A series of load curves are fitted based on ToU electricity
price. Next, the IES dispatch model with IDR is established. Finally,
particle swarm optimization (PSO), a popular and widely used
optimization algorithm based on swarm intelligence is applied to
solve the problem. The outlines of model solution based on PSO are
shown as follows.

Step 1: Construct the IES. Input the devices parameters, different
type of load data and energy prices.

Step 2: Choose the parameters of PSO algorithm. Initiate
population P randomly: position, velocity, personal best
(pbest) of PSO. Select global best (gbest) of the population.

Step 3: Calculate the fitness of each particle according to
Equations 12–15 and judge the constraints in Section
3.2. If constraints are violated, handle the constraints
using penalty function method.

Step 4: Determine whether the maximum number of iterations has
been reached. If it has not, the iterative process continues and
returns to Step 3. Otherwise, output the optimal solution.

5 Case study

5.1 Case introduction

In this paper, a district IES with a specific structure, as shown in
Figure 1, is selected to optimize the IES dispatch problem. The price

of natural gas is 2.63 yuan/m3, while the basic electricity price for
purchasing from and selling to the main power grid are 0.5 yuan/
kWh and 0.4 yuan/kWh, respectively. The electricity/heating/
cooling loads on a typical day in summer are shown in
Figure 3. Periods of time-of-use in IES are described in Table 1.
The parameters of the energy conversion devices are shown
it Table 2.

The following four different cases are conducted and compared
to verify the proposed strategy in this paper.

Case 1: Optimal dispatch of IES without any IDR.

Case 2: Optimal dispatch of IES only with time-dimensional IDR.

Case 3: Optimal dispatch of IES only with space-dimensional IDR.

Case 4: Optimal dispatch of IES with time-space dimensional IDR.

5.2 Result analysis

The comparison results of IES operation cost in different Cases,
with IDR participation percentage of 30%, are shown in Table 3. The
analysis reveals that Case 4 has the lowest operation cost. A
comparative analysis of the four cases yields the following
observations.

1) Compared with Case 1, Case 2 introduces time-dimensional
IDR, which reduces the peak-valley price difference by shifting
load from peak to valley periods based on the ToU electricity
pricing. As a result, the optimal operation cost in Case 2 is
reduced by 111.84 yuan compared to Case 1.

2) Compared with Case 1, Case 3 incorporates space-dimensional
IDR, which leads to a reduction in the IES operation cost to
242.77 yuan, representing a 126.86 yuan decreasing compared
to Case 1. This demonstrates that the space-dimensional IDR
is effective in improving the economic efficiency of the
IES dispatch.

3) The operation costs of Case 2, Case 3and Case 4 are lower than
that in Case 1. It is illustrated that single IDR in time
dimension, single IDR in space dimension and two-
dimensional IDR all contributed to the IES operation
optimization.

5.3 Comparison analysis

5.3.1 Analysis of ToU schemes in different Cases
The electricity price schemes of optimal IES dispatch under

different cases are presented in Table 4. As shown in both Tables 3
and 4, compared to the basic single electricity price in Case 1, it is
evident that the load curves are adjusted according to the varying
ToU pricing schemes. Analyzing the ToU schemes in Table 4 reveals
that the pull-open ratio in Case 2 and Case 3 is significantly higher
than that in Case 4. In Case 2, which involves only time-dimensional
IDR, the large price differential encourages customers to shift a
substantial amount of load from peak to valley periods. A similar
pattern is observed in Case 3. However, in Case 4, the smaller price
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differential, resulting from the combined time-space dimensional
IDR, leads to load curve optimization through a dual effect. This
indicates that the smaller pull-open distance in Case 4 enables more
refined load shifting, benefiting from the integration of two
dimensional IDR. In summary, the optimization of load curves in
Case 4 is influenced by the combined effects of time-dimensional
IDR and space-dimensional IDR.

5.3.2 The optimized loads curves in different Cases
The overall loads of electricity, heating and cooling in a typical

day are represented in Table 5. It is evident that overall load of
different energy demand varies with the guide of electricity price.
Compared with the traditional unified fix electricity price in Case 1,
the load demands with IDR based on ToU schemes in Case 2, Case 3
and Case 4 are all reduced. In Case 4 which employs two-
dimensional IDR, the overall electricity load, heating load and
cooling load are reduced by 56.2 kW, 31.3 kW,186 kW
respectively. Notably, the reduction in cooling load is the most
significant.

Moreover, in order to further highlight the necessity of
implementation of IDR in both time dimension and space
dimension, electricity/heating/cooling loads curves with and
without IDR are shown in Figure 4. It is clear that the
implementation of the IDR in time dimension and space
dimension can both effectively achieve the peaking-shaving and
valley filling, thereby flattening the electricity/heating/cooling loads
curves. While the overall trends of the different load curves are
similar, the optimization of the load curves is most pronounced
when both time and space dimensional IDR are applied. Meanwhile,
it is shown in Figure 4 that the load curves after implementing
single-time-dimension IDR in Case 2 and single-space-dimension

FIGURE 3
The electricity, cooling and heating load on a typical day.

TABLE 1 Period of time-of-use.

Period Valley Off-peak Peak

Duration 0:00–6:00
23:00–24:00

6:00–9:00
20:00–23:00

9:00–20:00

TABLE 2 Parameters of the conversion devices.

Conversion device Capacity Efficiency or
coefficient

P2G 350 kW ηP2G : 0.75

CHP 250 kW ηP : 0.35; ηH : 0.45

EB 200 kW ηEB : 0.95

EC 200 kW ηEC : 2

GB 600 kW ηGB : 0.75

AC 200 kW ηAC : 1.2

TABLE 3 Comparison result of different cases.

Case number Case 1 Case 2 Case 3 Case 4

Operation cost (Yuan) 369.63 257.79 242.77 209.37

TABLE 4 Optimal purchased ToU schemes in 4 Cases.

Electricity price Case 1 Case 2 Case 3 Case 4

Peak periods (yuan/kWh) 0.5 0.8375 0.85 0.5875

Off-peak periods
(yuan/kWh)

0.5 0.5 0.5 0.5

Valley periods (yuan/kWh) 0.5 0.1625 0.15 0.4125
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IDR in Case 3, demonstrate improvements over the original load
curves. This indicates that each dimension IDR contributes
individually to optimize the IES dispatch. However, the most
significant improvement is observed when two-dimensional IDR
is applied, underscoring the effectiveness of the two-dimensional
IDR approach proposed in this study.

In Case 2, when IDR is applied in the time dimension,
customers adjust their load demands by either reducing
unnecessary loads or shifting loads from peak periods to off-
peak and valley periods in response to price signals. As seen from
Figure 4, the demand for electricity, heating, and cooling during
9:00–20:00 are decreased significantly, whereas those in the
valley periods (0:00–6:00, 23:00–24:00) increase substantially.
This demonstrates the typical peak-shifting and valley-filling
effects of time-based IDR. Customers respond effectively to the
ToU price, adjusting their demand according to the price
fluctuations.

In Case 3, where IDR is applied in the spatial dimension, the
demand for electricity, heating, and cooling is moderately reduced
during the hours of 7:00–23:00, while only slight reductions are
observed during other periods. The variation in the load curves in
Case 3 is smaller compared to Case 2. This difference can be
attributed to the fact that, in Case 3, the demand response is
primarily influenced by the relative price between electricity and
gas during specific periods. In contrast, in Case 2, the demand
response is driven by electricity prices across all periods, resulting in
a more pronounced effect on load variation.

In Case 4, where the two-dimensional IDR is implemented,
Figure 4 illustrates that the electricity, heating, and cooling loads are
significantly reduced during peak periods and correspondingly
increased during off-peak periods. This demonstrates that the
two-dimensional IDR approach proposed in this study not only
optimizes the load curves but also effectively reduces the operational
costs of the IES to the greatest extent possible.

5.3.3 Operation results of different units in IES
The optimal power dispatch for different units in Case 4 is

shown in Figure 5. It is evident that P2G operates primarily during
valley periods when electricity prices are low. The utilization rate of
the EB is noticeably higher during periods of low electricity prices
compared to periods of high prices. As illustrated in Figure 5B,
purchased electricity remains the dominant source of energy
throughout the 24-h period. The EC is more frequently used

TABLE 5 Total loads in a typical day.

Total loads Case 1 Case 2 Case 3 Case 4

Electricity load 2093.5 kW 2069.6 kW 2059.8 kW 2037.3 kW

Heating load 1084 kW 1069.5 kW 1066.3 kW 1052.7 kW

Cooling load 5074.5 kW 4975.2 kW 4983.5 kW 4888.5 kW

FIGURE 4
Different type loads before and after IDR. (A) Electricity load, (B) Heating load (C) Cooling load.
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during high electricity price periods, primarily due to the heavy
cooling demand in the typical summer day. Conversely, the use of
AC is reduced during peak electricity price periods. Additionally, the
purchase of gas increases significantly during periods of high
electricity prices. This is largely due to the spatial dimension of
the IDR, which influences demand response behavior.

6 Conclusion

In this paper, a two-dimensional IDR based on ToU
electricity price is proposed and integrated into IES dispatched
problem. Firstly, a two-dimensional IDR model is constructed
considering temporal-spatial coupling characteristics based on
ToU. Compared to original electricity/heating/cooling loads
profiles, the loads curves under time-space dimensional IDR
are optimized through peak shaving and valley filling.
Subsequently, an optimal dispatch model for the IES is
formulated, incorporating the IDR to enhance economic
performance. On this basis, the proposed IDR can further
reduce IES operation cost. Finally, in the case study, the
proposed methodology is demonstrated and compared with
different strategies. The analysis of the case study confirms
that proposed IES optimal dispatch model integrated with IDR
is effective. Also, the comparative results verify the benefits of
proposed two-dimensional IDR, both in terms of demand-side
management and overall system operation. This can provide
valuable insights for the coordinated operation of a deep
multi-energy coupling IES. In the future, the uncertainty of
load prediction and IDR participation degree will be further
explored. The study will balance the economy and reliability
of the IES system, offering practical significance for the
development of efficient and resilient energy systems.
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FIGURE 5
Optimal dispatched power of different units in Case 4. (A) P2G, EB, CHP,GB power, (B) Purchased electicty, gas, AC, EC power.
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