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Dynamic evolution of innovation
efficiency of China’s new energy
enterprises

Tian Zhao1, Meilu Sun2* and Jiangxiang Zhang1
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China, 2School of Economics and Management, Shanghai University of Political Science and Law,
Shanghai, China

Introduction: Analyzing the dynamic evolution and convergence of innovation
efficiency in China’s new energy enterprises is critical for optimizing energy
structures and guiding high-quality development under dual-carbon goals. This
study examines spatiotemporal patterns and drivers from 2015–2023.

Methods: Innovationefficiencywasmeasuredvia SFAmodel, differentiatingR&D
and transformation phases. σ- and β-convergence tracked disparities and catch-
up dynamics. A threshold regressionmodel identified nonlinearmacroeconomic
impactsonconvergence,using2,182firm-yearobservationsacross30provinces.

Results: (1) The innovation efficiency of China’s new energy enterprises is
relatively low, with significant spatial and temporal differences but a consistent
upward trend. Specifically, the innovation efficiency of China’s new energy
enterprises ranges from 0.55 to 0.71 in the R&D phase and from 0.13 to 0.51
in the transformation phase. (2) 1/3 of the new energy enterprises show a high
R&D-high transformation mode, while another 1/3 operate under a low R&D-
low transformation mode. The σ-convergence of innovation efficiency across
provinces isnotevident,except for theR&Dphaseofenterprises in theeasternand
western regions, where substantial β-convergence is observed. (3) The threshold
model suggests that urbanization construction and economic development play
a crucial role in influencing the convergence of innovation efficiency among
China’s new energy enterprises.

Discussion: Persistent R&D-transformation gaps necessitate region-specific
policies. Western China should enhance technology absorption, while
central/eastern regions require optimized innovation ecosystems.

KEYWORDS

new energy enterprises, innovation efficiency, dynamic evolution, convergence,
threshold effect

1 Introduction

The dual carbon goals, especially carbon neutrality, have had global consequences. As
of the end of 2024, over 151 nations had adopted the carbon neutrality targets. China,
being a major manufacturing power, is increasing its carbon emissions along with its
expanding production capacity,making it the greatest emitter of greenhouse gases according
to data from the International Energy Agency. China has set the target of peaking carbon
dioxide emissions by 2030 and achieving carbon neutrality by 2060. However, it faces the
challenge of relative scarcity of natural resources such as oil and gas, which hinders the
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high-quality economic development. New energy, with its wide
distribution, large reserves and low pollution, has become the
strategic direction of energy industry development in various
countries, and is a key industry to cope with climate change and
achieve the goal of carbon neutrality. Since 2015, China’s new
energy sectors (including wind power, solar PV and lithium-ion
batteries) have been developing rapidly, and the success of these
sectors depends on the cost-cutting effect of continuous innovation.
Given the relatively low barriers to entry in the new energy industry,
inefficient investment and excessive competition are widespread,
leading to a mismatch between input and output and hindering the
improvement of innovation efficiency. Furthermore, the innovation
efficiency of China’s new energy enterprises varies significantly over
time and space, which directly affects the competitiveness of the
energy industry and the dual carbon process.

The regions to which new energy enterprises belong have natural
differences in R&D input and innovation output due to differences
in their economy, technology, natural endowment and other aspects.
Understanding how to strengthen the complementary innovation
resources between enterprises and regions, how to help low-efficiency
enterprises achieve high-quality innovative development, and whether
high-efficiency enterprises should be more open or more cautious
in the middle and later stages of operation, has positive practical
significance for the long-term healthy, stable and orderly development
of the new energy industry. There are two problems in the research
literature on innovation efficiency of new energy firms. First, most
researches measure innovation efficiency from a static point of view,
without fully investigating the different performances of innovation
activitiesatdifferentstages.Therefore, thispaperusesStochasticFrontier
Analysis (SFA) to dynamically evaluate the innovation efficiency of new
energy enterprises in China, and analyses it from the perspective of
input and transformation, which is helpful to improve the calculation
accuracy. Second, most researches stop at the convergence analysis,
and the non-linear influence of related factors is not sufficiently
investigated. Therefore, this paper establishes a threshold model based
on β-convergence, and examines whether representative factors have a
nonlinear influence on the convergence of innovation efficiency of new
energy enterprises from a macro perspective.

The structure of this paper is as follows. Firstly, a literature review
is provided to identify potential areas for improving the calculation
of innovation efficiency in new energy enterprises. Then, the paper
applies the SFA method to evaluate and compare the innovation
efficiency of China’s new energy enterprises from 2015 to 2023,
considering both R&D input and transformative performance. The
dynamic development of innovation efficiency is analyzed using the
σ-convergence and β-convergence methods, complemented by the
thresholdmodel, to identify crucial factors influencing the convergence
trend. Finally, the paper concludeswith a summaryof themainfindings
and policy recommendations.

2 Literature review

2.1 Measurement methods of innovation
efficiency

Research on innovation efficiency originated with Scherer
(1965), and although the Cobb-Douglas function and Solow’s (1957)

analysis of technological progress indirectly reflected innovation
efficiency, there was a significant gap between their assumptions and
reality. Today, there are various methods of measuring innovation
efficiency. The most widely used methods are Data Envelopment
Analysis (DEA) and Stochastic Frontier Approach (SFA). DEA,
based on linear programming, does not depend on specific
functional forms, but is sensitive to errors and missing sample data.
SFA, on the other hand, uses econometrics techniques formaximum
likelihood estimation, resulting in stable efficiency measures, but
requires the a priori specification of the production function and
the consideration of stationary and cointegration relationships
between variables. As methods for measuring innovation efficiency
have evolved, more studies have included the influence of spatial-
temporal factors. Consequently, the three-stage DEA method
(Lartey et al., 2021), the two-stage dynamic network DEA model
(Xiong et al., 2018), the method combining the SBM model
(Shah et al., 2024), the Malmquist index (Mitrovic, 2020), the
non-radial super-efficiency model (Chang et al., 2013), and the
Malmquist-Luenberger index (Romano et al., 2021) have been
developed based on the DEA or SFA method.

2.2 Analysis methods of dynamic evolution

Currently, studies into the dynamic evolution of efficiency
primarily takes into account the perspectives of heterogeneous
segments or spatial correlation (Zhu et al., 2019; Magnani et al.,
2022), with the most commonly employed method being
convergence analysis. The focus on convergence stems from the
investigation of the limit of series in mathematics. The analysis
of economic convergence can be traced back to Ramsey’s (1928)
work on economic growth rate and per capita income. Baumol
(1986) was the pioneer in conducting empirical testing of economic
development convergence trends, grounded on Solow’s neoclassical
growth model. The scope of convergence research has widened with
extensive research on capacity utilization rate convergence (Gahn
and González, 2022), regional growth rate convergence (Battisti
and Vaio, 2008), energy intensity conditions convergence (Lin
and Zhu, 2021) and other related topics. Regarding the efficiency
convergence, σ-convergence and β-convergence (Zhang et al., 2022)
have been predominant. However, these methods can sometimes
mask underlying disparities or convergence patterns due to their
broad evaluative scope. Club convergence (Cassetta et al., 2022)
builds on β-convergence by identifying subgroups displaying
distinct convergence behaviors, but it still may not account for
the full spectrum of multi-dimensional influences affecting sectoral
efficiency, such as innovation policies, global market integration,
and regional economic systems.

2.3 Relevant research on the innovation of
new energy enterprises

Research on new energy enterprise innovation predominantly
centers on the new energy vehicle industry. Various scholars have
examined the effect of trade policy uncertainty on enterprise
innovation (Hs and Fei, 2021), the impact of multi-dimensional
proximity on cooperative innovation (Yu et al., 2018), and the
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efficacy of different forms of subsidies on enterprise innovation and
progress (Liu et al., 2022). However, current research on innovation
within the new energy industry at the national level concentrates
mainly on measuring investment or production efficiency, without
exploring innovation efficiency in depth. Wen et al. (2022)
conducted a study using data from China’s listed new energy
firms from 2007 to 2019 to examine the link between fiscal policy
uncertainty and enterprise innovation investment was examined.
The research findings indicate that the uncertainty surrounding
fiscal policies significantly reduced the investment in innovation
by new energy enterprises. In another study by Chen et al. (2022),
the innovation efficiency of the new energy vehicle industry was
analyzed from the perspective of the industrial chain. The study
highlighted the significant contribution of management efficiency
in driving industrial innovation efficiency. Wang et al. (2021)
examined the determinants affecting the innovation performance of
new energy enterprises in China under industrial policy’s purview,
utilizing a genetic algorithm for evaluation purposes.

In conclusion, the existing literature has laid a solid foundation
for studying the innovation efficiency of new energy enterprises,
and identifies gaps for further exploration in the following areas:
First, the existing literature primarily concentrates on static analysis.
Nonetheless, the disproportionate growth of China’s new energy
in different regions emphasize the need for dynamic approaches.
The static measurement approach inadequately investigates the
impact of spatial factors. Consequently, this has compromised the
precision of the measurement outcomes. Though some studies have
implemented the frontier analysis method, it has not sufficiently
distinguished between distinct phases of R&D activities. Second,
for the trend analysis of evolution typically, σ-convergence and β-
convergence methods are utilized. However, a lack of thorough
discussion exists concerning the primary drivers of innovation
efficiency evolution in new energy firms. Although conditional β-
convergence may be employed for linear analysis of influencing
factors, it fails to fully reflect the intricate and nonlinear impact
of related factors on the innovation efficiency of the new energy
industry. This consideration is especially crucial considering the
industry’s rapid development in recent years. This paper tackles
the mentioned matters by the SFA model to assess the innovation
efficiency of China’s new energy enterprises, and proposed a
thresholdmodel grounded on β-convergence to investigate themain
factors’ impact on the innovation efficiency’s dynamic evolution.

3 Calculation process and results

3.1 Methods and models

3.1.1 Research method
Innovation efficiency refers to the input-output ratio of

innovation behavior. There are different techniques for measuring
efficiency, each with its own strengths and weaknesses. The frontier
analysis method is commonly used in research on innovation
efficiency. The frontier analysis method is widely accepted in
research on innovation efficiency. In this study, the SFA model is

implemented for the following reasons: Firstly, the primary objective
of this paper is to examine the innovation efficiency of new energy
enterprises and their dynamic evolution, requiring comparable
innovation efficiency values over various frames. However, the
DEA method, while calculating efficiency values, lacks horizontal
comparability due to mostly relying on static data. Although certain
academics have derived the two-phase variation of efficiency value
by integrating the Malmquist index or other methodologies, it
necessitates high data quality and requires a balanced panel data,
which may result in data loss and introduce sample selection bias
and other issues. Secondly, SFA is a parametric method, which
assumes the specific forms of production functions and estimates
the parameters in these functions, which can provide the basis
for the subsequent convergence test and analysis of influencing
factors in this paper. As a nonparametric method, DEA, although
flexible, cannot provide such in-depth statistical analysis. Thirdly,
in the process of innovation development, various unpredictable
and stochastic factors exert a significant impact on innovation
output. The DEA model creates distinct production frontiers
for different time periods, typically labeling any actual output
below the frontiers as technical inefficiencies without considering
the influence of random factors. On the other hand, the SFA
model incorporates this theoretical logic and constructs a unique
production frontier using panel data. Hence, the SFA model can
be designed based on innovation efficiency and data features.
Furthermore, taking into account that innovation activities are
usually assessed based on input and output, the innovation efficiency
of China’s listed new energy companies can be evaluated in the two
phases: R&D and transformation, which enables a categorized and
comparative analysis.

3.1.2 SFA model
The model’s specific form is established based on Solow’s analysis

framework for economic growth, assuming that the non-efficiency
term μ has time-varying characteristics. The innovation efficiency of
new energy enterprises is separately measured during the phases of
R&D and transformation. To be more precise, Equation 1 selects the
selection of output variables during the R&Dphase, directly reflecting
thenumberofpatent applications.On theotherhand, variables suchas
thecountofpersonnelengagedinR&Dandthetotalcapital investment
allocated to R&D can be interpreted as input indicators.

ln yit = β0 + βk ln Kit + βl ln Lit +
1
2
⁢βkk ⁢(ln Kit)

2 + 1
2
⁢βll ⁢(ln Lit)

2

+ βkl ln Kit ln Lit + βt ⁢t+ βkt ⁢t ln Kit + βlt ⁢t ln Lit + vit − uit (1)

In Equation 2, the output variable of the transformation phase
is represented by total profit. While other scholars have used
the sales revenue of new products to evaluate the outcome of
innovation transformation (Hall and Mairesse, 1995), this study
chooses to measure the output of the second phase with the metric
of total profit. This decision takes into account the distinctive
attributes of new energy enterprises and the two-fold purposes of
technological advancement, which include minimizing expenses
and elevating operational earnings. Regarding the input factors,
they are denoted by means of metrics like the number of
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R&D personnel, the aggregation of R&D capital, and knowledge
capital.

ln yit = β0 + βk ln Kit + βl ln Lit + βa ln Ait +
1
2
⁢βkk ⁢(ln Kit)

2

+ 1
2
⁢βll ⁢(ln Lit)

2 + 1
2
⁢βaa ⁢(ln Ait)

2

+ βkl ln Kit ln Lit + βka ln Kit ln Ait + βla ln Lit ln Ait

+ βt ⁢t+ βkt ⁢t ln Kit + βlt ⁢t ln Lit + βat ⁢t ln Ait + vit − uit (2)

In Equations 1,2, each sample firm is identified as a Decision
Making Unit (DMU), with yit representing the output of sample
i in year t, β denoting the regression coefficient of the input
variable, K representing the R&D capital input of new energy
enterprises, L representing its R&D personnel input, v representing
the measurement error and random disturbance, which conforms
to the normal distribution of random error, and u reflecting the part
that does not reach the production frontier and follows the semi-
normal distribution. v and u are independent of each other and
independent of the explanatory variables.

innoit represents the innovation efficiency of sample i in year t,
let μ = ‐ ln inno. The efficiency is effective when μ = 0 and inno = 1,
while the efficiency is noneffective, when μ > 0 and 0 < inno < 1.

Let γ = μ2

μ2+ν2
, the significance of γ represents the proportion

of environmental factors in the technical inefficiency term. The
influence of random factors is greater as γ approaches 0, while
environmental factors have a greater impact as γ approaches 1.

3.2 Variables and data

As of the end of 2024, a total of 189 stocks related to the new
energy concept were accounted for in China’s combined A-Shares
(including Main Board, Small and Medium-Sized Board, Growth
Enterprise Board, Science andTechnology InnovationBoard) andB-
Shares. To obtain a comprehensive dataset, China’s listed companies’
data was cross-referenced, which led to the acquisition of 2,182
valid samples representing new energy enterprises. These samples
were obtained by excluding missing or zero-value data from patent
applications, R&D personnel, and R&D investment indicators. The
relevant variables were obtained from the CSMAR database and the
Wind databases. Given the significant growth of China’s new energy
sector in the past decade, this study examines the period from 2015
to 2023. It is noteworthy that the process of accumulating R&D input
requires capital transformation via R&D investment; however, the
knowledge capital factor can only be calculated subsequently.

3.2.1 Capital accumulation
Since the collected data in this study constitutes unbalanced

panel data, it is vital that the research findings comprehensively
reflect the innovative development of new energy enterprises.
To handle missing values, we refrain from using methods such
as deletion or interpolation filling, instead of calculating the
accumulation of R&Dcapital based on specific assumptions to create
a balanced panel. Specifically, the assumption is that all enterprises
were established in 1998 initially, with R&D investment made in
each year between the start of 1998 and the sample year. Also,
it is assumed that the growth rate of R&D enterprise investment
for a particular province is identical to the growth rate of R&D

internal expenditure of the province, enabling the computation
of enterprises’ R&D investment in previous years since 1998. By
employing the fixed asset price index of each province, the annual
investment’s nominal value of the annual investment can be deflated
to calculate the actual investment amount. The depreciation rate is
set at 15% based on various classical literature assumptions, and
the perpetual inventory method is used for determining the capital
accumulation of R&D: Kit = (1‐δK)Kit‐1 + Iit, where I represents
the current yearly expenditure on R&D input, and δK is the
depreciation rate.

3.2.2 Knowledge capital
The calculation of knowledge capital follows the same logic as

that of capital accumulation using the perpetual inventory method:
Ait = (1‐δA)Ait‐1 + Pit. Pit is the annual number of patents submitted
by enterprises. However, there are some distinctions in the process
of capital accumulation: the amount of knowledge flow is calculated
by the number of patent applications. It is assumed that the growth
rate of the company’s patent applications since 1998 has been
consistent with that of the province where the company is located.
Deflation is not necessary. With Chinese technology having an
average lifespan of 14 years, the depreciation rate is set at its
reciprocal value of 0.0714.

3.3 Measurement results and interpretation

The Maximum Likelihood Estimate is used to estimate
the stochastic frontier production function displayed in
Equations 1,2, and to estimate the SFA model parameters,
as shown in Table 1.

Most of the parameters in the two models have passed the
significance test. Additionally, both σ2 and γ have passed the
significance test at a 1% level. This indicates that both the random
disturbance term v and the technical inefficiency term u have
significant existence. Moreover, the SFA model’s configuration
appears reasonable.

3.3.1 Measurement results
The SFA model is employed to measure the innovation

efficiency of China’s listed new energy companies throughout the
R&D and transformation period from 2015 to 2023. The data
pertaining to the innovation efficiency of the selected enterprises
has been systematized and condensed based on their respective
provinces to enable easy representation and examination.The results
are shown in Table 2.

Consistent with the majority of existing literature’s static
measurements, China’s new energy enterprises continue to exhibit
low innovation efficiency. After breaking down the various of R&D
innovation, this paper finds that the mean innovation efficiency
in the technology R&D phase is 0.64, while the mean innovation
efficiency in the achievement transformation phase is 0.37.

From the perspective of R&D, new energy enterprises
throughout 30 provinces demonstrate innovation efficiency ranging
from 0.55 to 0.71, with a median of 0.635. The top six provinces
in terms of innovation efficiency, with a range of 0.69–0.71, are
Liaoning, Hubei, Shanghai, Zhejiang, Shandong and Henan. The
five provinces with the lowest innovation efficiency, ranging from
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TABLE 1 Estimated coefficients of the SFA model.

Parameter Model 1 Model 2 Parameter Model 1 Model 2 Parameter Model 1 Model 2

β0 6.9180
∗∗∗

27.9793
∗∗∗

βkl 0.0367
∗

−0.0949
∗∗∗

σ2 0.5396
∗∗∗

0.3432
∗∗∗

βk −0.5657
∗∗∗

−1.7117
∗∗∗

βka −0.0394
∗∗

γ 0.4722
∗∗∗

0.9643
∗∗∗

βl −0.0559 0.8039
∗∗∗

βla 0.0397
∗∗

μ 8.3425
∗∗∗

5.0564
∗∗∗

βa 0.2082 βt 0.7800
∗∗∗

0.2443
∗∗∗

η −0.0612
∗∗∗

−0.0267
∗∗∗

βkk 0.0581
∗∗∗

0.1977
∗∗∗

βkt −0.0302
∗∗∗

−0.0045 log-likelihood −11864.3 −9521.42

βll −0.0261 0.1246
∗∗∗

βlt −0.0118 −0.0061 Wald test 1104.01 1872.57

βaa 0.0277
∗∗

βat −0.0021

Note: ∗, ∗∗and ∗∗∗denote statistical significance at the 1%, 5%, and 10% levels, respectively.

0.55 to 0.58, are Jiangxi, Nei Mongol, Shanxi, Shaanxi and Hunan.
The innovation efficiency of new energy enterprises during the
technological R&D phase is relatively even (0.16), suggesting a
balanced state. Among them, Liaoning displays the highest level of
innovation efficiency (0.71) due to the local government’s support
policies for new energy and the traits of the enterprises. The
new energy battery materials produced by Oxiran Shares, such
as their vinyl carbonate series, serves as a remarkable example
of world-renowned innovation accomplishments. The materials
demonstrate a remarkable control mechanism in the industrial and
supply chain, providing a robust basis for increased innovation
investment. In contrast, Hunan exhibits the lowest innovation
efficiency (0.55) amongst the provinces. Similarly, provinces holding
extensive conventional coal reserves like Shanxi and Nei Mongol
rank comparably low in new energy innovation efficiency. It is
imperative to address the issue of phased retreat from fossil fuels
and the implementation of renewable energy. Achieving an optimal
balance between coal and new energy resources is an essential aspect
of the dual carbon strategy.

From the perspective of transformation, the innovation
efficiency of new energy enterprises across 30 provinces varies
between 0.13 and 0.51, with a median of 0.37. The top five
provinces based on innovation efficiency are Hebei, Gansu, Anhui,
Jiangxi and Liaoning, with efficiency levels ranging from 0.43 to
0.51. On the other hand, the bottom five provinces are Shanxi,
Nei Mongol, Hunan, Yunnan and Chongqing, with innovation
efficiency ranging from 0.13 to 0.28. Hebei exhibits the highest
innovation efficiency (0.51), whereas Chongqing has the lowest
(0.12). The range of innovation efficiency during the transformation
phase is considerably wider. Hebei’s figure is around 4 times
that of Chongqing. This discrepancy may be due to the limited
innovation accomplishments of Chongqing’s small number and
scale of new energy firms, leading to lower transformation efficiency.
On the other hand, new energy enterprises in Hebei are not
only numerous but also excel in the transformation process.
For example, Tonhe Technology’s smart power grid and new
energy vehicle module products, as well as Baobian Electric’s
transformer proprietary technologies, are globally recognized for
their pioneering advancements. This highlights the significant
influence of innovation transformation in these industries.

The coastal provinces exhibit higher levels of innovation
efficiency in the R&D phase, whereas inland provinces exhibit
relatively low efficiency. The significant economic growth in the
coastal regions provides new energy businesses with improved
access to resources, consequently promoting a continuous
enhancement of innovative efficiency. However, it is noteworthy that
while there is an overall decreasing trend in innovation efficiency
from the southeast coastal area to the northwest inland area, Ningxia
and Xinjiang display higher levels of innovation efficiency in the
R&D phase. Conversely, Gansu, Ningxia, and Sichuan provinces
show greater innovation efficiency during the transformation phase.
This outcome suggests that specific energy enterprises in the western
provinces have unique traits in taking advantage of their late-
mover benefits and pursuing enhanced innovation effectiveness,
emphasizing the need for additional guidance and development.

3.3.2 Results of different regions
Figure 1 illustrates a critical analysis of innovation efficiency

levels observed during the R&D and transformation phases across
the eastern, central, and western regions. This comparison is
visualized through a bitmap representation. The results indicate
a noticeable, stepwise decline pattern in the innovation efficiency
of new energy enterprises. The average innovation efficiencies for
the eastern, central, and western regions during the R&D phase
are 0.67, 0.62, and 0.61, respectively. The innovation efficiency
is greater in the eastern region than the national average of
0.64, although it is in close alignment with it. Notably, there
are significant disparities in the innovation efficiencies between
enterprises across different regions, particularly within the central
area. When transitioning to the transformation phase, it can be
observed that the innovation efficiencies of new energy enterprises
in the eastern, central, and western regions are 0.40, 0.38, and
0.32, correspondingly. The innovation efficiencies in the eastern and
central regions surpass the national average level of 0.37, with the
eastern region exhibiting an innovation efficiency 1.25 times that of
the western region.The eastern andwestern regions exhibit themost
noticeable differences among themselves in terms of innovation
efficiency, while the central region demonstrates the most similarity,
which is particularly true for new energy enterprises.
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FIGURE 1
(1) R&D phase (2) Transformation phase. Comparison of innovation efficiency in different regions.

TABLE 3 Modes of new energy enterprises in each province.

Transformation ≥0.380 Transformation <0.380

R&D ≥ 0.635 Liaoning, Hubei, Shanghai, Zhejiang, Shandong,
Henan, Jiangsu, Beijing, Fujian, Ningxia, Heilongjiang,
Guangdong

Xinjiang, Yunnan, Chongqing

R&D < 0.635 Hebei, Gansu, Anhui, Jiangxi, Sichuan Tianjin, Hainan, Jilin, Guangxi, Guizhou, Qinghai, Nei
Mongol, Shanxi, Shaanxi, Hunan

3.3.3 Results of differentiated R&D model
The previous discussion on classification highlights

considerable variations in the innovation efficiencies of new
energy enterprises throughout different phases, indicating
that a simplistic classification fails to fully reflect attributes.
Consequently, taking the median of the innovation efficiency
(0.635 and 0.380) in the R&D and transformation phases as
the dividing line, the innovation modes of China’s new energy
enterprises can be categorized by province as illustrated in
Table 3.

Mode 1, high R&D-high transformation: The innovation
efficiency is ≥0.635 in the R&D phase and ≥0.380 in the
transformation phase. This mode consists of 12 provinces, which
make up over 1/3 of the total sample, with eight of them situated
in the eastern region. This exhibits a relatively efficient innovation
model. Hubei, Shanghai, Zhejiang, Beijing and Fujian perform the
best in the R&D phase. However, their innovation efficiency during
the transformation phase falls between 0.38 and 0.39, indicating a
comparatively lower status.

Mode 2, high R&D-low transformation: The innovation
efficiency is ≥0.635 in the R&D phase and <0.380 in the
transformation phase. This mode comprises three provinces,
all situated in the western region. These provinces demonstrate
insufficient transformation capability with their innovation
efficiency ranging from 0.64 to 0.65 in the R&D phase. However,
during the transformation phase, their efficiency falls below the
median, with Yunnan and Chongqing in particular, occupying the
last two positions in this phase. To improve the situation, the next

step should concentrate on improving the uptake and utilization
of existing scientific and technological progress. Policies that aid
the transformation of scientific and technological advancements,
enhance the innovation ecosystem for transformation, and
improve the efficiency of converting scientific and technological
achievements should be introduced.

Mode 3, with low R&D-high transformation: The innovation
efficiency is <0.635 in the R&D phase and ≥0.380 in the
transformation phase. This mode comprises five provinces. Sichuan
is ranked 17th among these provinces in terms of innovation
efficiency for new energy enterprises in both the R&D and the
transformation phases indicating its relative proximity to the
median value. The innovation efficiency in Hebei, Gansu, Anhui,
and Jiangxi in the R&D phase concentrates within the range of
0.58–0.62, meeting the lower-middle level. In contrast, they rank
amongst the top four in the transformation phase and exhibit an
impressive capability to innovate, despite their limited research
and development capacity. Therefore, new energy enterprises
in these four provinces should raise their investment in the
R&D phase.

Mode 4, low R&D-low transformation: The innovation
efficiency is <0.635, and <0.380 in the transformation phase. This
model comprises 10 provinces, accounting for 1/3 of the total
sample. Additionally, provinces in the western region account for
1/2 of the total sample. The innovation efficiency of new energy
enterprises with this mode is generally low, thus necessitating
the implementation of preferential policies by the government to
stimulate their innovation potential.
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4 Convergence analysis

To examine the evolutionary trend and characteristics of
the innovation efficiency gap among new energy enterprises,
convergence analysis can be employed. This study utilizes
σ-convergence, absolute β-convergence, and conditional β-
convergence as dynamic and comprehensive approaches to
investigate the aforementioned aspects. This leads to a greater
understanding of the evolutionary patterns related to innovation
efficiency in new energy enterprises over time.

4.1 σ-convergence

σ-convergence describes the narrowing average gap in
innovation efficiency between new energy enterprises over time.
This notion aligns with real-world convergence in reality and
assesses the changing dispersion degree of innovation efficiency.
A rise in σ indicates regional differences closing and converging
towards the mean value. The presence of σ-convergence implies a
gradual reduction of the innovation efficiency gap between energy
businesses across various regions over a period of time.

The methods for measuring σ-convergence encompass the
coefficient of variation, Theil index, Herfindahl index, Gini
coefficient, etc. For this study, the most widely used coefficient of
variation is selected for measurement, as shown in Equation 3:

σi =
1

innoi
√ 1

n

n

∑
i=1
(innoi‐innoi)

2

(3)

During the R&D phase, based on Table 4, the coefficient of
variation ranges between 0.030 and 0.044, indicating considerable
disparities in innovation efficiency across these enterprises. The
coefficientofvariationfirst increased,whichmeans that thedifferences
in innovation efficiency of sample enterprises began to expand,
probably because a series of supporting policies helped some
enterprisesdevelopnewtechnologiesor improveproductionprocesses
after 2015. With the passage of time, the coefficient of variation
starts to decrease again, that is, the growth rate of the former leading
enterprises slowsdown, and the latecomersbegin to catchup, resulting
in a narrowing of the difference in innovation efficiency. However,
there is limited evidence of σ-convergence. In the eastern region of
China, the variation coefficient of innovation efficiency ranges from
0.041 to 0.058. The trend shows a clear decrease in dispersion, with
a gradual stability between 2015 and 2023, indicating a significant
σ-convergence among new energy enterprises in the R&D phase
within the eastern region. Within the central region, the variation
coefficient of innovation efficiency ranges from 0.093 to 0.123. The
level of variation fluctuates, suggesting the negligible σ-convergence
during the R&Dphase of new energy enterprises in the central region.
Conversely, the western region displays a variation coefficient within
the range of 0.060–0.093, with a slight decrease in variation. Despite
showing an upward trend in 2017, the overall trend demonstrates a
downward trajectory, suggesting there is σ-convergence in the R&D
phase within the western region.

During the transformation phase, the data presented in Table 4
demonstrates an initially increases and then decreases in the
dispersion of innovation efficiency amongst new energy enterprises
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across the country. The coefficient of variation is within the
range of 0.056–0.109, indicating substantial variation in innovation
efficiency throughout the country but no significant σ-convergence.
In the eastern region, the variability coefficient of innovation
efficiency ranges from 0.095 to 0.131. There has been minimal
change in the overall dispersion, indicating a relatively stable
state with no significant σ-convergence. In the central region, the
variation coefficient of innovation efficiency ranges from 0.213 to
0.257. The degree of dispersion remains relatively stable nationwide,
indicating no significant σ-convergence. In the western region,
variation coefficient of innovation efficiency ranges between 0.300
and 0.383 with the degree of dispersion showing an increasing trend
and no significant σ-convergence.

4.2 β-convergence

4.2.1 Model and variable design
To investigate the possibility that provinces with low innovation

efficiency among new energy enterprises are effectively catching
up, a β-convergence test is performed for each province. This test
includes absolute β-convergence, where the innovation efficiency of
all samples converges to the same steady state, and conditional β-
convergence, where each province converges to its own steady state.
Equations 4,5, are derivedwith reference to Barro and Sala-i-Martin
(1992) analysis of economic convergence.

ln(
innoit+1
innoit
) = α+ β ln innoit + εit (4)

ln(
innoit+1
innoit
) = α+ βln innoit + δX+ εit (5)

Convergence rate: λ = ‐ ln (1+ β)/T
In the equation, the constant term is denoted as α, the

convergence coefficient as β, the period as T (spanning 9 years), the
random error term as εit , and X represents a set of control variables.
Following the approach of Amin andDogan (2021), Yin et al. (2022),
the selected key variables include GDP ( gdp), which reflects the
level of economic development; the ratio of tertiary industry value
added to secondary industry value added (uis), which reflects the
upgrading of industrial structure; the ratio of urban population to
permanent population at the end of the year (urb), which reflects
the level of urbanization construction; the ratio of total import
and export volume to GDP (open), which measures the degree of
openness index; and the density of rail and road mileage (inf ),
which reflects the level of transport infrastructure development. To
ensure data comparability, GDP, secondary sector value added and
tertiary sector value added are adjusted for inflation using 2015 as
the base year. At the same time, all variables undergo a logarithmic
transformation in the calculation process to address the likelihood of
heteroskedasticity. Table 5 provides a comprehensive overviewof the
descriptive statistical characteristics, including the mean, standard
deviation, minimum, and maximum values for each variable.

4.2.2 Absolute β-convergence
Model (4) is used to test the absolute β-convergence of

innovation efficiency among China’s new energy enterprises, and
the results are presented in Table 6. Overall, the nationwide β

TABLE 5 Descriptive statistics of relevant data.

Variables Unit Mean Std.
Dev

Min Max

innord 0.6363 0.0481 0.5032 0.728

innotrans 0.3657 0.0803 0.1192 0.5216

Gdp Billion
yuan

2,666 2099 201 9795

Uis 1.4490 0.7342 0.8006 5.0908

Urb % 60.0227 11.3248 39.9946 94.1516

open % 24.3489 24.0806 1.2779 104.0671

inf km/per
km2

2.3294 4.928 0.0201 28.7201

value of innovation efficiency in both the R&D phases and the
transformation phases is negative and passes the 1% significance
test. This result indicates the existence of absolute β-convergence
in the innovation efficiency of new energy enterprises. Taking into
account the initial innovation efficiency, provinces with a lower
initial level experience an accelerated growth rate of innovation
efficiency, resulting in a gradual narrowing of the gap between
these provinces and those with higher initial innovation efficiency.
Finally, the innovation efficiency levels of new energy enterprises
in each province converges to a common steady state. The results
also highlight the significant technology spillover effect within the
new energy industry. New energy enterprises in different provinces
can effectively imitate, learn and adopt the development experience
of more advanced counterparts. Enterprises with lower R&D and
transformation levels can catch up with advanced new energy
enterprises faster, while enterprises with high innovation efficiency
become more cautious in the middle and late stages of research.

From a regional perspective, in both the R&D and
transformation phases, the β coefficients in the eastern and western
regions are less than 0 and pass the significance test at the 1% level,
indicating the presence of absolute β-convergence. Regions with
lower innovation efficiency experience higher growth rates, leading
to the eventual convergence of innovation efficiency of new energy
enterprises in all regions. In the R&D phase, the convergence rate in
the eastern and central regions is slower than the national rate, while
the convergence rate in the western regions is faster. However, the
overall convergence rates are similar. In the transformation phase,
the convergence rate in the eastern and central regions is faster
than the national rate, while the convergence rate in the western
regions is slower. This can be attributed to the relatively developed
economies of the eastern and central regions, which have attracted
a large number of new energy enterprises due to their economic
and locational advantages. In addition, they have already started to
focus on technology transformation at the R&D phase, leading to
a more significant technology spillover effect. On the other hand,
the development of new energy enterprises in the western region
started relatively late and is currently focused on R&D investments.
Although there is significant knowledge transfer and technology
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TABLE 6 Absolute β-convergence.

Variable China Eastern Central Western

SFA1 SFA2 SFA1 SFA2 SFA1 SFA2 SFA1 SFA2

Β −0.2002
∗∗∗

−0.2056
∗∗∗

−0.1963
∗∗∗

−0.2252
∗∗∗

−0.1933
∗∗∗

−0.2761
∗∗∗

−0.2031
∗∗∗

−0.1921
∗∗∗

Constants −0.0905
∗∗∗

−0.2132
∗∗∗

−0.0784
∗∗∗

−0.2056
∗∗∗

−0.0911
∗∗∗

−0.2730
∗∗∗

−0.0994
∗∗∗

−0.2309
∗∗∗

Convergence rate 0.0447 0.0460 0.0437 0.0510 0.0430 0.0646 0.0454 0.0427

R2 0.5776 0.6877 0.7897 0.6258 0.3507 0.7413 0.5862 0.7099

P value 0.0000 0.0000 0.0000 0.0000 0.0099 0.0000 0.0003 0.0000

Note: (1) ∗, ∗∗and ∗∗∗denote statistical significance at the 1%, 5%, and 10% level, respectively.
(2) SFA1 for the innovation efficiency in the R&D phase, SFA2 for the innovation efficiency in the transformation phase.

TABLE 7 Conditional β-convergence.

Variable China Eastern Central Eastern

SFA1 SFA2 SFA1 SFA2 SFA1 SFA2 SFA1 SFA2

Β −0.2028
∗∗∗

−0.2097
∗∗∗

−0.2012
∗∗∗

−0.2519
∗∗∗

−0.2201
∗∗∗

−0.3008
∗∗∗

−0.2029
∗∗∗

−0.1929
∗∗∗

Constants −0.1715
∗∗∗

−0.4591 −0.1376 −0.8555
∗∗

0.6509 1.2872 −0.5146 0.0413

uis 0.0059 0.0569
∗∗

0.0149 0.1002
∗∗

0.0146 −0.0009 −0.0070 0.0662

urb −0.0022 −0.1710
∗

−0.0545 −0.3346
∗∗∗

0.1646 0.4207 −0.0737 −0.0698

open 0.0031 −0.0084 0.0020 0.0166 0.0158 −0.0271 0.0004 −0.0102

gdp 0.0084 0.0121 0.0029 0.0454 −0.0631 −0.1415 0.0397 −0.0386

inf 0.0005 0.0006 −0.0002 0.0022 0.0009 0.0015 −0.0001 −0.0006

Convergence rate 0.0453 0.0471 0.0449 0.0580 0.0497 0.0716 0.0454 0.0429

R2 0.5981 0.7082 0.8103 0.7643 0.6073 0.7981 0.5968 0.7268

P value 0.0000 0.0000 0.0009 0.0003 0.0849 0.0033 0.0120 0.0001

Note: ∗, ∗∗and ∗∗∗denote statistical significance at the 1%, 5%, and 10% level, respectively.

spillover among these enterprises, there are some shortcomings in
the transformation of achievements.

4.2.3 Conditional β-convergence
Model (5) is used to test the conditional β-convergence of

innovation efficiency among China’s new energy enterprises, and
the results are presented in Table 7. In both the R&D and
transformation phases, the β coefficient shows a negative value with
significant significance at the 1% level, suggesting the existence
of substantial conditional β-convergence. However, the difference
lies in the factors influencing this convergence. At the R&D
phase, the upgrading of industrial structure, openness, economic
development and the construction of transportation infrastructure
all contribute to the convergence of innovation efficiency in new
energy enterprises. Conversely, urbanization has an inhibiting effect.
But the influence of these variables is not significant. On the other
hand, during the transformation phase, both urbanization and
openness have inhibiting effects on convergence.

The reason for this lies in the overall volume perspective,
where the characteristics of new energy development contribute
to the generally large size of domestic new energy enterprises.
Achieving further breakthroughs in innovation efficiency becomes
more difficult when dealing with larger volumes, leading to a natural
long-term convergence trend. From the perspective of regional
structure, although all provinces have implemented new energy
development plans, there are significant differences in resource
endowments and construction priorities, resulting in differences in
the convergence rate of innovation efficiency. From the perspective
of influencing factors, both domestic economic development and
foreign capital entry conditions can externally change the innovation
conditions of China’s new energy enterprises. The differences in the
above factors of the sample enterprises lead to different convergence
trends. However, in-depth research is still needed to understand
in detail how these different factors influence the dynamic
development of innovation efficiency in China’s new energy
enterprises.
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4.3 Robustness test

To address potential sample-selection bias from excluding firms
with missing/zero patent data—which may overlook low-efficiency
enterprises—we implement a two-step imputation: first, fill in
the missing values with the provincial median, and then replace
the zero value with 50% of the industry’s minimum non-zero
value. The interpolated results show that the average innovation
efficiency in the R&D phase decreased from 0.64 to 0.62, and the
average efficiency in the transformation phase dropped from 0.37
to 0.34. Provinces with lower innovation efficiency experienced a
relatively larger decline, with Chongqing’s transformation efficiency
decreasing by 19%.

Crucially, all convergence patterns remain robust. σ-
convergence persists regionally for R&D but remains absent
in transformation. Absolute β-convergence retains statistical
significance, with the western region still converging fastest,
particularly in transformation. Conditional β-convergence shows
stable coefficients and convergence rate shifts below 5%. Thus, core
conclusions withstand sample-composition adjustments.

5 Influencing factors of the dynamic
evolution

5.1 Threshold model

The above convergence results show that economic
development, industrial structure upgrading, urbanization and
openness are important factors affecting the innovation efficiency
of new energy enterprises. To further explore the non-linear
influence of these factors on the innovation efficiency of new energy
enterprises, the threshold model is used for further analysis, and
Equations 6,7, are constructed:

ln (
innoit+1
innoit
)/T = α+ b1 ln innoit ⁢Iit ⁢ (thrit ≤ η)

+ b2 ln innoit ⁢Iit ⁢ (thrit > η) + εit (6)

ln (
innoit+1
innoit
)/T = α+ b1 ln innoit ⁢Iit ⁢ (thrit ≤ η)

+ b2 ln innoit ⁢Iit ⁢ (thrit > η) +∑θn ⁢Xit+εit (7)

Where, I (·) is the indicator function, thr is the threshold
variable, η is the threshold to be estimated, and εit is the
random error term. Equation 6 is single-threshold model of
absolute β-convergence, and Equation 7 is single-threshold model
of conditional β-convergence. The application of these two models
allows for the exploration of the presence of convergence attributes
within the innovation efficiency of new energy enterprises, as
well as the potential non-linear effects of threshold variables
on such convergence. On the basis of the above models, the
convergence model can be further extended to include double
or multiple thresholds. In the regression results of Equations 6,7,
if b < 0 and significant, it indicates that there is a significant
threshold effect of β-convergence, which means that the growth
rate of innovation efficiency of new energy enterprises in provinces
with low innovation efficiency is faster than that of provinces

with high innovation efficiency, that is, provinces with low
innovation efficiency have an obvious catch-up effect. Meanwhile,
it also reflects that the β-convergence rate of innovation efficiency
of new energy enterprises has changed to a certain threshold
value as a boundary. When b > 0 and significant, there is
no β-convergence, but there is a threshold effect, which means
that provinces with low innovation efficiency of new energy
enterprises have no obvious catch-up effect, and with a specific
threshold value as the boundary, the regional gap of innovation
efficiency widens.

5.2 Threshold effect

Before analyzing the thresholdmodel, the stationary test and co-
integration test are first conducted on the logarithmic form of each
variable. It is found that the panel data of each variable is stationary,
and the innovation efficiency of new energy enterprises in the phase
of R&D and transformation has a co-integration relationship with
the other five variables. Let η= lnuis, lnurb, lnopen, lngdp, lninf, using
Stata15, the threshold regression of bootstrap 500 times is performed
for Equation 6 and Equation 7 respectively.

As can be seen from Table 8, in the R&D phase, the threshold
model of five variables, including the upgrading of industrial
structure, urbanization, openness, economic development and
transportation infrastructure construction, shows that under the
condition of absolute β-convergence, three variables, such as
industrial structure, urbanization and economic development, have
a threshold effect on the convergence of innovation efficiency
of new energy enterprises. Under the situation of conditional
β-convergence, industrial structure, openness and transportation
infrastructure construction have no threshold effect.

Based on the results presented in Table 9, it can be observed
that during the transformation phase, the convergence of innovation
efficiency among new energy enterprises is influenced by the
industrial structure and economic development variables, which
show threshold effects in the context of the estimation of absolute
β-convergence. Furthermore, when considering conditional β-
convergence, the threshold effects of the five control variables are
consistent with those observed in absolute β-convergence.

Tables 10,11 show the threshold value and 95% confidence
interval of each variable with a threshold effect in the innovation
process of new energy enterprises, respectively. To reflect the
threshold search process more clearly, the Likelihood Ratio
Logarithm (LRL) corresponding to each threshold search under the
conditional β-convergence in theR&Dphase is presented in Figure 2
using lnurb as an example.

5.3 Estimation and analysis of threshold
model

Tables 12,13 show the regression results of different threshold
variables under absolute β-convergence and conditional β-
convergence in the innovation process of new energy enterprises,
respectively. As this paper focuses on the convergence characteristics
and dynamic changes of innovation efficiency of new energy
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TABLE 8 β-convergence threshold effects—R&D phase.

Threshold
variable

Absolute β-convergence Threshold
variable

Conditional β-convergence

Threshold
quantity

F Value P Value Threshold
quantity

F Value P Value

lnuis

single 19.21
∗

0.0920

lnuis

single 16.08 0.1280

double 10.52 0.2780 double 8.47 0.3960

triple 16.04 0.3780 triple 16.98 0.3160

lnurb

single 25.97
∗∗∗

0.0060

lnurb

single 21.68
∗∗

0.0240

double 25.43
∗∗

0.0260 double 31.66
∗∗

0.0240

triple 11.02 0.5300 triple 10.23 0.5380

lnopen

single 16.03 0.2680

lnopen

single 18.89 0.1820

double 16.33 0.2400 double 13.39 0.3420

triple 12.57 0.3300 triple 8.97 0.5960

lngdp

single 22.34
∗

0.0780

lngdp

single 22.08
∗∗

0.0340

double 14.10 0.5740 double 14.38 0.4920

triple 10.48 0.5700 triple 10.13 0.6240

lninf

single 8.03 0.3200

lninf

single 9.24 0.2400

double 26.62
∗∗∗

0.0080 double 22.76
∗∗

0.0240

triple 7.26 0.5580 triple 7.17 0.7540

Note: ∗, ∗∗and ∗∗∗denote statistical significance at the 1%, 5%, and 10% level, respectively.

enterprises, the parameter estimates of control variables are not
listed in the regression results under conditional β-convergence.

In the R&D phase, industrial structure, urbanization, and
economic growth emerge as pivotal determinants of innovation
efficiency in new energy enterprises. Our analysis, focusing
specifically on industrial structure as the threshold variable in
absolute β-convergence, reveals that when the ratio of the tertiary
sector’s value-added to the secondary sector’s value-added surpasses
the threshold value of 0.5466, there is a notable increase in
the innovation efficiency convergence rate from 4.38% to 5.68%.
This improvement can be attributed to the direct or indirect
promotion of the development of new energy enterprises through
industrial structure upgrading. Consequently, it creates a larger
market demand and development space for these enterprises,
thus accelerating the convergence rate of innovation efficiency.
Moreover, the results of the absolute β-convergence regression,
using urbanization as a threshold variable, show convergence
rates of 4.25%, 3.13%, and 4.32% in the three phases, suggesting
that urbanization also plays an important role in promoting
the convergence of firms’ innovation. However, as urbanization
progresses, this supportive effect follows a U-shaped curve. The
process of urbanization has brought new requirements for the
optimization of the energy structure and provided business
opportunities for the development of the new energy industry. For

instance, China’s wind and solar energy enterprises represented by
Goldwind Technology and Micoe Group have become industry
leaders largely due to their proactive strategies and ability to seize
market opportunities.The absolute β-convergence regression results
with economic development as the threshold variable show that
lngdp takes 9.5757 as the threshold value, and the convergence
rate of innovation efficiency of new energy enterprises presents an
accelerating trend, with the convergence rate of 4.38% and 5.68%
in the two phases, respectively. The reason for this phenomenon is
that, although the innovation efficiency of new energy enterprises
in provinces with lower economic development levels grows faster
overall, the improvement in economic development will drive the
input of R&D in the process of increasing GDP from a lower level
(<RMB 1,441 billion) to a higher level (≥RMB 1,441 billion). As
a result, the growth rate of innovation efficiency of new energy
enterprises will accelerate.

The regression results of conditional β-convergence using
urbanization as a threshold variable show a double threshold
(−0.4588 and −0.4541) for lnurb.The convergence rate of innovation
efficiency for new energy enterprises decreases from 4.17% to
2.97% and then increases to 4.20%. This suggests that urbanization
has similar characteristics to absolute β-convergence taking into
account differences in relevant factors across provinces. Considering
the economic development level as a variable threshold, the value
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TABLE 9 β-convergence threshold effect—transformation phase.

Threshold
variable

Absolute β-convergence Threshold
variable

Conditional β-convergence

Threshold
quantity

F Value P Value Threshold
quantity

F Value P Value

lnuis

single 38.84
∗∗∗

0.0080

lnuis

single 51.07
∗∗∗

0.0000

double 22.31
∗∗

0.0300 double 16.68
∗

0.0620

triple 9.26 0.6720 triple 9.08 0.6180

lnurb

single 19.48
∗

0.0920

lnurb

single 28.26
∗∗

0.0140

double 5.56 0.6540 double 4.20 0.8440

triple 8.80 0.3520 triple 8.07 0.5400

lnopen

single 11.81 0.3940

lnopen

single 13.37 0.3000

double 11.78 0.2960 double 11.25 0.4060

triple 13.02 0.4060 triple 16.37 0.3620

lngdp

single 24.34
∗∗

0.0280

lngdp

single 28.51
∗∗

0.0140

double 11.07 0.3620 double 13.40 0.2880

triple 11.36 0.5200 triple 13.41 0.6340

lninf

single 7.14 0.3220

lninf

single 8.74 0.2520

double 23.42
∗∗

0.0120 double 39.60
∗∗∗

0.0000

triple 6.57 0.3160 triple 10.85 0.1440

Note: ∗, ∗∗and ∗∗∗denote statistical significance at the 1%, 5%, and 10% level, respectively.

TABLE 10 Estimated threshold value of β-convergence - R&D phase.

Absolute β-convergence Conditional β-convergence

Threshold variable Threshold 95% confidence
interval

Threshold variable Threshold 95% confidence
interval

lnuis 0.5466 (0.5044, 0.5790)
lnurb

−0.4588 (-0.4618, −0.4490)

lnurb
−0.4588 (-0.4618, −0.4490) −0.4541 (-0.4648, −0.4492)

−0.4541 (-0.4580, −0.4492) lngdp 9.5757 (9.5303, 9.6022)

lngdp 9.5757 (9.5303, 9.6022)

of the lngdp threshold is determined to be 9.5757. Once the
economic development level exceeds this threshold, the convergence
rate accelerates, indicating that economic development plays a
facilitating role in the convergence of innovation efficiency in new
energy enterprises.

In the transformation phase, the results of the absolute β-
convergence regression, using the upgrading of industrial structure
as a threshold variable, show that the convergence rate of innovation
efficiency decreases from 4.04% to 3.61%, followed by an increase to

4.46%. This corresponds to the threshold values of lnuis of 0.3778
and 0.4248 respectively. The phenomenon is due to the growing
importance of the tertiary sector as a result of the modernization of
the industrial structure. As a result, it influences the development
and profitability of new energy enterprises through industrial
agglomeration, policy incentives, and other factors, ultimately
slowing down the growth rate of innovation efficiency in the
sector. However, as the industrial structure continues to upgrade,
a better business environment, infrastructure and policy support
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TABLE 11 Estimated threshold value of β-convergence - transformation phase.

Absolute β-convergence Conditional β-convergence

Threshold variable Threshold 95% confidence
interval

Threshold variable Threshold 95% confidence
interval

lnuis
0.3778 (0.3455,0.3781)

lnuis
0.3778 (0.3437,0.3781)

0.4248 (0.3996,0.4420) 0.4248 (0.3996,0.4420)

lnurb −0.8037 (-0.8194,-0.7813) lnurb −0.8037 (-0.8194,-0.7813)

lngdp 9.6263 (9.6076,9.6699) lngdp 9.6263 (9.6131,9.6699)

FIGURE 2
LRL of lnurb under conditional β-convergence in the R&D phase. Note: The dashed lines are the corresponding critical values at the 5%
significance level.

TABLE 12 Regression results of threshold model—R&D phase.

The absolute β-convergence threshold model The conditional β-convergence threshold model

Threshold
variable

Parameter Coefficient Convergence
rate

Threshold
variable

Parameter Coefficient Convergence
rate

lnuis

≤0.5466 −0.1967
∗∗∗

0.0438

lnurb

≤-0.4588 −0.1873
∗∗∗

0.0415

>0.5466 −0.2474
∗∗∗

0.0568 −0.4588∼-
0.4541

−0.1382
∗∗∗

0.0297

lnurb

≤-0.4588 −0.1914
∗∗∗

0.0425 ≥-0.4541 −0.1893
∗∗∗

0.0420

−0.4588∼-
0.4541

−0.1449
∗∗∗

0.0313

lngdp

≤9.5757 −0.1932
∗∗∗

0.0429

≥-0.4541 −0.1944
∗∗∗

0.0432 >9.5757 −0.2337
∗∗∗

0.0532

lngdp
≤9.5757 −0.1891

∗∗∗
0.0419

>9.5757 −0.2302
∗∗∗

0.0523

Note: ∗, ∗∗and ∗∗∗denote statistical significance at the 1%, 5%, and 10% level, respectively.
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TABLE 13 Regression results of threshold model - transformation phase.

The absolute β-convergence threshold model The conditional β-convergence threshold model

Threshold
variable

Parameter Coefficient Convergence
rate

Threshold
variable

Parameter Coefficient Convergence
rate

lnuis

≤0.3778 −0.1829
∗∗∗

0.0404

lnuis

≤0.3778 −0.1824
∗∗∗

0.0403

0.3778–0.4248 −0.1650
∗∗∗

0.0361 0.3778–0.4248 −0.1661
∗∗∗

0.0363

>0.4248 −0.1998
∗∗∗

0.0446 >0.4248 −0.2021
∗∗∗

0.0452

lnurb
≤-0.8037 −0.2800

∗∗∗
0.0657

lnurb
≤-0.8037 −0.2970

∗∗∗
0.0705

>-0.8037 −0.2400
∗∗∗

0.0549 >-0.8037 −0.2478
∗∗∗

0.0570

lngdp
≤9.6699 −0.2704

∗∗∗
0.0631

lngdp
≤9.6263 −0.2785

∗∗∗
0.0653

>9.6699 −0.2349
∗∗∗

0.0535 >9.6263 −0.2402
∗∗∗

0.0549

Note: ∗, ∗∗and ∗∗∗denote statistical significance at the 1%, 5%, and 10% level, respectively.

will be created, which in turn will promote the improvement
of innovation efficiency. The absolute β-convergence regression
results with the level of urbanization as a single threshold variable
show that lnurb takes −0.8037 as the threshold value. When the
level of urbanization exceeds 44.77%, the convergence rate of
innovation efficiency of new energy enterprises decreases from
6.57% to 5.49%. This is because as urbanization improves, the
space for new energy enterprises such as wind power generation
and geothermal energy use will be squeezed, so the convergence
rate of innovation efficiency of new energy enterprises will be
weakened.The results of the absolute β-convergence regression with
the level of economic development as the threshold variable show
that when lngdp takes 9.6699 as the threshold, the convergence rate
of innovation efficiency of new energy enterprises slows down to
some extent. The convergence rates for the two phases are 6.31%
and 5.35% respectively. This can be attributed to the increase in
economic development, which leads to an increase in the cost of
labor, capital, land and other production factors. As a result, these
cost escalations affect the profitability of new energy enterprises,
thereby slowing down the pace at which innovation efficiency in the
sector increases.

The conditional β-convergence regression results are consistent
with the absolute results, showing that industrial structure,
urbanization, and economic development act as threshold variables
that contribute to the convergence of innovation efficiency with
new energy enterprises. The conditional β-convergence regression
results with industrial structure upgrading as a threshold variable
show that lnuis has a double threshold effect (0.3778 and 0.4248),
and the convergence rate of innovation efficiency of new energy
enterprises decreases from 4.03% to 3.63% and then increases
to 4.52%. This means that taking into account the differences in
industrial structure upgrading, urbanization, openness, economic
development, transport infrastructure and other factors among
provinces, the industrial structure has similar characteristics to the
absolute β-convergence regression. The conditional β-convergence
regression results with urbanization as the threshold variable show
that lnurb has a single threshold effect. With −0.8037 as the

threshold, the convergence rate decreases from 7.05% to 5.70%,
which is consistent with the conditional β-convergence regression
results. Similarly, the conditional β-convergence regression results
using economic development as the threshold variable show that
lngdp at 9.5757 as the threshold value. When the level of economic
development exceeds the threshold, the convergence rate slows
down, falling from 6.53% to 5.49%, which is consistent with the
conditional β-convergence regression results.

6 Conclusions and practical
implications

6.1 Research conclusions

The innovation efficiency of China’s new energy enterprises
shows significant spatial and temporal variations. Based on the
results of the SFA model, the innovation efficiency of these
enterprises ranges from 0.55 to 0.71 in the R&D phase during
the period of 2015–2023, exceeding the range of 0.13–0.51 in the
transformation phase. This difference indicates a higher level of
innovation efficiency in the R&D phase than in the transformation
phase, highlighting the need for further improvement in the
latter. Overall, there has been a steady increase in innovation
efficiency. In particular, the innovation efficiency of new energy
enterprises in coastal provinces is significantly higher than that
of inland provinces at the R&D phases. 1/3 of the innovation
efficiency of new energy enterprises is in the high R&D -high
transformation mode, and nearly 1/3 is in the low R&D - low
transformation mode.

The innovation efficiency of Chinese new energy enterprises
does not exhibit clear σ-convergence, but significant β-convergence
is observed. Analysis of the σ-convergence results reveals
a fluctuating pattern in the innovation efficiency of these
enterprises from 2015 to 2023, characterized by an initial increase
followed by a subsequent decline. Specifically, σ-convergence
is observed between the eastern and western regions during
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the R&D phase, while no σ-convergence is found during
the transformation phase. As time progresses, the innovation
efficiency gap between new energy enterprises widens. However,
there is a notable absolute β-convergence and conditional β-
convergence. The innovation efficiency of enterprises in the
western region converges at a faster pace, with those exhibiting
relatively lower innovation efficiency making greater efforts
to catch up.

The convergence of innovation efficiency in China’s new
energy enterprises is mainly influenced by the upgrading of
industrial structure, urbanization construction and economic
development. This study conducts a convergence analysis and
establishes a thresholdmodel to examine the key factors affecting the
dynamic development of innovation efficiency in these enterprises.
The analysis shows that the upgrading of industrial structure
plays an important role in accelerating the convergence rate
of innovation efficiency in new energy enterprises. In addition,
the progress of urbanization has a significant impact on the
convergence rate of innovation efficiency. Moreover, the progress in
economic development stimulates the increase in R&D investment
by enterprises, leading to a higher growth rate of innovation
efficiency.

6.2 Practical implications

Enhance policy support for spatio-temporal disparities in
the energy sector. While preserving the diversified innovation
investment strategies in Eastern and Central China, the Western
region should concentrate on fortifying its capacities for
embracing and driving innovation. By integrating the Western
region’s abundant renewable energy sources with the advanced
infrastructure from national strategic energy hubs, including the
Beijing-Tianjin-Hebei urban cluster, the Yangtze River Delta, and
the Pearl River Delta, we can foster a synergistic public service
platform. This platform will support the formation of an effective
science and technology innovation collaboration system across the
Eastern and Western regions. One innovative approach could be to
establish industrial clusters through ‘enclave’ cooperation models
that leverage China’s leadership in the digital economy sector. By
constructing infrastructural platforms that encompass services such
as cloud computing and big data analytics, new energy firms can
harness state-of-the-art digital tools to refine their production
workflows, boost the proficiency of energy management, and
smartly navigate market expansion. Such cooperative mechanisms
are geared to provide pivotal technological underpinnings that are
instrumental in overcoming the key challenges faced during the
advancement of the dual carbon strategy and the continued growth
of the industry.

Refine the transformation mechanisms of innovative
performance of new energy enterprises. Given the pronounced
disparities in innovation performance among provinces during
the maturation phase of new energy enterprises’ innovations,
it is imperative for policymakers to craft bespoke strategies
that align with the specific regional nuances, rendering targeted
support. It is crucial to encourage interdepartmental collaboration
and establish a cohesive synergy between industry, academia,
and research entities, all centered around market needs. The

government can facilitate the fruitful actualization of innovation
endeavors by implementing tax incentives, fiscal stimuli, pathways
for commercialization, and safeguarding intellectual property
rights. Concurrently, concerted efforts must be made to amplify
local innovation capacities, ensuring enterprises are equipped
to intensify market analysis and integrate user feedback from
the inception of product development. This approach guarantees
that R&D trajectories are intimately entwined with market
demands. Moreover, advocating for the adoption of established
and sophisticated models for transformation, such as platforms
for the transition of scientific and technological achievements, can
expedite the path to technology commercialization, augment the
communal sharing of innovative resources, and sequentially bridge
the provincial divide in innovation efficiency.

Cultivate an optimal external environment of the new energy
industry. New energy serves as a crucial catalyst in ushering a
paradigm shift towards sustainable development, and China is
uniquely positioned with intrinsic strengths in bolstering the new
energy sector. However, the focus of the external environment
also includes the chokepoint caused by the incomplete autonomy
and control of the value chain and supply chain, the limitation of
licenses and foreign patents caused by the lack of original technology
accumulation, and the lack of international influence and authority
of products caused by the imperfect testing and certification system.
To this end, it is incumbent upon the government to augment
infrastructure and buttress service networks that underscore the
operational milieu of new energy enterprises. Enhancing this
framework includes the provision of requisite facilities such as
expansive charging networks, modernized smart grids, and efficient
logistics systems. Such advancements are vital to forge seamless
pathways for the fabrication and distribution of new energy
commodities. Addressing these pivotal concerns will not only
reinforce the foundation for innovation-driven development but
will also elevate the stature of China’s new energy industry on the
world stage.

6.3 Discussion

First, data constraints may affect measurement precision. While
total profit is a conventional output metric for the transformation
phase, its susceptibility to non-innovation factors (e.g., market
volatility or policy shifts) must be acknowledged. Additionally,
excluding firms with missing/zero patent or R&D data risks
sample selection bias, potentially underrepresenting low-efficiency
enterprises. Robustness checks confirm core findings, though future
research could delve into refined indicators such as innovation-
specific revenue and advanced models like Tobit SFA for more
precise analyses.

Second, macro - level analysis struggles to fully explain firm
- level heterogeneities. Provincial data masks micro - mechanisms
behind efficiency differences, such as R&Dmanagement, technology
absorption, and local policy execution. Future research should
bridge this gap by conducting case studies on representative
firms across different efficiency models, like high - R&D - low
- transformation clusters. Integrating field interviews, operational
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surveys, and archival research can add context tomacro - level trends
and sharpen policy - relevant insights.
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