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Introduction: Promoting the adoption of Electric Vehicles (EVs) is widely
recognized as an effective strategy for addressing environmental challenges.
Consequently, the expansion of EV charging infrastructure is necessary to
enhance the user experience and accommodate the increasing demand.
However, without careful consideration of optimal site selection and capacity
planning, the integration of EV charging loads may induce significant
overcapacity and voltage fluctuating issues.

Methods: This paper presents a coordinated optimization model for assessing
the integration acceptance capacity of EV charging loads within distribution
networks. The model is based on linear power flow equations and incorporates
the compensatory capabilities of the distribution network.

Results and discussion: A case study is conducted to evaluate the acceptance
capacity of two distinct types of EV charging loads within the IEEE 33-bus
benchmark network. Additionally, the paper examines the impact of various
system expansion strategies on the acceptance capacity, considering the
aggregation of different units. The results indicate that energy storage systems
(ESSs) and static var generators (SVGs) exert the most significant influence on
the network’s ability to accommodate EV charging loads.

KEYWORDS

electric vehicle, acceptance capacity, coordination operation, voltage violation risk,
branch power flow

1 Introduction

Carbon emissions have become a critical environmental concern, driving global efforts
to mitigate their adverse impacts on climate change and public health. Increasing attention
has been directed towards the development and promotion of EVs (Fesli and Ozdemir,
2024).The transition toEVs is considered a pivotalmeasure in reducing carbon footprints, as
these vehicles provide a cleaner alternative to traditional fossil fuel-powered transportation.
Powered by the electricity stored in batteries, EVs can significantly lower carbon emissions
compared to internal combustion engine vehicles (Li et al., 2024). This reduction is
particularly pronounced when accounting for well-to-wheel emissions, which encompass
the entire lifecycle of energy production, distribution, and consumption. Furthermore,when
EVs are charged using renewable energy sources, such as wind or photovoltaic (PV) power,
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carbon emissions can be reduced even further (Hung et al.,
2014; Yadav et al., 2022). The integration of EVs with renewable
energy sources presents a promising approach to achieving a
sustainable transportation sector by minimizing dependence on
non-renewable energy and reducing greenhouse gas emissions.
Therefore, the operational requirements for smart grids are higher
than those for existing distribution networks (Lei et al., 2024;
Xu et al., 2024).

However, the large-scale integration of EV charging stations
into the power grid may have significant implications for power
system operations (Tu et al., 2019; Arya and Das, 2023). The
sudden surge in charging demand can place considerable strain
on the existing infrastructure, particularly if not managed
effectively. When EV users concentrate their charging activities
within a short time window, such as during evening hours
after work, the charging load can peak, potentially resulting
in voltage drops or even violations of voltage limits within
a short time frame (Dias Vasconcelos et al., 2024; Jie et al.,
2024). These fluctuations can undermine the stability and
reliability of the power grid, highlighting the critical need
for strategic planning and management of EV charging
infrastructure.

To mitigate the impact of EV charging loads on the power
system, it is essential to properly plan the capacity of EV charging
stations integrated into the grid. Numerous studies have focused on
the capacity design of EV charging stations. For example (Zhao et al.,
2021), optimized the charging station capacity by considering the
EV arrival and service rates to enhance the quality of service. Li et al.
(2021) proposed a planning model that accounts for EV battery
capacity, while (Bayram, 2022) introduced a capacity planning
framework that incorporates the overstay behavior of EV users.
Although these studies primarily address the characteristics of EV
users, the impact on the power system itself is often overlooked.
Liu et al. (2022) employed particle swarm optimization to calculate
the acceptance capacity of EV charging loads in residential
areas. Li et al. (2020) formulated an optimization problem with
equilibrium constraints to consider energy coordination in the
planning of EV charging stations. Cui et al. (2019) proposed a
placement method for EV charging stations that considers the
driving range of EV users. However, while these studies provide
valuable insights, they do not fully address the contribution
of compensation units in the integration of EV charging
stations.

To address the challenges posed by EV charging loads, it is
essential to integrate compensation units with fast and flexible
response capabilities to support power system operations. Energy
storage systems (ESS) are particularly well-suited for this purpose,
as they can provide both active and reactive power compensations.
During peak load periods, ESS can discharge stored energy to supply
active power, while during load valley periods, it can consume
active power to recharge its batteries (Kharrich et al., 2021).
This bidirectional functionality enables ESS to effectively mitigate
the compensation challenges associated with the integration of
aggregated EV charging loads (Chen et al., 2018; Yan and Chen,
2023). In this way, the ESS could reduce the risks of overcapacity
and voltage fluctuations effectively.

Recent studies on EV charging station planning, such as
(Zhao et al., 2021; Li et al., 2021; Bayram, 2022), largely overlooked

the impacts on the power system, while others, such as (Liu et al.,
2022; Li et al., 2020; Cui et al., 2019), neglected the role of
compensation units. The capacity assessment method proposed by
the authors in (Dai et al., 2023) enables the IEEE 33 benchmark
distribution network to accommodate a total of 1.2 MW of EV
charging load capacity. The work in (Lepolesa et al., 2024), through
optimization algorithms, increases the capacity of EV charging
loads to 2.75 MW. To bridge these gaps, this study proposes a
coordinated optimization model for analyzing EV charging load
capacity, incorporating compensation units such as ESS, SVG,
and PV power generation. The proposed model aims to provide
distribution network managers with the maximum EV charging
load access capacity on different buses, considering compensatory
devices. It also analyzes the contribution of various compensatory
devices to enhancing EV access capabilities, thereby assisting
managers in the planning of the distribution network. Considering
the limitations of the traditional power flow function in convex
optimization frameworks, we employ the Branch Power Flow (BPF)
function. The BPF equations are linear power flow equations based
on phase angle relaxation and second-order conic relaxation. They
focus on the relationship between the square of the node voltage
magnitude and the power injections at each node (Farivar and
Low, 2013a; Farivar and Low, 2013b). In the case studies, various
scenarios are designed to evaluate the integration of ESS, SVG, PV
power generation, and transmission line capacity, demonstrating the
effectiveness of the proposed optimization model in addressing the
complexities of EV integration.Themain contributions of this paper
were listed as follows,

1. A coordinated optimization model is proposed, utilizing
linear power flow functions to accurately assess the
maximum acceptance capacity of EV charging loads across
different buses. This approach ensures the rapid calculation
of the maximum accessible capacity for EV charging
loads.

2. Voltage Violation and Compensation Units: The proposed
model takes into account voltage violation constraints and
incorporates the support provided by compensatory units,
considering the synergistic effects between compensation
systems within the optimization model. Consequently, the
effectiveness of various compensatory devices (including
ESS and SVG) can be quantitatively evaluated. The
contribution of different compensatory devices to enhancing
the accessible capacity of EVs is assessed in the case study
analysis.

3. Evaluation of EV Acceptance Capacity: The system evaluates
the acceptance capacity of electric vehicles under various
operational scenarios, with particular attention to the
differences in access capacity across different buses. Case
study results are presented and discussed, leading to general
conclusions regarding the operation of electric vehicles in the
context of grid integration.

This paper is organized as follows: Section 2 presents the
mathematical models for compensation units, while Section 3
introduces the proposed optimization model. In Section 4, case
studies with various scenarios are conducted and discussed, using
an enhanced IEEE 33-bus benchmark test system. Finally, Section 5
provides the concluding remarks.
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FIGURE 1
The operating boundary of ESS.

2 Mathematical model

As previously mentioned, ESS can provide both active and
reactive power compensation, with these output power variables
constrained by its rated capacity. The operational boundary of ESS
forms a circular region, as illustrated in Figure 1. However, since the
circle boundary is nonlinear, an inscribed quadrilateral is used to
approximate the circle, represented by the red line. The maximum
values of active power and reactive power of ESS are denoted by
PESS,Max
j and QESS,Max

j respectively. The inscribed quadrilateral, with
two boundaries parallel to the horizontal and vertical axes, allows
for the decoupling of active and reactive power. The simplified
ESS operational boundaries reduce the rated output power of
the ESS, thereby allowing the ESS to provide more active power
compensation during the actual operation of the power system.This
approximation reveals that there is a margin in the output power,
and in practical scenarios, limiting the power output may be more
realistic and beneficial. Under conservative estimates, the simplified
operational boundaries of the ESS have minimal significant impact
on the analysis of EV integration capacity.

The ESS can operate either in a charging state or a discharging
state. To represent these operational modes, two binary auxiliary
variables are introduced. The mathematical model of the ESS can
thus be expressed as Equations 1–4,

BESS,Cha
j,t +BESS,Dis

j,t ≤ 1,∀t ∈ T,∀j (1)

0 ≤ PESS,Disj,t ≤ BESS,Dis
j,t PESS,Max

j ,∀t ∈ T,∀j (2)

0 ≤ PESS,Chaj,t ≤ BESS,Cha
j,t PESS,Max

j ,∀t ∈ T,∀j (3)

0 ≤ QESS,Dis
j,t ≤ QESS,Max

j ,∀t ∈ T,∀j (4)

where PESS,Disj,t and PESS,Chaj,t represent the discharging and charging
power of the ESS located at bus j during time interval t, respectively.

FIGURE 2
The operating boundary of SVG.

Additionally,QESS,Dis
j,t represents the reactive compensation power of

the ESS. BESS,Cha
j,t and BESS,Dis

j,t are dimensionless variables denote the
operational state of ESS.

Furthermore, when the ESS compensates for active power, the
battery will be consumed, leading to a reduction in its SOC. Let
SOCESS

j,t denote the SOC of the ESS at bus j at time t, and let EESSj
represent the rated capacity of the ESS. Let ηCha denote the charging
efficiency of the ESS. Assuming that the output of the ESS, PESSj,t , is
positive when the ESS is discharging, the SOC constraints of ESS can
be expressed as Equations 5, 6,

SOCESS
j,t+1E

ESS
j = SOC

ESS
j,t EESSj + P

ESS,Cha
j,t ηChaΔt− PESS,Disj,t Δt,∀t ∈ T,∀j

(5)

0 ≤ SOCESS
j,t ≤ 1,∀t ∈ T,∀j (6)

The SVG is capable of providing continuously adjustable reactive
power, both inductive and capacitive. However, the output power
must be constrained within the rated power range. It is assumed that
a positive value represents capacitive reactive power.The operational
boundary of the SVG is illustrated in Figure 2.

LetQSVG,rated
j denote the rated power of the SVG at bus j, and let

QSVG
j,t represent the output power of the SVG during time interval t.
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FIGURE 3
The enhanced IEEE 33-bus distribution test system.

FIGURE 4
Residential daily load curve.

FIGURE 5
EV charging daily load curves.
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TABLE 1 Parameters of units in different scenarios.

Index SVG #1
(MVar)

SVG #2
(MVar)

ESS
capacity
(MWh)

ESS rated
power
(MW)

PV #1 and
#2 (MWh)

PV #3
(MWh)

Transmission
power limit

(MW)

1 0.4 0.6 0.4 0.2 0.4 0.8 4

2 0.6 0.8 0.4 0.2 0.4 0.8 4

3 0.4 0.6 0.6 0.3 0.4 0.8 4

4 0.4 0.6 0.4 0.2 0.8 1.6 4

5 0.4 0.6 0.4 0.2 0.4 0.8 6

6 0.6 0.8 0.4 0.2 0.4 0.8 6

7 0.6 0.8 0.6 0.3 0.4 0.8 6

8 0.4 0.6 0.4 0.2 0.8 1.6 6

FIGURE 6
Output power of ESS.

Themathematical model of the SVG can be described as Equation 7,

−QSVG,rated
j ≤ QSVG

j,t ≤ Q
SVG,rated
j ,∀t ∈ T,∀j (7)

3 Optimization model

In this paper, a coordinated optimization model is proposed
for evaluating the acceptance capacity of the EV charging load.
A capacity variable, SEV, is introduced to account for the injected
power. The objective function aims to maximize the capacity
variable while minimizing network losses. The evaluation problem
is formulated as an optimization problem, where the objective
function is expressed as Equation 8,

min ω1∑
t∈T
∑
i,j∈ε
(rij + xij)lij,t −ω2S

EV
k (8)

where rij and xij represent the resistance and reactance of the
transmission line between buses i and j, respectively., lij,t is an
auxiliary variable used in the BPF function, and the product
(rij + xij)lij,t represents the network loss on the transmission line
between bus i and j. ω1 and ω2 are the weight of power losses and
capacity variable. And k is the number of the bus aggregated the EV
charging station.

The BPF function is employed to establish the power flow
constraints, which can be expressed as Equations 9–12,

Vj,t = Vi,t − 2(rijPij,t + xijQij,t) + (r2ij + x
2
ij)lij,t,∀(i, j) ∈ ε,∀t ∈ T (9)

∑
k:j→k

Pjk,t − ∑
k:j→k
(Pij,t − rijlij,t) = Pj,t,∀j,∀t ∈ T (10)

∑
k:j→k

Qjk,t − ∑
k:j→k
(Qij,t − xijlij,t) = Qj,t,∀j,∀t ∈ T (11)
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FIGURE 7
Reactive compensation power.

FIGURE 8
The first EV charging load acceptance capacity in the first four scenarios.

‖‖‖‖

‖

2Pij,t
2Qij,t

lij,t −Vi,t

‖‖‖‖

‖2

≤ lij,t +Vi,t,∀(i, j) ∈ ε,∀t ∈ T (12)

where j represents the bus index, Vi,t denotes the square of
the voltage at bus i during time interval t, and Pij,t and Qij,t
represent the active and reactive power transmitted through
the transmission line between buses i and j, respectively. Pj,t
and Qj,t represent the injected active and reactive power,
respectively.

Equations 2–4 represent the power flow constraints on the
transmission line, while Equation 5 defines the second-order
rotating cone relaxation constraint. The derivation of the BPF
function is provided in (Farivar and Low, 2013a) and (Farivar and
Low, 2013b).

The node’s injected power consists of residential load and
compensation power. When calculating the active power demand,
the acceptance capacity of the EV charging load is also considered.
Let PEVt denote the EV charging demand variable for an EV charging
station with a 1 MWh capacity at time t. Therefore, the injected
power at the node can be expressed as Equations 13, 14,

Pj,t = −P
Load
j,t + P

PV
j,t + P

ESS
j,t − S

EV
k PEVt ,∀j,∀t ∈ T (13)

Qj,t = −Q
Load
j,t +Q

ESS
j,t +Q

SVG
j,t ,∀j,∀t ∈ T (14)

where PLoadj,t andQLoad
j,t represent the active and reactive power of the

residential load, respectively, while PPVj,t represents the power output
from the PV generation. Let ηDis denote the discharging efficiency
of the ESS. Assuming the output power of the ESS when discharging
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FIGURE 9
The second EV charging load acceptance capacity in the first four scenarios.

TABLE 2 The mean growth rate of acceptance capacity in the first four
scenarios.

Units with increased capacity ESS SVG PV

The first type EV charging load 105.52% 114.59% 6.01%

The second type EV charging load 31.48% 29.35% 0.28%

is PESS,Disj,t , the output of the ESS can be expressed as Equation 15,

PESSj,t = P
ESS,Dis
j,t ηDis − PESS,Chaj,t ,∀t ∈ T,∀j (15)

The compensation unit constraints include functions (1) to
(7). Let Vmax and Vmin represent the maximum and minimum
permissible values of the voltage squared, respectively. The voltage
violation constraint can then be expressed as Equation 16,

Vmin ≤ Vi,t ≤ Vmax,∀(i, j) ∈ ε,∀t ∈ T (16)

4 Case studies

In this paper, the enhanced IEEE 33-bus benchmark distribution
network, as proposed in (Farivar and Low, 2013a), is utilized
for the case study. The topology of the network is shown in
Figure 3, and the resistance and reactance parameters are provided
in (Dolatabadi et al., 2021). To accommodate the EV charging
load, the rated residential load is set to 80% of the values
presented in (Dolatabadi et al., 2021).

The daily residential load curve is shown in Figure 4, while two
types of EV charging load curves are illustrated in Figure 5. The
parameters of these load curves are derived by normalizing and
fitting them to the actual daily load profiles of a Chinese residential
consumer and two EV charging stations. The residential load is
characterized by a prolonged peak period, with the valley power
demand being approximately 50% of the peak value. This paper

considers a conservative estimate of EV charging loads, meaning
that in most cases, the charging demands of randomly distributed
EVs will be lower than the provided data values.

The first type of EV charging load reaches its peak during
the daytime, with charging demand decreasing after 10 pm. The
second type of EV charging load peaks at night, specifically between
11 pm and 3 am. These two types of EV charging loads represent
distinct charging patterns. The first type reflects the charging
demand in commercial areas, where users do not follow a specific
charging schedule, resulting in charging demand throughout the
day, particularly in the afternoon and evening. The second type
reflects the charging demand in residential areas, where users
tend to charge at night to take advantage of lower electricity
prices, resulting in no charging demand during the morning
and afternoon.

Four ESSs, all with the same parameters, are located at buses #18,
#22, #25, and #33, denoted as ESS #1, #2, #3, and #4, respectively.
Two SVGs are located at buses #18 and #33, denoted as SVG #1 and
#2, respectively. Three PV power generation systems are integrated
into the network, located at buses #18, #25, and #33, denoted as
PV #1, #2, and #3, respectively. The PV output power is assumed
to be positively correlated with solar radiation intensity. Therefore,
the solar radiation intensity data provided in (Hung et al., 2014)
are used to estimate the PV output power in this paper. This paper
also considers a conservative estimate of PV generation power,
implying that in most cases, the PV generation power, which is
randomly distributed, will be higher than the provided data values.
The integration locations for compensatory units and PV systems
alignwith the references provided in the typical IEEE 33 distribution
network model as detailed in (Dolatabadi et al., 2021).

Several scenarios are designed to analyze the impact of different
aggregated units on the system’s acceptance capacity.The parameters
of the compensation units, PV generation systems, and transmission
lines vary across these scenarios, as shown in Table 1. In Scenario
2, a larger capacity of SVGs is aggregated compared to Scenario 1.
Scenario 3 aggregates a larger capacity of ESS compared to Scenario
1. Scenario 4 aggregates a larger capacity of PV generation systems
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FIGURE 10
The first EV charging load acceptance capacity in the last four scenarios.

compared to Scenario 1. Scenarios 5, 6, 7, and 8 are similar to the
first four scenarios, but with higher transmission power limits. The
weight values ω1 and ω2 in the objective function (1) are set to
0.1 and 0.9, respectively. Given the primary focus on the charging
capacity of EVs, a higher weight value ω2 is assigned in the settings
to emphasize this aspect.The optimization of network losses is given
a lower weight ω1 due to the fact that the introduction of BPF
equations, which involve second-order conic relaxation, tends to
amplify line power losses.

The coordinated optimization results for the first scenario,
without considering the EV charging load curve, are depicted
in Figures 6, 7. The data in Figure 6 indicate that the ESS units
provide active power compensation during the final hours of the
peak load period, influenced by photovoltaic PV power generation.
Specifically, ESS #1, ESS #2, and ESS #3 recharge their batteries
during the early morning hours, which coincide with the load
valley period. In contrast, ESS#4, located at bus 33, recharges
its battery when the PV output power reaches its peak. The
charging schedules of the other ESS units further demonstrate
the impact of PV generation on the coordinated charging
strategy of the ESS.

Regarding reactive power compensation, Figure 7 demonstrates
that the reactive compensation units are coordinated to mitigate
voltage drops, ensuring that the voltage remains within the
permissible range. This coordination is essential for maintaining
voltage stability and ensuring that the distribution network
operates within safe limits. The reactive power compensation
strategy optimizes the operation of the distribution network
by accounting for variations in load and generation profiles,
particularly those influenced by renewable energy sources
such as PV.

In each scenario, two types of EV charging loads are distributed
across buses #2 to #33. The acceptance capacity for the first
four scenarios, for both types of EV charging loads, is shown
in Figures 8, 9, respectively. Analysis of the data in these figures

reveals that both types of EV charging loads exhibit maximum
acceptance capacity at buses #2 and #19, which are closest to the
substation, and minimum acceptance capacity at buses #18 and
#33, which are farthest from the substation. This highlights the
significant impact of electrical distance on the acceptance of EV
charging loads.

Overall, the acceptance capacity for the second type of EV
charging load is higher than that of the first type, as the peak
period of the first type overlaps more with residential load profiles.
It is observed that the acceptance capacity for the second type
of EV charging load decreases more sharply along transmission
lines leading to buses #22 and #25, compared to the first type,
suggesting that the second type is more sensitive to electrical
distance.

Regarding the impact of compensation and PV generation
system expansion on EV charging load acceptance capacity, both
ESS and SVG contributemore significantly to capacity enhancement
than the PV generation system for both types of EV charging loads.

The detailed numerical results regarding the mean growth rate
of acceptance capacity are presented in Table 2. The expansion of
SVG has a more pronounced effect on the first type of EV charging
load, resulting in a growth rate of 114.59%, while the expansion
of ESS has a greater impact on the second type, with a growth
rate of 31.48%. However, the differences observed between the
two types of EV charging loads and their respective compensation
units are not significantly distinct. Furthermore, the PV generation
system does not contribute to enhancing the acceptance capacity
for the second type of EV charging load, due to discrepancies in
peak periods.

The acceptance capacity for the final scenario, for both types
of EV charging loads, is depicted in Figures 10, 11, respectively. A
comparison with the data in Figures 8, 9 shows that the maximum
acceptance capacity for both types of EV charging loads has
increased by more than 90%, while the minimum acceptance
capacity remains unchanged.
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FIGURE 11
The second EV charging load acceptance capacity in the last four scenarios.

TABLE 3 The mean growth rate of acceptance capacity in the last four
scenarios.

Units with increased capacity ESS SVG PV

The first type EV charging load 111.76% 124.6% 6%

The second type EV charging load 32.76% 31.8% 0.29%

Analysis of the data in Figures 10, 11 reveals that the capacity
reduction along the lines leading to buses #22 and #25 has
increased for the first type of EV charging load, indicating that
the transmission line capacity in the first four scenarios limits the
acceptance capacity at these buses. Additionally, it is observed that
the expansion of PV generation does not contribute significantly to
the integration of EV charging loads. However, the enhancement of
both ESS and SVG continues to improve the acceptance capacity for
both types of EV charging loads.

Although different types of EV charging loads were used
compared to those in references (Chen et al., 2018) and (Yan and
Chen, 2023), the coordinated framework proposed in this paper
allows the IEEE 33 distribution network to accommodate a larger
capacity of EV charging loads without causing voltage violations
in the distribution network. In both EV charging load scenarios,
the accessible capacity exceeds the 1.2 MW capacity mentioned in
reference (Dai et al., 2023). Compared to the 2.75 MW capacity in
reference (Lepolesa et al., 2024), although the maximum accessible
capacities of 2MW and 2.5 MW shown in Figures 8, 9 are lower,
the residential load capacity in reference (Lepolesa et al., 2024) is
significantly lower than that in the case study analysis of this paper,
accounting for only 25% of the total load capacity.

Thedetailed numerical results regarding themean growth rate of
acceptance capacity are presented in Table 3. The expansion of SVG
significantly benefits the first type of EV charging load, resulting in
a substantial growth rate of 111.76%, while the expansion of ESS has
a more pronounced impact on the second type, contributing to a

growth rate of 32.76%. An increase in the transmission line power
limit amplifies the influence of compensation units on acceptance
capacity; however, it does not enhance the impact of the PV power
generation system.

5 Conclusion

This paper investigates the integration of EV charging loads
and proposes a coordinated optimization model to analyze the
acceptance capacity of EV charging loads under various scenarios.
The case study results indicate that a shorter electrical distance
is associated with a higher acceptance capacity. Additionally, the
transmission line capacity can limit the acceptance capacity at buses
closer to the substation. Regarding compensation units, both ESS
and SVG expansions lead to similar improvements in acceptance
capacity. However, ESS has a more significant impact on the
acceptance capacity for the second type of EV charging load, while
SVG ismore effective for the first type. PVgeneration systems, on the
other hand, contribute minimally to the integration of EV charging
loads. The research presented in this paper provides theoretical
support for the practical planning of EV charging stations in a
city in China.

The limitations of this paper lie in the use of conservative
estimates for load demand and PV generation power, lacking
consideration for the volatility of EV charging loads and PV
generation power. Future research will focus on the impact of the
inherent intermittency of renewable energy sources andEVcharging
loads on the accessible capacity of EV charging loads.
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