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Optimizing HVAC systems with
model predictive control:
integrating ontology-based
semantic models for energy
efficiency and comfort

Yujie Yang, Jakob Bjørnskov and Muhyiddine Jradi*

Center for Energy Informatics, The Maersk Mc-Kinney Moller Institute, University of Southern
Denmark, Odense, Denmark

Building systems are dynamic and non-linear. In HVAC systems, independently
controlled modules interact, creating complex interdependencies that
challenge optimizing energy savings and thermal comfort. Model predictive
control (MPC) has emerged as a promising strategy to address these challenges
effectively since its inception. In this study, MPC is applied to optimize indoor
performance by integrating the district heating and ventilation systems using
an ontology-based semantic model, with the objective of minimizing heating
energy consumption while maintaining indoor comfort. A data-driven energy
model was developed for a single floor of a hospital building, comprising
12 conditioned zones and incorporating data from 45 measuring devices.
Two rooms with differing thermal performance and control strategies were
selected for analysis. The results demonstrate that the implementation of the
MPC reduces heating energy consumption by 7.3% and 8.5% in the respective
rooms while also increasing the indoor thermal comfort time by 3.17% and
86.51%, respectively. Integrating MPC with an ontology-based semantic model
creates a robust framework for advanced building energy management. This
approach facilitates seamless communication and interoperability among HVAC
subsystems, enabling cohesive control within a digital twin platform. The
semantic model standardizes and contextualizes diverse data, enhancing the
accuracy and responsiveness of the MPC.

KEYWORDS

model predictive control, building energy optimization, thermal comfort, HVAC, digital
twin

1 Introduction

Buildings consume around 40% of primary energy (Yang et al., 2020). Their operations
not only result in very high energy consumption but also lead to substantial environmental
concerns due to greenhouse gas emissions (Huang et al., 2021). Traditionally, building
energy systems have been managed using Rule-Based Control (RBC), such as on/off or
bang-bang control, and Proportional-Integral-Derivative (PID) controllers. These methods
are favored for their simplicity and low computational requirements (Mork et al., 2022).
In recent years, a number of advanced control strategies, such as extremum seeking
control (ESC) (Li and Tong, 2021), reinforcement learning (RL) (Wang and Hong, 2020),
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mixed-integer quadratic programming (MIQP) (Killian et al., 2018),
and model predictive control (MPC) (Zhan and Chong, 2021),
have been developed to enhance building energy management,
leading to significant improvements in energy efficiency (Mariano-
Hernández et al., 2021). The implementation of these building
control strategies alone has been shown to achieve an estimated
annual energy savings of 30% across various building types
(Fernandez et al., 2017). Specifically, applying advanced control
strategies to HVAC systems can reduce energy consumption by 25%
while maintaining a satisfactory indoor environment (Afroz et al.,
2018). Optimizing the operation of building energy systems offers a
promising and efficient approach to rapidly reducing emissions from
the existing building stock (Stoffel et al., 2023).

Maximizing user comfort and minimizing energy costs are
commonoptimization objectives inmodern smart homeswithin the
building energy systems optimization problem (Haider et al., 2016).
Among the advanced control strategies developed in recent years,
MPC has shown promising potential to address these challenges in
both application and energy savings due to its distinct advantages
(Faedo et al., 2017). Firstly, MPC can derive optimal control
actions for the present moment by predicting and accounting for
future system conditions. Additionally, it effectively manages trade-
offs between conflicting yet interconnected objectives through
co-optimization. Moreover, MPC can be easily integrated into
existing building control systems, functioning as supervisory
control. Consequently, numerous studies have explored and
proposed MPC applications in building energy management
(Yao and Shekhar, 2021). For example, Hua et al., (2024) applied
MPC to an office meeting room in Espoo, achieving a 2.8%
reduction in energy consumption while enhancing the system’s
hydrodynamic stability by 50%. Zhang et al. (2023) developed
an MPC strategy for private offices with controllable variable air
volume (VAV) systems, demonstrating energy savings ranging
from 28% to 35%. Ascione et al. (2023) investigated a nearly
zero-energy building located in Benevento, featuring an efficient air-
source multi-split system for cooling. Their MPC implementation
ensured similar comfort performance while achieving cost savings
of around 28%. Taheri et al. (2024) proposed a cloud-based
MPC scheme for controlling the HVAC systems of educational
buildings. Langner et al. (2024) devised an MPC strategy for the
efficient management of distributed energy resources, including
photovoltaic power generation and storage, thermally controlled
loads, and smart appliances.

However, HVAC systems vary across buildings; therefore, the
focus of MPC for HVAC systems also differs. For instance, due
to varying weather conditions caused by geographic differences
(Yang et al., 2024a), HVAC systems may operate solely for cooling
or only for heating (Wang J. et al., 2023; Wang H. et al., 2023). As
a result, the focus of MPC for HVAC systems exhibits geographic
variability. Since Denmark is located in the northern part of Europe,
the primary energy demand in buildings comes from heating.
Therefore, this study will focus on optimizing the performance of
heating systems. Additionally, heating systems differ across building
types (Yang et al., 2024b). In some buildings, rooms are heated using
VAV systems (Wang and Dong, 2024), whereas in others, heating
is provided through district heating (DH) (Xu et al., 2017). In this
study, data from an actual hospital heated by both VAV and DH

systems have been collected, and the MPC will be implemented by
combining both systems.

Since MPC controls the system by determining a sequence of
control actions through the optimization of a specific objective
function over a future time horizon—while applying only the
first control action at each time instance (Yao and Shekhar,
2021)—a model capable of predicting the building’s future
performance is essential for the optimization process. Building
energy models are typically developed using tools such as TRNSYS
(Thermal Energy System Specialists, LLC, 2024), EnergyPlus
(Yang et al., 2024c), or Modelica (Magni et al., 2021), as well as
through data-driven methods (Smarra et al., 2018). In this study,
a comprehensive building model employing an ontology-driven
approach based on Python is used to accurately represent the
complex dynamics of the building systems (Bjørnskov and Jradi,
2023). Additionally, since programming software offers an excellent
environment to implement advanced algorithms and serves as a
suitable tool for designing MPC controllers (Blum et al., 2022), an
MPC controller is developed in Python. This study contributes to
the growing body of knowledge in building energy management
by presenting a novel integration of MPC with an ontology-based
semantic model, specifically applied to optimize the performance of
HVAC systems in complex building environments. The approach
can address key challenges associated with the dynamic and
nonlinear interactions between subsystems within an HVAC
framework, such as DH and ventilation systems. The contributions
and advancements to existing literature are outlined as follows:

• Ontology-Based Semantic Integration: Unlike traditional MPC
approaches that often rely on static or standalone models,
this study employs an ontology-based semantic model to
provide a standardized, interoperable framework for data
integration.This ensures that diverse data sources, including 45
measurement devices, are utilized effectively, offering enhanced
context-awareness and adaptability in control strategies.

• Comprehensive Zone-Level Analysis: The research targets a
specific hospital floor with 12 conditioned zones, offering a
granular analysis of individual room performance. By focusing
on two rooms with differing thermal behaviors and control
strategies, the study captures insights into the interplay between
zone-specific parameters and overarching control objectives,
which is often overlooked in broader studies.

• Energy Efficiency and Comfort Optimization: The
implementation of the proposed MPC approach yielded
measurable energy savings of 7.3% and 8.5% in the analyzed
rooms, accompanied by improved thermal comfort. This dual
achievement of energy efficiency and occupant wellbeing is
a significant improvement over existing studies, which often
prioritize one goal at the expense of the other.

• Scalability and Applicability: By demonstrating the feasibility
of coupling MPC with an ontology-based model, the research
highlights its scalability for implementation in other building
types and operational contexts. The methodology aligns well
with the trends in smart building technologies, making it a
versatile solution for future energy management systems.

• Bridging a Gap in Digital Integration: While most existing
literature emphasizes either advanced control techniques or
semantic modeling independently, this study bridges the gap by
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FIGURE 1
Indoor temperature and heating set point profile of thermally
comfortable room over 1 week.

integrating the two into a unified framework. This integration
not only enhances the decision-making capabilities of control
systems but also enables smoother adoption within modern
building management paradigms.

2 Methodology

2.1 Case description

As depicted in Figure 1, the first floor of the building consists
of six office spaces ranging from 18 m2 to 31 m2, each furnished
with desks, computers, monitors, and multiple lighting sources.
Occupancy varies from single-person offices to shared spaces
accommodating up to six individuals. Two 46 m2 meeting rooms,
separated by a folding wall, can be combined into a larger space
as needed. The floor also includes two changing rooms of 21 m2

and 42 m2, containing two and six enclosed toilet stalls, respectively.
Additionally, an 82 m2 shared staff accommodation area features
a kitchenette. Other amenities, such as a stairwell, elevator, and
multiple single-stall restrooms, are present but excluded from the
demonstration. Table 1 summarizes the spaces, detailing their areas,
functions, and occupancy. Each space is equipped with sensors
monitoring temperature, CO2 levels, radiator valve positions, and
damper positions, except for Space two, which lacks temperature,
CO2, and valve position sensors.

As indicated in Table 1, demand-controlled ventilation (DCV)
is implemented in most rooms, adjusting air supply flow through
damper actuation via proportional-integral (PI) controllers to
maintain CO2 concentrations within comfortable levels. With the
exception of Space 2, all areas are equipped with radiators and
motorized valves, which are also regulated by PI controllers.
Additionally, most dampers function in an on-off mode, facilitating
heating within a 0%–30% opening position range.

The first room selected for this study is Space eight, where the
ventilation system is controlled by a CO2 setpoint with a constant
value of 900 ppm. The temperature profile and heating setpoint for

this room are shown in Figure 1. For this meeting room, the heating
setpoint is set to 21°C during working hours and 18°C during off-
hours. As shown in Figure 1, the indoor temperature follows the
setpoint closely, and thus, this room is referred to as a thermally
comfortable room.

The second room selected for this study is Space 4, where
the ventilation system is jointly controlled with the DH system
based on a heating setpoint. Since this room serves as a changing
room, it is assumed that occupants wear fewer clothes, meaning
that a higher temperature is required to satisfy thermal comfort. As
shown in Figure 2, the heating setpoint for this room is 22°C during
working hours and 21°C during non-working hours. However, it
can be observed that the indoor temperature fails to reach the
setpoint during both working and non-working hours. The damper
and valve openings of the ventilation system and DH system are
also shown in Figure 2, and it is evident that both systems are already
operating at maximum capacity. For this reason, this room will be
referred to as a thermally uncomfortable room in the following
discussion.

2.2 Energy model development

To implement effective model predictive control, a
comprehensive building model was developed using an ontology-
driven approach. This approach leverages semantic models to
capture the building’s physical structure, system relationships,
and equipment characteristics, enabling automatic generation of
simulation models suitable for MPC. By structuring the model
this way, we ensure it remains adaptable and maintainable
while accurately representing the complex dynamics of the
building systems. The energy modeling framework adopted
in this work, and the details of the model generation and
calibration process are described in earlier work by the authors
(Bjørnskov et al., 2025; Bjørnskov et al., 2025).

The model predictive control implementation uses a
component-based modeling framework. The building system is
divided into individual components representing thermal zones,
controllers, dampers, valves, and sensors. Some components are
implemented in Python, while others are exported as Functional
Mock-up Units (FMUs) from Modelica models to utilize both
platforms’ capabilities.

2.2.1 Component models
The modeling framework is built on component models that

represent specific aspects of building behavior. A key example is the
thermal zone model implemented in Modelica, shown in Figure 3.
This component represents room dynamics with heat transfer
through the building envelope, thermal storage in room air and
furniture, heat addition from the space heater, and air exchange
through the ventilation system.

The thermal zone model interfaces with other building systems
through defined connection points. These interfaces include.

• Air handling connections for supply and exhaust flows
• Heating circuit ports for hot water distribution
• Environmental inputs for outdoor conditions and solar gains
• Control signal connections for valve and damper positions
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TABLE 2 The relationship between the PMV values and the thermal comfort.

PMV −3 −2 −1 0 1 2 3

Thermal sense Cold Coo1 Slightly cool Neutral Slightly warm Warm Hot

FIGURE 2
Indoor temperature, heating setpoint, damper opening of the
ventilation system, and valve opening of the DH system of the
thermally uncomfortable room over 1 week.

• Sensor outputs for temperature and CO2 measurements

2.2.2 Full simulation model
The complete simulation model, shown in Figure 4, integrates

individual components into a comprehensive representation of
the building floor. The model consists of 152 interconnected
components, representing the building’s thermal behavior and
control systems. The network includes several space models
that represent individual thermal zones, with the thermally
comfortable room and thermally uncomfortable room highlighted
in the blue and red boxes in Figure 4, respectively. Details of
the ontology-driven model generation can be found in our
previous study (Bjørnskov et al., 2025).

Component connections reflect the physical building’s system
topology. For example, in the thermally comfortable room, the
model includes the current heating capacity constraints, enabling
theMPC to account for these limitations when coordinating heating
and ventilation systems.

2.3 MPC framework

To optimize the energy performance of the room, an MPC
controller is designed for the HVAC system. In the original RBC,
the heating and ventilation systems are controlled independently.
However, in real life, the operation of the ventilation system impacts
the indoor air temperature. In other words, the performance of the
heating system is coupledwith the ventilation system to some extent.
Therefore, the MPC controller is designed to integrate the heating
system controller with the ventilation controller.

Since MPC is a multi-objective optimization process, the initial
step is to define the targets for implementing these control strategies.
The objectives for the optimization will be discussed in the following
subsections.

2.3.1 Parameters for optimization problems
2.3.1.1 Energy

In the field of building energy management, the
ultimate optimization goal is to reduce overall energy
consumption and eventually achieve net-zero energy buildings.
In buildings, energy can be used for heating, cooling,
lighting, and various other purposes. In this study, since
the energy used to maintain indoor temperature accounts
for the primary energy consumption during the winter
in Denmark, the primary objective is to minimize the
heating energy consumption (Energyall) of the DH system
(Energyh) and ventilation systems (Energyv), which can be
calculated by:

Energyall = Energyh +Energyv (1)

For the energy mentioned in Equation 1, Energyh is
straightforward to measure, as it corresponds to the energy
consumed by DH system maintain the indoor temperature.
However, Energyv is more complex compared to the DH system.
A schematic of the ventilation system can be seen in Figure 5.
Outdoor air passes through the heat recovery unit and heating
coil before being delivered to each room. Therefore, in this study,
the energy consumption of the ventilation system for the target
room refers to the energy consumed by the heating coil for the air
supply to the target room, which can be calculated using Equation 2,
as follows:

Energyv = (tsupply − thc.out)msupplycp.air (2)

where tsupply is the supply air temperature (°C), thc.out is the air
temperature after the heat recovery unit (°C),msupply is the supply air
flow rate (kg/s), and cp.air is the thermal capacity of the air (J/(kg·°C)).

2.3.1.2 Thermal comfort
Reducing energy consumption can often be achieved

at the expense of indoor comfort, which is undesirable
for the occupants. Therefore, the objective of this MPC
is to minimize the heating energy usage for DH and
ventilation systems while maximizing indoor thermal
comfort.

Serval indices can be used to quantify the indoor thermal
comfort. Among them, the most common used are Predicted Mean
Vote (PMV) and the Predicted PercentageDissatisfied (PPD) (Thapa
and Kr. Panda, 2015). As highlighted in Table 2, the PMV provides
a quantitative estimate of the thermal sensation experienced by a
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FIGURE 3
Example component model of a space.

group of individuals in a particular thermal environment, which can
be calculated by Equation 3:

PMV =(0.303e−0.036M + 0.028) × ((M−W) − 3.05

× 10−3(5733− 6.99(M−W) − Pa) − 0.42((M−W) − 58.15)

− 1.7× 10−5M(5867− Pa) − 1.4× 10−3M(34− ta) − 3.96

×10−8 fcl((tcl + 237)
4 − (tr + 273)

4) − fclhc(tcl − ta))
(3)

where M represents the metabolic rate (W/m2), while W represents
the effective mechanical power (W/m2). Pa represents the partial
pressure of water vapor (Pa) and ta represents the ambient air
temperature (°C). tcl represents the clothing surface temperature
(°C), whereas tr represents the mean radiant temperature (°C).
fcl represents the ratio of the surface area of the clothed body
to that of the unclothed body is denoted, and hc represents the
convective heat transfer coefficient (W/m2·K). And the relationship
between the PMV values and the thermal comfort can be seen in
Table 1 (Zhang et al., 2019).

Based on the PMV, the PPD can be calculated by
Equation 4 (Song et al., 2024).

PPD = 100− 95 exp(−0.03353PMV4 − 0.2179PMV2) (4)

The critical threshold for judging indoor thermal comfort
based on PPD is 10%. When the PPD is below 10%, the indoor
thermal environment is considered comfortable. Since a higher
PPD represents a greater level of dissatisfaction with the indoor
environment, the second objective of our MPC in this multi-
objective optimization is tominimize the indoor PPD. Furthermore,
the maximum hourly value of PPD during the examined period
is preferred to the average value as objective function, because it
allows a more rigorous and punctual control of thermal comfort.
Indeed, the choice of maximum hourly value of PPD ensures that
the hourly PPD does not fall below the maximum hourly value
of PPD provided by the optimization study during the whole
examined period (Ascione et al., 2016).

2.3.1.3 Indoor air quality
In addition to thermal comfort, other indoor parameters,

such as CO2 levels, also significantly impact occupant wellbeing.
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FIGURE 4
(A) Simulation model of the hospital case, automatically generated from the semantic model (Bjørnskov et al., 2025; Bjørnskov et al., 2025), with the
room case study highlighted in (B) the red frame and (C) the blue frame.

FIGURE 5
Schematic of the ventilation system in the considered case study.

In some rooms, the ventilation system is controlled by CO2
setpoints, and its operation directly influences indoor CO2
concentrations. Consequently, for rooms where the ventilation
system is controlled by CO2 setpoints, indoor air quality (IAQ) is

used as a metric to evaluate the system’s effectiveness in maintaining
a healthy indoor environment. According to the European Standard
EN 13779, IAQ is categorized into four levels based on CO2
concentration (EN, 2025).
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• Class A (High Quality): CO2 levels above outdoor air by no
more than 350 ppm.

• Class B (Medium to High Quality): CO2 levels above outdoor
air by 350–500 ppm.

• Class C (Moderate Quality): CO2 levels above outdoor air by
500–800 ppm.

• Class D (Low Quality): CO2 levels above outdoor air by more
than 800 ppm.

In this study, the outdoor CO2 concentration is assumed to
be approximately 400 ppm, and IAQ is considered in the MPC for
rooms where the ventilation system is controlled by CO2 setpoints.

2.3.2 Model for multi-objective optimization
problems

To implement the MPC with the ontology-based semantic
model, themodel is first used to standardize diverse data sources and
generate a simulation model. This simulation model acts as a black-
box representation to predict the target room’s parameters based
on different control signals. The predicted outputs are then utilized
in the MPC framework to perform multi-objective optimization,
ensuring effective control decisions.

As mentioned in Section 2.1, two rooms with different thermal
performance—namely, thermally comfortable and thermally
uncomfortable—using different control strategies were selected for
this study. For the former, the ventilation system is controlled based
on the CO2 setpoint. Consequently, the optimization problem for
theMPC in this room can be formulated as shown in Equations 5–7:

minF(spt, spCO2
) = [Energy,PPDmax,CCO2.max] (5)

Subject to:

spt.min ≤ spt.n ≤ spt.max (6)

spCO2.min ≤ spCO2.n
≤ spCO2.max (7)

where Energy refers to the heating energy consumption by the DH
system and ventilation systems during the optimization period.
PPDmax and CCO2.max represent the maximum hourly PPD and
hourly CO2 concentration, respectively. sp refers to the setpoint
of the control system, with the subscript t indicating temperature,
CO2 referring to CO2, and n representing the hour within the
optimization period. For spt, the setpoint boundary is 18°C–22°C,
while spCO2

is set between 750 ppm and 900 ppm.These constraints
have been defined based on the recommendation and feedback from
the building operators. This model is built using Python and solved
with the pymoo package (Blank and Deb, 2020).

For the thermally uncomfortable room, the ventilation system is
jointly controlled with the DH system based on the heating setpoint.
Specifically, the operation of both the DH system and the ventilation
system is determined by the heating setpoint. While the operation
of the ventilation system does influence IAQ, it cannot assertively
control IAQ.Therefore, IAQ is not considered an optimization target
for the MPC, as the ventilation system lacks the capability for
precise IAQ control. Besides, as it can be seen in Figure 2, since the
fully opening valve of the ventilation system and fully opening the
damper of the heating system cannot make the indoor temperature
to reach the heat setpoint, the supply air temperature from the

ventilation system, tsupply, is also utilized in the MPC optimization
process to increase the indoor air temperature. Consequently, the
optimization problem for the MPC in this room can be formulated
as expressed in Equations 8–10:

minF(spt, spt.supply) = [Energy,PPDmax] (8)

Subject to:

spt.min ≤ spt.n ≤ spt.max (9)

spt.supply.min ≤ spt.supply ≤ spt.supply.max (10)

The heating setpoint spt for this room varies between 21°C and
22°C, while the supply air temperature spt.supply ranges from 19°C
to 30°C. Also, in this case, the constraints have been set based on
feedback from the building operators.

2.3.3 Solution for the multi-objective
optimization problem

In multi-objective optimization problems, a key challenge is
defining the solutions. From a theoretical mathematical perspective,
these problems do not have a single optimal solution; instead, they
yield a collection of solutions known as the Pareto front. The Pareto
front represents a set of non-dominated solutions that form the
boundary of the feasible solution space, where trade-offs between
objectives occur.

Once a set of non-dominated solutions is obtained, the next
challenge is to narrow it down to a few or even a single solution.This
decision-making process in multi-objective problems is referred
to as Multi-Criteria Decision Making (MCDM). To perform
MCDM for the ultimate control, multi-objective problems must be
transformed into single-objective problems. For this purpose, the
Weighted SumMethod is applied, as shown below:

Minimizei∑wi fi(x) (11)

where wi are the weights for objective fi(x)
For different objectives fi(x), the lower and upper bounds would

be very different, therefore, normalization for different objectives
is required.

3 Results and discussion

3.1 MPC for the thermally comfortable
room

3.1.1 Decision making for the MPC
For this room, there are three objectives for optimization,

forming a 3D solution space. The distribution of these solutions
is shown in Figure 6. However, for MPC, only one solution is
needed for the final control strategy, meaning a single solution
must be selected from the Pareto front using MCDM. In this study,
the weighted sum method is applied. However, determining the
appropriate weights to achieve the desired control outcomes is
not straightforward. Therefore, the range of weights is tested. The
primary requirement is to ensure indoor comfort when the room is
occupied. The final MCDM result is shown in Figure 6, represented
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FIGURE 6
Distribution of the solutions and the decision made by the multi-objective optimization for the first hour of December in 3D scatter plot and parallel
coordinates plot.

FIGURE 7
Room temperature controlled by MPC and RBC during the first week
of December.

by the red line, with the highest emphasis placed on indoor thermal
comfort, followed by energy consumption, and the least emphasis
on CO2 concentrations.

3.1.2 Comparison between RBC and MPC
To observe the performance difference between the room

controlled by RBC and MPC, Figure 7 illustrates the indoor
temperaturemanaged by these two strategies during the first week of
December. During weekdays, compared to RBC, it can be observed
that MPC initiates preheating in the morning, raising the indoor
temperature in advance to ensure thermal comfort when people
arrive. Additionally, since occupancy ends at 17:00, MPC lowers
the indoor temperature earlier in the afternoon than RBC, thereby
saving energy. Throughout working hours on weekdays, the indoor
temperatures achieved by MPC and RBC are at comparable levels.

On Saturday, both control strategies display a similar
temperature trend. However, on Sunday, MPC, which bases control
decisions on the next 24-h forecast, also accounts for Monday’s
working hours when thermal comfort is needed. As a result, the
indoor temperature maintained by MPC on Sunday is observed to
be higher than that of RBC, as it is shown in Figure 7.

Based on the indoor environment parameters, the thermal
comfort index, PPD, can be calculated. Figure 8 presents the PPD
statistics of the room during the first week of December, showing
both the PPD for the entire period and the PPD during times when
the room is occupied. For the entire period, it can be observed
that the average PPD for both MPC and RBC is at a similar
level, with values of 7.72% and 7.46%, respectively. Additionally,
the upper quartile for MPC is lower than that for RBC, with
values of 10.04% and 10.31%, respectively. Since a PPD of 10% is
the threshold distinguishing comfort from discomfort, the MPC
shows slightly better performance than RBC in maintaining indoor
thermal comfort for most of the time, which increase the indoor
thermal comfort time by 3.17%. During the period when the room
is occupied, the PPDs for bothMPC and RBC aremaintained within
5%–6%.Therefore, both control strategies effectively ensure thermal
comfort when people are present indoors.

Since both control strategies ensure indoor thermal comfort,
the focus shifts to the energy performance difference of the HVAC
systemmanaged byMPC and RBC. Figure 9 shows the daily heating
energy consumption of the DH systems and ventilation systems
controlled by MPC and RBC during the first week of December.
On working days, the use of MPC reduces the overall heating
energy consumption of both systems. Although preheating the room
increases energy consumption, adjusting the indoor air temperature
according to occupancy behavior leads to greater energy savings.
On non-working days, the MPC slightly increases overall energy
consumption. However, for the entire week, the use of MPC
results in a 7.32% energy savings compared to RBC. In other
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FIGURE 8
PPD distribution under MPC and RBC during the first week of
December, for both the entire time period and the time with
occupancy.

FIGURE 9
Daily heating energy consumption by DH system and ventilation
system by MPC and RBC during the first week of December.

words, the MPC achieves energy savings while maintaining indoor
thermal comfort.

Moreover, since the ventilation system in this room is controlled
by a CO2 setpoint, the application of MPC results in changes
to the indoor CO2 concentrations. Figure 10 illustrates the CO2
concentrations controlled byMPC and RBC during the first week of
December, with light blue representing high-quality IQA (class A)
and blue indicating medium to high-quality IQA (class B). For both
control strategies, the IQA of the room during non-working hours
remains at class A, with no fluctuations in CO2 concentrations due
to the absence of indoor CO2 sources during this period. During
working hours, the MPC increases the indoor CO2 concentration
by an average of 31.72 ppm over the week compared to the RBC.
However, it is important to note that evenwith this increase, the IQA

FIGURE 10
Room CO2 concentration controlled by MPC and the RBC during the
first week of December.

underMPC remainswithin class B, the same level of IQAmaintained
by RBC. Overall, the application ofMPC achieves similar IQAwhile
meeting energy-saving objectives.

3.2 MPC for the thermally uncomfortable
room

3.2.1 Decision making for the MPC
For the thermally uncomfortable room, both the ventilation

system and heating system are controlled by the heating setpoint. In
other words, although the operation of the ventilation system affects
the CO2 concentration, the indoor CO2 concentration is not directly
controlled by the ventilation system. Therefore, the optimization
objectives for this room are limited to energy consumption and the
thermal comfort index, PPD. Figure 11 illustrates the distribution of
solutions and the decisionmade by themulti-objective optimization
for the first hour of December in the thermally uncomfortable room.
The solutions form a well-defined non-dominated area, reflecting
the characteristics of the Pareto front. Based on these solutions, the
decision marked by a red “x” slightly prioritizes thermal comfort
over energy consumption.

3.2.2 Comparison between RBC and MPC
The temperature profile managed by the MPC for the first week

of December, based on theMCDM strategies, is shown in Figure 12,
along with the temperature profile controlled by the RBC. For this
room, the heating setpoint is adjusted between 21°C and 22°C,
as indicated by the yellow background in Figure 12. Under the
original RBC, the indoor temperature consistently fails to reach
the heating setpoint. However, after applying the MPC, the indoor
temperature during working days is successfully maintained within
the range of 21°C–22°C, achieving the setpoint. It is worth noting
that during theweekend, the indoor temperatures controlled by both
the RBC and MPC fail to reach the heating setpoint, particularly
on Sunday. This can be attributed to the similar heating setpoints
for adjacent rooms. As shown in Figure 13, this room is adjacent
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FIGURE 11
Distribution of the solutions and the decision made by the
multi-objective optimization for the first hour of December.

FIGURE 12
Room temperature controlled by MPC and RBC during the first week
of December.

to staff accommodation area (Space 1) and the corridors, which
share the same temperature setpoint as the thermally comfortable
room (Space 8). During the weekend, the indoor temperatures
in the adjacent rooms, as illustrated in Figure 7, remain around
18°C. This temperature difference results in increased heat transfer
to the adjacent rooms, making it difficult to maintain the indoor
temperature of the target room at its setpoint.This can be addressed
by extending the MPC implementation to the adjacent rooms.

One objective of the MPC for this room is to ensure thermal
comfort. Therefore, the PPD distribution under MPC control and
the original RBC during the first week of December, for both the
entire time period and the occupancy period, is shown in Figure 14.
Under the original RBC, the PPD remains consistently above 10%
throughout the entire time period, indicating that the room is
always thermally uncomfortable. However, after the application of
the MPC, the PPD for the entire time period shows significant
improvement. The upper quartile falls below 10%, meaning that

the room is thermally comfortable 75% of the time. In general, the
implementation of the MPC increases the thermal comfort time
by 86.51%. During the occupancy period, the PPD distribution
under RBC control still remains above 10%, demonstrating that
even during working hours, the basic thermal comfort requirements
are not met. In contrast, the PPD distribution under MPC control
improves further, with the upper quartile dropping to approximately
9%. This indicates that thermal comfort is better maintained
during occupancy with MPC control. Thus, the application of
MPC effectively enhances indoor thermal comfort compared to the
original RBC.

Another objective of the MPC for this room is to ensure
the efficient use of energy for heating. The daily heating energy
consumption for this room under MPC and RBC control is shown
in Figure 15. Typically, improving indoor thermal comfort results
in increasing heating energy consumption. However, as shown in
Figure 15, the energy consumption under MPC, which achieves
better thermal comfort (as seen in Figure 14), is actually lower
than that under RBC, which results in less thermal comfort.
After applying the MPC, overall heating energy consumption was
reduced by 8.5% compared to the RBC. This reduction is due to
the building’s ventilation system, which supplies air at a constant
temperature of 19°C across the entire floor. For this room, the
heating setpoint ranges from 21°C to 22°C, meaning the ventilation
system effectively acts as a cooling source. Under the original RBC,
the ventilation system is controlled by the heating setpoint, which
causes the valve to remain open tomaintain the indoor temperature.
However, because of the low supply air temperature, this places
additional strain on the DH system. This paradoxical process leads
to high energy consumption without ensuring adequate indoor
thermal comfort. In contrast, the MPC increases the supplied air
temperature, resolving this paradoxical issue. By doing so, the MPC
reduces energy consumption while simultaneously maintaining
indoor thermal comfort.

3.3 Discussion

The application of MPC demonstrated clear advantages over
RBC in optimizing indoor comfort and energy efficiency across
two room scenarios. For the thermally comfortable room, MPC
balanced indoor comfort with energy efficiency, leveraging MCDM
to select optimal solutions from the Pareto front. It maintained
acceptable IAQ within Class B standards, though CO2 levels slightly
increased, comparable to RBC. In the thermally uncomfortable
room, MPC addressed design inefficiencies, improving thermal
comfort and reducing energy consumption. Dynamic heating
adjustments resolved issues with the ventilation system’s low supply
air temperature, reducing discomfort and enhancing overall comfort
metrics compared to RBC.

Overall, MPC outperformed RBC, achieving energy savings
and enhanced comfort, especially in scenarios where the original
strategy failed. The study highlights MPC’s ability to balance
competing objectives, adapt to varying conditions, and address
system inefficiencies. A multi-objective framework enabled MPC
to minimize energy use while ensuring thermal comfort and
acceptable IAQ, with weighted objectives prioritizing comfort
during occupancy and efficiency during unoccupied periods.
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FIGURE 13
Floor plan of the considered case, including the modeled spaces (Bjørnskov et al., 2025; Bjørnskov et al., 2025).

FIGURE 14
PPD distribution under MPC and RBC during the first week of
December, for both the entire time period and the time with
occupancy.

System constraints ensured realistic control strategies,
maintaining comfort and IAQ within thresholds despite aggressive
energy-savingmeasures.Thiswas particularly effective in addressing
design challenges in the thermally uncomfortable room. The
scalability of MPC to larger buildings and its reliance on high-
resolution data further emphasizes its potential. Future studies could
explore integrating factors like humidity and weather, extending
applicability to broader contexts and seasonal variations.

The study’s focus on specific scenarios and operational periods
highlights its broader applicability. While demonstrating MPC’s
effectiveness in winter, similar principles could be adopted for
summer cooling or mixed-mode ventilation, where different
constraints prevail. Expanding the analysis to include transitional
seasons or variable occupancy patterns would provide a more
comprehensive view of MPC’s adaptability and year-round
performance.

FIGURE 15
Daily heating energy consumption by DH system and ventilation
system by MPC and RBC during the first week of December.

4 Limitations of the research

The MPC is applied to a digital twin model of the hospital
for energy saving and thermal environment maintenance in this
study. However, currently, the digital twin model can only consider
the certain indoor parameters which are used for indoor thermal
environments control such as temperature and CO2 levels. For the
hospital, some other indoor parameters are equally important such
as humidity, velocity and cleanliness for the Assessment of the
indoor environment.

5 Conclusion

In this study, MPCwas applied to optimize energy consumption
and indoor comfort in a room by considering both the heating
and ventilation systems. A whole-floor model was developed
using an ontology-based semantic model, and two rooms with
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differing ventilation control strategies and thermal performance
were selected from this floor for the MPC analysis. A Python-based
MPC optimizer was integrated with the ontology-based semantic
model to enhance the room’s performance. The main conclusions
are as follows

1) The implementation of the MPC resulted in a reduction
in energy consumption for both rooms. For the thermally
comfortable room, energy consumption decreased by 7.32%.
Meanwhile, for the thermally uncomfortable room, energy
consumption was reduced by 8.5%.

2) The application of the MPC not only saves energy but also
improves indoor thermal comfort. For the room that already
met thermal comfort requirements, the weekly PPD under
MPC control slightly outperformed that under RBC control.
However, during occupied periods, the two control strategies
showed similar thermal comfort levels. For the room that
previously did not meet thermal comfort standards, the
implementation of the MPC significantly improved indoor
thermal comfort compared to original RBC.

3) In the room that already met thermal comfort requirements,
the ventilation system was controlled by CO2 setpoints. For
this room, the improvement in energy performance while
maintaining indoor thermal comfort came at the expense of an
increase in indoor CO2 concentrations. However, despite the
rise in CO2 concentrations, the IAQ for both the original RBC
andMPC remained the same, stayingwithin Class B standards.

4) In the room that did not meet thermal comfort requirements,
the ventilation system and heating system were jointly
controlled by the heating setpoints. However, the flawed design
of the ventilation systemmade it difficult to achieve the original
setpoint. Therefore, the MPC was utilized to address the
inefficiencies caused by the unreasonable design and allocation
of the jointly controlled system.

The findings of this study have broader implications for the
deployment of MPC in real-world scenarios. Energy savings and
comfort improvements achieved throughMPC validate its potential
as a robust tool for advancing sustainability goals in building
management. The study also underscores the necessity for MCDM
approaches to handle trade-offs effectively, such as balancing CO2
levels against energy consumption.

However, challenges remain.The digital twin model used in this
study currently considers only a limited set of indoor parameters for
controlling the thermal environment, such as temperature and CO2
levels. In hospital settings, maintaining optimal humidity levels is
crucial for preventing airborne pathogen transmission and ensuring
occupant wellbeing. While humidity control was not explicitly
modeled in this study, it can be integrated into future HVAC
optimization frameworks, potentially using coupled temperature
andhumidity control strategies. Additionally, airflowvelocity and air
cleanliness are typically managed through ventilation and filtration
strategies, which can be incorporated into future work to develop a
more holistic approach to HVAC optimization.

Furthermore, the robustness of MPC to system parameter
uncertainties requires further investigation. While MPC effectively
handles constraints and disturbances, its sensitivity to modeling
errors and dynamic changes must be addressed. Implementing
robust or stochastic MPC can improve resilience by accounting

for worst-case scenarios or probabilistic uncertainties. Additionally,
adaptive strategies that update model parameters in real time could
enhance accuracy. Sensitivity analysis can help assess the impact of
parameter variations on performance and stability. Future research
should evaluate MPC under varying uncertainties using Monte
Carlo simulations or real-world experiments to better understand
its reliability in practical applications.
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