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This article introduces a novel, simulation-based methodology to quantify and
optimize the economic benefits of controlling flexible loads in a distribution
system operator (DSO) grid without relying on historical consumption data.
By training a non-parametric global forecasting model on simulated responses
of electric water heaters (EHs) and heat pumps (HPs) to randomized control
signals, we design an optimal control policy that not only captures the flexibility
potential but also effectively mitigates rebound effects. Our results demonstrate
that the forecaster’s high accuracy permits bypassing the full simulation during
optimization, thereby significantly reducing computational requirements while
ensuring near-real-time economic performance evaluations. These findings
underscore the method’s potential for enhancing grid resilience and operational
efficiency in modern energy systems.
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1 Introduction

Recent advancements in demand-side management (DSM) and demand response (DR)
have illuminated the critical role of load flexibility in the integration of renewable energy
resources and the mitigation of peak demand pressures in modern energy systems. The
effective management of flexible loads can greatly enhance grid resilience and operational
efficiency, thereby supporting a transition to cleaner energy sources. Flexibility is a termused
to describe the ability of electric loads or distributed energy resources (DERs) to shift their
consumption or production in time. Flexibility in distribution or transmission grids can
increase grid resilience, reducemaintenance costs, lower distribution losses, and smooth and
increase the predictability of the demandprofile (Cochran et al., 2014; Babatunde et al., 2020;
Mohandes et al., 2019). Flexibility services usually require aggregating flexible residential
customers into pools that reach a given “critical mass” (Eid et al., 2015; Parvania et al., 2013).

Load flexibility frameworks are increasingly recognized for their potential to
facilitate the integration of DER sources—such as solar and wind—into existing energy
systems. This integration requires consumers to adjust their energy consumption
patterns in response to supply variations. Research indicates that DR programs, which
incentivize customers to reduce or shift their electricity usage during peak periods,
effectively reduce peak loads and enhance overall system efficiency (Zheng et al.,
2018; Mancini et al., 2021). By actively engaging residential and commercial sectors in
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DR initiatives, energy providers can better balance supply and
demand, particularly given the rising share of DERs in energy
portfolios (Kiljander et al., 2019).

In most cases, aggregation requires controlling heterogeneous
types of devices (Ghaemi et al., 2019) (e.g., heat pumps (HPs),
electric water heaters (EHs), electric vehicles, and photovoltaic (PV)
power plants) or running different types of onboard controllers,
(e.g., rule or heuristic-based, model predictive control, etc.). This
condition restricts the viable control methods for pooling flexibility.
Some protocols, such as OSCP (2024), envisage intermediate actors
optimizing flexibility pools by means of a global control signal,
delegating the complexity of low-level control to a flexibility provider
(Portela et al., 2015; Biegel et al., 2014). Currently, the most used
control method is ripple control (Chen, 2016), using frequency-
sensitive relays to shut down flexible devices. Aggregating loads in
control pools reduces uncertainty in the total amount of actuated
flexibility (Ponocko and Milanovic, 2018), yet communicating
instant flexibility may prove insufficient for optimal dispatch.
Frequently, deactivating a cluster of energy-intensive devices might
trigger a “rebound effect” in the overall load once they are
reactivated (Cui et al., 2018). This effect can create an unintended
spike in peak demand, a factor that should be taken into account
when optimizing the overall power profile.

1.1 Related works

Flexibility research has gained prominence in recent
publications. For example, the International Energy Agency’s (IEA)
Annex 67 (Jensen et al., 2017) focuses on using building flexibility
for grid control, and Annex 82 IEA EBC Annex 82 (2020–2025)
examines its quantification for utilities and DSOs. Several studies
have focused on the detailed characterization of flexible devices by
analyzing their dynamic response, operational limits, and overall
efficiency under varying conditions. For example, works such as
Six et al. (2011), Chen et al. (2018), Balint and Kazmi (2019),
Junker et al. (2018), and Nuytten et al. (2013) provide a quantitative
assessment of device flexibility by measuring metrics like response
time, energy throughput, and thermal dynamics. These efforts
establish the necessary groundwork for developing models that
accurately predict device behavior when subject to control signals
and variable load profiles.

In contrast, another stream of research has concentrated on
exploiting device flexibility within DSM and DR schemes. Under
the assumption of systems that are directly controllable and fully
observable, studies such as Petersen et al. (2013), De Coninck
and Helsen (2016), and Oldewurtel et al. (2013) propose control
methodologies that integrate flexible devices into grid operations.
In particular, the approaches presented by Oldewurtel et al.
(2013), De Coninck and Helsen (2016), and Reynders et al. (2017)
demonstrate how thermally activated building systems (TABS) and
HPs can be directlymanipulated to balance supply and demand, thus
enhancing overall grid stability.

Our work, however, is positioned in a more challenging yet
realistic scenario where systems are only partially observable and
indirectly controllable. In many practical settings, DSOs have
limited access to granular sensor data—they typically rely on the
binary signals from smart meter relays rather than continuous

temperature readings. This situation calls for simulation-based
flexibility assessments that capture the bottom-up behavior of
flexible loads under indirect control. For instance, Fischer et al.
(2017) use detailed simulations to estimate the energy flexibility
of residential smart-grid-ready HPs that respond to discrete
control commands, while Muller and Jansen (2019) predict the
aggregated energy consumption of groups of HPs managed via
binary throttling signals.

This dual perspective—combining in-depth device
characterization with simulation-based system-level
evaluation—finds additional support in the broader literature.
Earlier reviews, such as Albadi and El-Saadany (2007) and Palensky
and Dietrich (2011), have underscored the importance of demand
response for modern power systems. Moreover, simulation studies
like the one presented in Callaway (2009) further illustrate
the benefits of distributed control schemes in mitigating grid
instabilities and integrating renewable energy sources.

In Valles et al. (2018), the authors trained a forecaster on periods
in which demand response is not active to quantify the flexibility
associated with a pool of customers under a price-and-volume
schema. This approach was possible due to the sparsity of actuation
events, allowing for separate baseline and activation periods. Our
work is also related to the inverse optimization of price signals,
which was first introduced by Corradi et al. (2013). The idea is that
assuming that some buildings use a price-dependent (but unknown)
controller, the DSO or an aggregator can try to reverse engineer the
controllers by estimating approximate and invertible control laws
by probing the system with a changing price signal. Because the
learned control laws are invertible, they can then be used to craft the
optimal cost signal to provide a desired aggregate power profile. To
show this, Corradi et al. (2013) fitted an invertible online FIR model
to forecast the consumption of a group of buildings as a function
of a price signal and derive an analytic solution for an associated
closed-loop controller. The concept was then demonstrated using
simulations on 20 HP-equipped households. Junker et al. (2018)
used the same concept to fit a linear model linking prices and
the load of a cluster of price-sensitive buildings. The authors then
proposed characterizing flexibility by extracting parameters from
the model response. They also proposed to estimate the expected
savings of a given building by simulating its model twice, with and
without a price-reacting control. A similar approach was proposed
by Junker et al. (2020), where authors identified a general stochastic
nonlinear model for predicting energy flexibility coming from a
water tower operated by an unknown control strategy. The fitted
model is then used in an optimization loop to design price signals
for the optimal exploitation of flexibility. Yin and Qiu (2022) used
the samemethod to find price signals to bestmeet flexibility requests
using an iterativemethod. By integrating these insights, our research
aims to bridge the gap between the theoretical potential of flexible
devices and their practical exploitation in smart grid environments
characterized by limited observability and indirect control.

1.2 Contributions

In contrast to the approaches presented in the reviewed
literature, which employ simple invertible models to estimate
flexibility (Junker et al., 2018; Junker et al., 2020; Corradi et al.,
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2013), we propose to train global forecasters or metamodels based
on boosted trees on simulated data to predict both the controlled and
uncontrolled power of flexible devices. This allows conditioning the
response on categorical variables, such as the number of controlled
devices of different types and past binary control signals generated
by ripple control or throttling.This latter ability allows the forecaster
to be used as a surrogate model of the simulation inside a control
loop. We also show that global models provide sufficient accuracy
to bypass the simulations and to perform the same kind of what-if
analysis presented in Fischer et al. (2017). This is possible because
we are only interested in the aggregated power of the controlled
devices, which has a much lower dimensionality than all the
simulated states and signals. The method we propose can be used
to assess the power response of groups of flexible devices from
day zero by means of simulations but can also be applied to real
controlled systems (for which it is not possible to retrieve a baseline
response) by augmenting the training set using observations from
the field. In Section 2, we show that the modeling and simulation
phase needed to create a training set for the metamodel only
requires statistical information, which is usually publicly available.
In Section 3, we present a method to predict energy flexibility using
a global forecasting model. We conduct an ablation study in which
we suggest various training methodologies. These findings indicate
that incorporating concepts of energy imbalances throughout the
prediction horizon and crafting a training set from scenarios
exhibiting orthogonal penetrations based on device types enhances
the accuracy of forecasts. In Section 3.4, we use the metamodel
to characterize flexibility and rebound effects, allowing us to
answer complex questions like: How does the controlled device
mix influence flexibility? How many kWh, at which power level,
could be deferred? In Section 4, we describe how the metamodel
can be used to optimize the available flexibility. In Section 4.2, we
propose a dynamic grouping strategy to ensure that the thermal
comfort constraints of end users with an HP are never violated.
Finally, in Section 5, we study the accuracy of the metamodel when
used to optimize flexible devices. For the analyzed use case, we show
that the metamodel is accurate enough to completely bypass the
simulation, allowing us to use it for both simulation and control.

2 Problem statement and system
description

Our objective is to evaluate the flexibility potential of residential
customer groups in response to a force-off control signal s. This
study focuses on the analysis and control of residential flexible
loads, namely, EHs and HPs. It is assumed that grid conditions
remain stable during the operational period, with no significant
disruptions or exceptional events (e.g., severe weather events)
affecting the baseline profile. Our approach involves learning a
computationally effective metamodel based on a detailed, white-box
simulation of flexible devices and incorporating this model within
an optimal control loop to minimize operational costs.We consider
the setting in which a DSO plans a control signal s ∈ ℝ96 with a
15-min resolution for the next day. In our simulations, the signal
planning occurs every day at midnight, covering the subsequent
24 h. We restrict this study to two flexible devices, HPs and EHs. We
simulated the following heating system configurations:

1. HP: in this configuration, both space heating and domestic hot
water (DHW) are provided by an HP.

2. EH: in this case, the EH is only used to provide DHW, while
the space heating is not modeled. The latter is considered to be
fueled by gas or oil.

A detailed mathematical description of the building thermal
model, stratified water tanks, HP, and heating system model
is provided in Supplementary Appendix A1. To validate our
methodology, we conducted simulations reflecting typical device
usage and overall power consumption for a DSO in the Swiss canton
of Ticino. Supplementary Appendix A2 lists the data sources used
to configure the simulated devices. Within this region, our analysis
included 2,670 buildings with installed HPs and 1,750 with EHs,
possessing a total nominal electrical capacity of 12.5 MW and
7.7 MW, respectively.

3 Global forecasting modes for
flexibility simulation and control

We start considering a single group of simulated flexible
devices.We define a datasetDs = {(xt,y

f
t )

N
t=1} of input–output tuples,

where xt ∈ ℝ
nf is a set of n f features, including past and future values

of the control signal s sent to the group of devices, while y f
t ∈ ℝ

H is
their aggregated power profile for the next H steps ahead. We want
to use Ds to train a forecaster, or metamodel, f(x,θ):xt→ ŷ f

t .

3.1 Dataset generation

The dataset is built from a 1-year simulation in which devices
were controlled using a random control policy and a 1-year
uncontrolled simulation; this is opposed to simulating tuples of
controlled and uncontrolled cases starting from the same system’s
state. The latter approach is more complicated, requiring resetting
the simulation states each time; furthermore, it cannot be used when
gathering data from real systems. To build the control signal s for
the controlled year, we generated all possible daily random signals
respecting specific criteria, such as a daily mandated minimum
period for sustained state and a capped number of daily activations;
these criteria are reported in Table 1. Using a 15-min timestep
will require generating ex ante 296 signals. For this reason, we
used a dynamic programming approach, filtering out incompatible
scenarios on the run, as they are sequentially generated. Figure 1
shows a sample of the resulting force-off signals, the ratio of
scenarios in which the force-off signal s is active as a function of
timestep, and the distribution of the total steps in which the force-off
signal is on.

Instead of training several metamodels using datasets with
different numbers of HPs and EHs, we follow a common approach
from forecasting literature and train a single globalmodel by crafting
datasets of different penetration scenarios and using them to create
a single dataset. We build the final dataset following these steps:

1. We build penetration scenarios by grouping a subset of the
simulated buildings, from which the aggregated power y f

t is
retrieved. A dataset is then built for each penetration scenario,
selecting at random k% observations from the simulated years.
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TABLE 1 Parameters used to generate all possible daily force-off signals.

Parameter Value

Force-off max steps 96

Minimum constant period 8 (2h)

Maximum number of switches 6

Maximum on steps 48 (12h)

Nightly uncontrolled period 20 (5h)

TABLE 2 Metadata used as features in the training set. Penetration
scenario features describe the characteristics of the pool of simulated
buildings and devices, while temporal features refer to the time of the
prediction. Here, qz% stands for the z% quantile.

Penetration scenario
feature

Temporal feature

Sum, q10%, and q90% of the nominal
powers of devices, numbers of HPs
and EHs and their ratio, mean, q10%,

and q90% of thermal resistances, mean,
q10%, and q90% of thermal capacities

Hour, day of the week, and minute of
the day

TABLE 3 Continuous variables, transformations, and lags passed as
features to the metamodel. Meteorological information consists of
temperature and global horizontal irradiance measurements.

Signal Transformation Lag

s
shifts (15m) −95,...96

mean (3h), mean (6h) 1…96

y ft , meteo
shifts (15m) −4,..0

mean (1h) −168..−144,−24…0

meteo mean (1h) 1..24

We sampled a total of 100 penetration scenarios and used k =
20, for a total length of the dataset of 40 equivalent years.

2. We retrieve metadata describing the pool of buildings
for each penetration scenario. Metadata include the total
number of each kind of device, the mean thermal equivalent
transmittance (U) of the sampled buildings, and other
parameters reported in Table 2. We further augment the
dataset with time features such as the hour, the day of the week,
and the minute of the day of the prediction time.

3. Each penetration scenario dataset is augmented through
transformations and lags of the original features, as
reported in Table 3, to obtain Ds.

4. The final dataset is retrieved by stacking the penetration
scenario datasets D = [Ds]1:ns .

To summarize, the simulation employs 15-min timesteps. Load
profiles were generated using realistic consumption patterns,

as explained before. Control signals were constrained to meet
minimum on/off periods. Because we are targeting peak shaving,
we expect that our optimization will not worsen grid stability.
All simulation datasets and source data used in this study are
derived primarily from publicly accessible repositories. The trained
forecasting models will be made available upon publication.

3.2 Model description

The metamodel is a collection of multiple-input single-output
(MISO) LightGBM regressors (LightGBM, 2024) predicting y f

t at a
different step ahead. We preferred a set of non-parametric boosted
models w.r.t. classic parametric ones because the first ismore flexible
regarding the kind of inputs. For instance, it is easy to integrate
categorical variables and increase the model complexity by stacking
more boosting rounds. Overfit can be controlled via the learning rate
and maximum splits, increasing generalization abilities.

The alternative to a collection of MISO models is training only
oneMISOmodel after augmentation of the dataset with a categorical
variable indicating the step ahead being predicted. This option was
discarded due to both memory and computational time restrictions.
For our dataset, this strategy requires more than 30 GB of RAM.
Furthermore, training a single tree for the whole dataset requires
more computational time than training a set of MISO predictors in
parallel (on a dataset that is 96 times smaller).We recall that the final
dataset is composed of 100 scenarios differing in the set of buildings
composing the aggregated response to be predicted. This means
that removing observations at random when performing a train-
test split would allow the metamodel to see the same meteorological
conditions present in the training set. To overcome this, the training
set was formed by removing the last 20% of the yearly observations
from each penetration scenario dataset Ds. That is, the training-test
split is done such that the training set contains only observations
relative to the first 292 days of the yearly simulation.

A hyper-parameter optimization is then run on a 3-fold cross-
validation over the training set; this means that each fold of the
hyper-parameter optimization contains roughly 53% of D. The
tuned hyper-parameters are the learning rate and the number of
estimators for the LightGBM regressors; the parameters are kept
fixed for all 96 models predicting the various steps ahead. We used a
fixed-budget strategy with 40 samples and used theOptuna Python
package (Optuna, 2020) implementation of the tree-structured
Parzen estimator (Ozaki et al., 2020) as a sequential sampler.

3.3 Ablation studies

We performed an ablation study to see the effectiveness of
different sampling strategies (point (1) of the dataset-building
methodology described in the previous section) and model
variations.

3.3.1 Evaluation metrics
Model performances can be better compared when plotting

the average (over samples and prediction times) normalized mean
absolute error (nMAE) as a function of step ahead. The nMAE for
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FIGURE 1
Left: a random sample of daily scenarios for the force-off signal. Center: ratio of active signals for a given timestep of the day. Right: distribution of the
number of active timesteps among all possible scenarios.

the predictions generated at time t is defined as:

nMAEt =
∑96

k=1
|yt+k − ŷt+k|

∑96
k=1
|yt+k|

. (1)

Furthermore,we define two relative energy imbalancedmeasures:

ΔrelEt =
∑96

k=1
ŷt+k (s) −∑

96
k=1

yt+k

∑96
k=1

yt+k
; (2)

Δnoctrl
rel Et =

∑96
k=1

ŷt+k (s) −∑
96
k=1

ŷt+k (s0)

∑96
k=1

yt+k
, (3)

where yt is the simulated power, ŷ(s) is the power predicted by the
metamodel with the control used in the simulation, and ŷ(s0) is the
power predicted by the metamodel using a zero force off. We can
interpret ΔrelEt as the relative error in the total energy needs w.r.t.
the simulation andΔnoctrl

rel Et as the change in the energy consumption
estimated by the metamodel if the pool of flexible devices were not
controlled.

3.3.2 Sampling schemes
To generate the final dataset, we tested two different sampling

schemes to produce the penetration scenarios. In the first strategy,
the total number of controllable devices is increased linearly,
selecting randomly between households with an HP or an EH. In
the second strategy, the number of the two controllable classes of
devices is increased independently, co-varying the number of HPs
and EHs in a Cartesian fashion, as illustrated in Figure 2.

3.3.3 Energy unbalance awareness
A physics-informed approach involving energy imbalance is

proposed to enhance the accuracy of the metamodel. This method
utilizes the metamodel to simulate the system’s response under
two conditions: with the actual control signal s and with a
zeroed control signal. By subtracting these responses, we quantify
the system’s “energy debt” at each timestep. This physics-based
insight is crucial for improving predictions of future states. To
test this hypothesis, we developed a secondary model where a
set of regressors first forecasts the system response for future
steps under both scenarios. The resultant energy imbalances from

these predictions serve to enrich the training dataset. Subsequently,
another set of regressors is trained on this augmented dataset,
employing this physics-informed strategy during both training and
prediction phases.

In total, we compared four distinctive configurations,
comprising the twomodels and the two sampling strategies. Figure 3
provides representative examples of predictions of the energy-
awaremetamodel trained using the grid sampling strategy, featuring
varying counts of controlled HPs and EHs.

The grid sampling scheme did indeed help in increasing the
accuracy of the predictions w.r.t. the random sampling scheme
for both the LightGBM models. Including the information about
energy imbalances at each step ahead shows some benefits for
both sampling strategies at the expense of a more complex model.
The accuracy improvement impacts only controlled scenarios, as
demonstrated by comparing the second and third panels in Figure 4.
These panels show the scores obtained for instances where the
force-off signal was activated at least once or never activated.
This result aligns with our expectations. As an additional analysis,
we studied the energy imbalance over the prediction horizon.
For this analysis, we considered only the controlled cases in
the test set. We removed all the instances in which the force-
off signal was activated in the last 5 h of the day from the
comparison. In this case, part of the consumption will be
deferred outside the prediction horizon, making the comparison
meaningless.

Looking at the first row of Figure 5, we see how the empirical
cumulative distribution functions (ECDFs) of ΔrelEd and its absolute
value (left and right panels) are closer to zero when the grid
sampling strategy is applied. In addition, using the energy-aware
model helps to make a more precise prediction in terms of
used energy over the prediction horizon. For all four models,
80% of the time, the relative deviation in the horizon energy
prediction lies below 20%. The second row of Figure 5 reports
the change in the forecasted energy consumption within the
prediction horizon with and without control. It is reasonable
to think that the consumption should approximately match
because the force off usually only defers the consumption. In this
case, the energy-aware models present a lower difference in the
consumed energy.
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FIGURE 2
Sampling strategies for building the final training set. Left: the total number of controllable devices is increased linearly, selecting randomly between
households with an HP or an EH. Left: the number of controllable devices is increased by independently co-varying the number of HPs and EHs.

FIGURE 3
Random example of a day-ahead metamodel’s forecasts for different numbers of HPs and EHs, where the force off was activated at least once for the
energy-aware metamodel trained using the grid sampling strategy.

3.4 Characterization of the rebound effect

We used the energy imbalance aware model in combination
with the grid sampling strategy to visualize rebound effects for
different numbers of HPs and EHs. Figure 6 shows three extreme
examples of the characterization: the penetration scenario with the
maximum number of EHs and zero HPs, the converse, and the

scenario where both penetrations are at their maximum value. The
rebound is shown in terms of energy imbalance from the test set,
such that they have a force-off signal turning off at the fifteenth
plotted step. Note how different observations can start to show
negative energy imbalance at different time steps; this is because
force-off signals can have different lengths, as shown in Figure 1.
The upper left quadrant shows the energy imbalance predicted by
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FIGURE 4
Performances for the four tested metamodels in terms of nMAE as a function of the step ahead.

FIGURE 5
Left: cumulative distributions of the relative energy imbalance for different models. Right: empirical cumulative density functions of the absolute
relative energy imbalance for the different models.

the metamodel in the case of the maximum number of EHs and no
HPs. Comparing it with the lower right quadrant, where the sample
only containsHPs, we see that the rebound effect has a quicker decay,
being close to zero after only 10 steps (corresponding to 2.5 h). The
lower right quadrant exhibits a markedly slower dissipation of the
rebound effect, attributable to the different heating mechanisms and
temporal constants inherent in systems heated by EHs andHPs. EHs,
dedicated solely to DHW heating, have their activation guided by a
hysteresis function governed by two temperature sensors installed
at varying heights within the water tank. In contrast, HPs are
responsible for both DHW and space heating, and their activation

hinges on the temperature of the hydronic circuit, thus creating a
segregation between the HPs and the building heating elements,
namely, the serpentine. As a result, HP activation is subjected to
a system possessing a heating capacity significantly greater than
that of the standalone DHW tank: the building’s heating system.
Further intricacy is added to the power response profile of the
HP due to its dual role in catering to DHW and space heating
needs, with priority assigned to the former. The visual responses
presented in Figure 1 are color-differentiated according to the 7-
day mean of the ambient temperature. As per the expected pattern,
the EH responses exhibit independence from the average external
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FIGURE 6
Example of system response in terms of deviations from the expected response (prediction where control signal features referring to feature time steps
are zeroed), dependent on the number of HPs and EHs.

temperature, while a modest influence can be detected for the HPs,
where a rise in average temperatures aligns with a faster decay
in response.

Our analysis reveals that while EHs tend to exhibit a slower
decay in rebound effects, HPs recover more rapidly. This differential
behavior has important implications for grid stability. To mitigate
potential issues arising from concurrent device reactivation, we
propose a dynamic grouping strategy that staggers control actions,
thereby smoothing the rebound profile and enhancing overall
system stability.

4 Using metamodels for optimal
flexibility control

This section presents how the metamodel can be incorporated
into the optimization loop, beginning with optimizing a single
flexibility group. The optimization problem is formulated to
minimize a composite cost function consisting of day-ahead energy
costs and a peak tariff penalty. Constraints include ensuring that the
force-off durations do not compromise thermal comfort and that
the rebound effects remain within acceptable limits. The objective
that we found most compelling from both the DSO and energy
supplier perspectives is the simultaneousminimization of day-ahead
costs (incurred by the energy supplier on the spot market) and peak

tariff (paid by the DSO to the transmission system operator (TSO).
Notably, this scenario is particularly well-suited to Switzerland,
where a distinctive situation persists with the energy supplier and
the DSO remaining bundled. The peak tariff, being proportionate to
the maximum monthly peak over a 15-min interval, poses a more
significant optimization challenge than day-ahead costs, as the peak
tariff is paid on the monthly peak. Because it is extremely hard to
produce accurate forecasts over a 1-month period, we solved the
peak shaving problem on a daily basis as a heuristic. This then leads
us to the following optimization problem:

s∗ = arg min
s

L (ŷ (s)) ; (4)

= arg min
s

γ(
H

∑
h=1

pshŷh (s))+ p
pmax(0,max

h
ŷh (s) − y

max
k ) , (5)

where h refers to the step ahead, ps ∈ ℝT is the day-ahead spot
price, p p is the price for the monthly peak in CHF/kW, and γ =
dt/3600 is a coefficient taking into account the timestep duration.
The second term in Equation 5 encodes the cost of increasing the
peak realized so far in the current month, ymax

k . Equation 4 is
not trivial to solve because it is a function of a non-parametric
regressor, the metamodel. However, the parameters reported in
Table 1 produce a total of 155,527 control scenarios; this allows us
to evaluate Equation 4 using a brute-force approach, finding the
exact minimizer s∗. This is done through the following steps:
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1. Forecast the total power of the DSO: ŷtot = ftot(xt,θtot). This
forecaster was obtained by training 96 different LightGBM
models, one for each step ahead.

2. Forecast the baseline consumption of flexible devices, ŷ f(s0) =
f(xt, s0,θ), using the metamodel with the control signal s = s0
set to zero (corresponding to not controlling the devices).

3. Forecast the response of flexible devices under a given control
scenario s for the next day. This is always done using the
metamodel: ŷ f(s) = f(xt, s,θ).

4. The objective function is evaluated on ŷt(s) = ŷ
tot − ŷ f(s0) +

ŷ f(s) for all the possible plausible control scenarios; the optimal
control scenario s∗ minimizing the total costs is returned.

4.1 Controlling multiple groups

As previously noted, forcing off a group of flexibilities results
in a subsequent rebound effect when they are permitted to
reactivate. A viable strategy to counter this issue is to segment
the flexibilities into various groups, thereby circumventing a
concurrent reactivation. Moreover, this segmentation method
helps exploit their thermal inertia to the fullest extent. This is
especially true in the context of HP, as variations in building
insulation and heating system sizing inevitably lead to differences
in turn-on requirements to maintain home thermal comfort under
identical weather conditions. Analogous considerations apply to
hot water boilers as well. In addition, it is crucial to note that,
generally, EHs can endure longer force-off periods than HPs.
Thus, the stratification of flexibilities into distinct groups not
only mitigates the rebound effect but also facilitates the optimal
utilization of the entire appliance fleet’s potential. Equation 4 can be
reformulated as

s∗ = arg min
[sg]

G
g=1

H

∑
h=1

psh(ŷ
tot
h −

G

∑
g=1

ŷ fh,g (s0) +
G

∑
g=1

ŷ fh,g (sg))+; (6)

ppmax
h

H

∑
h=1
(ŷtott −

G

∑
g=1

ŷ fh,g (s0) +
G

∑
g=1

ŷ fh,g (sg)), (7)

where G is the total number of groups and sg is the control signal
sent to the gth group. Due to the combinatorial nature of the
problem, a sequential heuristic is adopted, wherein control groups
are optimized one after the other, thereby reducing computational
complexity while maintaining near-optimal performance. The first
group of devices optimizes on the uncontrolled power profile
ŷtott . Once the optimal control for the first group is found, the
second group is optimally scheduled on ytott − ŷ

f
t,1(s0) + ŷ

f
t,1(s),

where the second subscript in ŷt,1 refers to the control group. An
example of such sequential optimization is shown in Figure 7,
where one group of EHs and one of HPs are scheduled
sequentially.

The upper panel shows the optimal control signals, along with
the simulated response (dashed lines) and the response predicted by
the metamodel (dotted lines). The middle panel shows the power
from uncontrolled nodes in the DSO grid (blue), the total DSO
power when no control action is taken (orange), and the simulated
and forecast system response (green and red).

4.2 Ensuring comfort for the end users

To ensure end-user comfort while leveraging their flexibility,
it is critical that appliances maintain the ability to meet energy
demands for a certain period of time despite shorter time shifts
within this duration. When a building is heated with a thermo-
electric device, such as an HP, its energy consumption exhibits a
significant inverse correlation with the external temperature. This
correlation can be effectively illustrated using an equivalent linear
resistance–capacitance (RC) circuit to model the building’s thermal
dynamics. The static behavior of this model can be represented
by the energy signature, which depicts the linear relationship
between the building’s daily energy consumption and the mean
daily external temperature, denoted as Td. As more households
now feature PV power plants, it becomes relevant to include the
average daily global horizontal irradiance, or Id, as a contributing
factor in the energy signature fit. As a first approximation, we
assume a linear relationship between global irradiance and PV
production. Consequently, elevated Id values may correspond to
lower daily energy consumption, granted a PV system is installed.
However, such an effect should not be misattributed to variations
in temperature. Failing to integrate Id into the regression could
lead to an underestimation of the daily energy consumption when
expressed as a function of temperature. The comprehensive energy
signature, denoted as e(Td, Id), emerges as a piecewise linear function
reliant on the external temperature and Id.

Our ultimate objective is to ascertain the necessary operational
duration for a specified HP to fulfill the building’s daily energy
requirements. Consequently, the total number of active hours during
a day, h, is obtained by dividing the energy signature by the nominal
power of the HP:

h(Td, Id) =
e(Td, Id)
pnom
. (8)

The following steps describe our procedure to generate and
control a group of HPs based on their estimated activation time:

1. Estimate the energy signatures of all the buildings with an
installed HP ei(Td, Id).

2. Estimate the reference activation time href,i for worst-case
conditions, that is, for Td = 0 and Id = 0.

3. At control time, perform a day-ahead estimation of activation
times for all HPs, hi(T̂d, ̂Id) using a day-ahead forecast of Td
and Id. Use the within-group maximum values of the needed
activation time, hmax,g = maxi∈G hg,i(T̂d, ̂Id), to filter out control
scenarios having more than hmax,g force-off steps. This process
guarantees that all HPs are allowed on for a sufficient time,
given the temperature and irradiance conditions.

5 Using metamodels for closed-loop
emulations

For testing operational and closed-loop accuracy, we simulated
1 year of optimized operations in the case in which 66% of the
available flexibilities are controlled. We used two control groups:
one containing only EHs, which can be forced off for a longer
period of time, and one group of HPs, controlled as explained in the
previous section.
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FIGURE 7
Example of optimized control action using the metamodel. Top: control signals (dashed), forecast group responses (dotted), and simulated, both
controlled and uncontrolled, responses (thick). Middle: total power from uncontrolled DSO households (blue), total DSO power when no control
action is taken (orange), and simulated and forecasted system responses (green and red). Bottom: day-ahead price on the spot market.

Theprediction error accuracywas already studied in Section 3.3,
where we tested the metamodel on a simulated test set. In that
case, the force-off signals in the dataset were produced by a random
policy. We further tested the performance of the metamodel when
predicting the optimized force-off. We could expect a difference
in prediction accuracy because, in this case, the force-off signals
have a non-random pattern that could influence the average error
of the forecaster. In addition to this, we assessed the accuracy
of the metamodel in terms of economic results in closed-loop;
that is, we retrieve the errors on the economic key performance
indicators (KPIs) when the simulation is completely bypassed, and
the metamodel is used for both optimizing and emulating the
behavior of the controlled devices.

5.1 Open-loop operational accuracy

At first, operational accuracy was assessed in terms of
predictions, comparing the aggregated controlled power profile with
the sum of the individually simulated (controlled) devices. Figure 8
shows the normalized daily time series of the prediction error during
the actual optimization process. This is defined as

nϵd =
yd − ŷd
yd
, (9)

where yd, ŷd ∈ ℝ
96 are the aggregated simulated power profiles and

their day-ahead predictions, respectively. We see that we only have
sporadic deviations above 10% for all the observed error paths. To
have a more general understanding of the metamodel performance,

in the second panel of eight, we plotted the histogram of the mean
daily error, defined as 1

96
∑96

i=1nEd,i. This shows that the metamodel
is usually under-predicting, or over-smoothing, the true response
from the simulation, which is generally the expected behavior of a
forecaster trained to minimize the sum of squares loss. The fact that
this distribution is contained in the −2%+2% interval, which ismuch
narrower than in the maximum observed discrepancies in the daily
error traces, confirms that high error deviations in the day-ahead
predictions are only sporadic.

5.2 Closed-loop economic performances

We cannot directly assess the closed-loop performances of
the metamodel in terms of prediction errors. This is because,
when simulating in a closed loop, the metamodel’s predictions
are fed to itself in a recurrent fashion. This could result in
slightly different starting conditions for each day; furthermore,
comparing the sampled paths is not our final goal. Amore significant
comparison is in terms of economic returns. We compared these
approaches:

1. Simulated. We run the optimization and fully simulate the
system’s response. In this setting, the metamodel is only used
to obtain the optimal control signal to be applied the day
ahead.The controlled devices are then simulated, subject to the
optimal control signal. The costs are then computed based on
the simulations.

2. Forecast. For each day, the optimal predictions used for the
optimization are used to estimate the cost. We simulate the
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FIGURE 8
Performance of the metamodel in the open-loop simulations. Left:
daily relative errors plotted as time series. Right: distribution of the
daily means of the relative error.

controlled devices; this process is repeated the next day. This
approach gives us an understanding of how the operational
prediction errors shown in Figure 8 impact the estimation
of the costs.

3. Emulated. The simulations are completely bypassed. The
metamodel is used to optimize the control signal and generate
the next-day responses for the controlled devices.

It should be clear that if the third approach gives comparable
results in terms of costs, we could then simply use the metamodel
for both the control task and its evaluation. This would significantly
speed up the simulation loop: we will not need to simulate the
thermodynamic behavior of thousands of households but only
evaluate the trained metamodel, which is almost instantaneous. It
could seem unlikely to reach the same accuracy produced by a
detailed simulation, but this can be justified by the fact that we are
only interested in an aggregated power profile, whose dimensionality
is only a tiny fraction of all the simulated signals needed to
produce it.

In Figure 9, we reported the relative discrepancies from
economic KPIs retrieved by the simulation using the two
aforementioned approaches. As an additional KPI, we also reported
the estimated tons of produced CO2. While the CO2 emissions
are not directly optimized for, minimizing the energy costs also
positively impacts the emissions because energy prices correlate

with the CO2 intensity in the energy mix. The emitted CO2 tons are
estimated as

MC02
=

T

∑
t=1

Ctyt, (10)

where Ct is the carbon intensity in the national energy mix in
gCO2
kWh

.
The top panel refers to the costs that would be generated considering
the total power profile, y. In both the forecast and closed-loop cases,
all costs have a deviation of less than 1%. The total cost has a
deviation of well below one per thousand. In our case study, the
controlled group of devices is only a small fraction of the total energy
delivered by the DSO; to estimate the metamodel’s performance,
it is thus important to evaluate only costs generated by controlled
devices y f . These are shown in the bottom panel of Figure 9, where
we have normalized the objectives’ errors with the additional costs
faced by the DSO due to the flexible group. In both the energy costs
and the CO2, we have a relative error below 3%, while the peak cost
has a deviation of 6%. We have a comparable deviation for forecasts
and closed-loop simulations. In all the cases, the peak costs are
underestimated; this was to be expected, as themetamodel is trained
with a sum of squares loss, which systematically underestimates
extreme events. The discrepancies remain acceptable for conducting
A/B testing in a simulated environment. The left panel shows
discrepancies for actual costs faced by the DSO, computed using
the total power profile y. In this case, we have roughly a ten-fold
reduction in the relative error w.r.t. the simulations. This is not a
surprise because, as anticipated, the controllable devices constitute
only a fraction of the energy supplied by the DSO. Nevertheless,
this is the quantity we are interested in. For completeness, the
relative deviations and absolute costs for the simulated case relative
to Figure 9 are reported in Tables 4, 5 for the total and flexible device
profiles, respectively.

6 Conclusions and extensions

In thiswork,we presented amethodology tomodel the flexibility
potential of controllable devices located in a DSO’s distribution
grid and optimally steer it by broadcasting force-off signals to
different clusters of flexible devices. We achieved this by training a
non-parametric global forecasting model conditional to the control
signals and the number of controlled devices to predict their
simulated aggregated power.The numerical use case showed that the
forecaster’s accuracy is high enough to use it as a guide to optimally
steer flexible devices. Moreover, the high accuracy of economic KPIs
suggests that the forecaster can be used to bypass the simulation
completely and speed up A/B-like testing and the retrieval of
different demand-side management policies over different device
penetrations.

We envision the following possible extensions of the
presented work:

• Continuous control.The presented use case relied on extensive
enumeration of the possible force-off signals for the day-ahead
optimization.Thiswas possible due to restrictions requested by
the DSO on the shape of the control signal, which resulted in
a total number of possible control signals in the order of 1E+5
scenarios. Using a higher timestep for the control will require
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FIGURE 9
Deviations of different objectives from the simulated results, using the
metamodel to optimize and forecast the power profiles (blue) or to
completely bypass the simulation (orange). Top: relative error of
objectives normalized with the total simulated costs. Bottom: relative
error of objectives normalized with the additional costs faced by the
DSO due to the flexible group.

TABLE 4 First column: energy costs, peak, total costs, and CO2
emissions from the controlled simulation. Second column: relative
differences from the simulated costs when evaluated using the
metamodel’s day-ahead predictions. Third column: relative differences
from the simulated costs using the metamodel to emulate the system.
Data refer to the case in which 66% of the available HPs and boilers were
controlled.

Simulated Δrel forecast Δrel closed loop

Energy 4.18E+7 1.13E−3 1.30E−3

Peak 4.46E+6 −8.05E−3 −1.05E−2

Total 4.62E+7 2.47E−4 1.68E−4

CO2(ton) 5.99E+4 2.06E−3 2.48E−3

evaluating a prohibitive number of scenarios. The approach
proposed in this article can still be feasible by replacing the
boosted tree with an “Optimizable” regressor, that is, either
a partial input-convex neural network (Amos et al., 2017)
or a conditional invertible neural network (Ardizzone et al.,
2019). In this case, we can use a continuous signal sc ∈ [0,1]
indicating the fraction of flexible devices to be forced off at a

TABLE 5 First column: additional energy costs, peak, total costs, and
CO2 emissions faced by the DSO due to the flexibility group. The second
and third columns are as in Table 4.

Simulated Δrel forecast Δrel closed loop

Energy 3.65E+6 1.29E−2 1.49E−2

Peak 2.99E+5 −1.2E−1 −1.56E−1

Total 3.95E+6 2.88E−3 1.97E−3

CO2 (ton) 5.58E+3 2.21E−2 2.65E−2

given moment in time. We can then apply gradient descent to
the Optimizable regressor and retrieve the optimal sc.
• Probabilistic forecast. The presented optimization framework

is based on a deterministic formulation. Formulating the
problem in the stochastic framework could be advantageous
when considering peak tariffs. This would require summing
two sources of uncertainty: the one associated with the
prediction of the total power profile ytot and the one associated
with the metamodel forecasts. These can be both assessed
by obtaining probability distributions after the training phase
through conformal prediction and using them to generate
scenarios.

The methodology presented in this work offers a cost-effective
and computationally efficient tool for real-time grid management,
with significant implications for both the energy industry and the
broader community. By enabling near-instantaneous evaluations
of various demand-response scenarios, our approach facilitates
the integration of renewable energy sources and enhances grid
resilience. This capability not only reduces operational costs and
peak tariffs for distribution system operators and energy suppliers
but also contributes to lowering CO2 emissions by optimizing
flexible load management. Aggregating flexible residential loads
presents clear benefits, including improved predictability of
demand and reduced operational costs. However, challenges such
as variability in customer behavior and differences in device
characteristics must be addressed. Our approach mitigates these
issues by incorporating device-specific metadata and leveraging
a global forecasting framework that adapts to different aggregation
scenarios. In practical terms, the forecastingmodel can be integrated
into the operational routines of DSOs to enable day-ahead
scheduling and real-time control of flexible loads. Pilot projects
in regions with high renewable penetration have demonstrated
similar methodologies, and our approach could be directly adapted
to such environments to enhance grid efficiency and reduce energy
costs. The method supports the development of more adaptive and
intelligent energy systems, enabling more sustainable and resilient
power grids that benefit both industry stakeholders and end users.
The proposed method aligns well with emerging trends in dynamic
pricing and renewable energy integration. By reducing peak tariffs
and enabling more responsive demand-side management, the
approach offers substantial cost savings and operational efficiencies.
This not only supports current market incentives for renewable
integration but also provides a pathway for futuremarket-based grid
optimization strategies. While the proposed methodology shows
promising results, it is important to note that several assumptions
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underlie ourmodel.These include the predictability of consumption
signals and the relative homogeneity in customer behavior. Future
work will focus on relaxing these assumptions by incorporating
more heterogeneous data and robust control strategies to better
capture real-world variability. In addition to economic benefits, our
approach contributes to environmental sustainability by reducing
peak load and, consequently, the reliance on fossil-fuel-based
peaking power plants.The optimization of flexible loadmanagement
is shown to lower overall CO2 emissions, aligning with broader
objectives of reducing the carbon footprint of the energy sector.
Looking forward, emerging technologies in advanced forecasting,
control, and energy storage are poised to further enhance demand-
side flexibility management. These developments promise to extend
the applicability of our methodology to a wider range of deferrable
loads and more dynamic grid environments, ultimately driving
further improvements in grid efficiency and sustainability. In
practical deployments, several challenges must be addressed. First,
securing active customer participation is critical, as the overall
effectiveness of demand-response programs depends on sufficient
enrollment and reliable customer engagement. Second, robust data
security protocols are essential to protect sensitive information from
unauthorized access and cyber threats. Finally, the infrastructure
must be scalable and interoperable with existing systems to handle
increased data flows and control signals. The proposed forecasting
model is designed with modularity and compatibility in mind,
which facilitates its integration into current energy management
systems such as SCADA platforms and smart grid networks.
Its lightweight computational requirements and adherence to
industry-standard communication protocols enable seamless real-
time data acquisition and control. This compatibility ensures that
the model can be incorporated into both legacy systems and
modernized infrastructures, thereby enhancing grid responsiveness
and operational efficiency without the need for extensive overhauls.

In summary, our approach not only achieves high accuracy
in predicting the aggregated response of flexible loads but also
demonstrates significant potential for reducing operational costs
and peak tariff expenses. The ability to bypass full-scale simulations
without sacrificing economic performance paves the way for faster
and more efficient grid management strategies. Moreover, our
methodology provides actionable insights into the rebound effects
of flexible loads, thereby supporting the design of more robust
demand-response policies.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

LN: conceptualization, data curation, methodology, writing –
original draft, and writing – review and editing. VM: supervision,
writing – original draft, and writing – review and editing.

Funding

The author(s) declare that financial support was received
for the research and/or publication of this article. This work
was financially supported by the Swiss Federal Office of Energy
(Optimal DSO dISpatchability (ODIS), SI/502074 and IEA Annex
82 “Energy Flexible Buildings TowardsResilient LowCarbonEnergy
Systems”) and the Swiss National Science Foundation under NCCR
Automation (grant agreement 51NF40180545).

Conflict of interest

Author LN was a scientific advisor of Hive Power SA.
The remaining author declares that the research was conducted

in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fenrg.2025.
1547617/full#supplementary-material

References

Albadi, M. H., and El-Saadany, E. F. (2007). “Demand response in electricity
markets: an overview,” in 2007 IEEE power engineering society general meeting, 1–5.
doi:10.1109/PES.2007.385728

Amos, B., Xu, L., and Kolter, J. Z. (2017). “enInput convex neural networks,” in
Proceedings of the 34 th international conference on machine learning. Swiss Statistical
Office, 10.

Ardizzone, L., Luth, C., Kruse, J., Rother, C., and Kothe, U. (2019). enGuided image
generation with conditional invertible neural networks ArXiv:1907.02392 [cs]

Babatunde, O. M., Munda, J. L., and Hamam, Y. (2020). Power system flexibility: a
review. Energy Rep. 6, 101–106. doi:10.1016/j.egyr.2019.11.048

Balint, A., and Kazmi, H. (2019). Determinants of energy flexibility in residential hot
water systems. Energy Build. 188-189, 286–296. doi:10.1016/j.enbuild.2019.02.016016

Frontiers in Energy Research 13 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1547617
https://www.frontiersin.org/articles/10.3389/fenrg.2025.1547617/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenrg.2025.1547617/full#supplementary-material
https://doi.org/10.1109/PES.2007.385728
https://doi.org/10.1016/j.egyr.2019.11.048
https://doi.org/10.1016/j.enbuild.2019.02.016016
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Nespoli and Medici 10.3389/fenrg.2025.1547617

Biegel, B., Andersen, P., Stoustrup, J., Madsen, M. B., Hansen, L. H., and Rasmussen,
L. H. (2014). Aggregation and control of flexible consumers – a real life demonstration.
IFAC Proc. Vol. 47, 9950–9955. doi:10.3182/20140824-6-ZA-1003.00718

Callaway, D. S. (2009). Tapping the energy storage potential in electric loads to deliver
load following and regulation, with application to wind energy. Energy Convers. Manag.
50, 1389–1400. doi:10.1016/j.enconman.2008.12.01212.012

Chen, K.-H. (2016). “Ripple-based control technique Part I,” in Power
management Techniques for integrated circuit design (IEEE), 170–269.
doi:10.1002/9781118896846.ch4

Chen, Y., Xu, P., Gu, J., Schmidt, F., and Li, W. (2018). Measures to improve energy
demand flexibility in buildings for demand response (DR): a review. Energy Build. 177,
125–139. doi:10.1016/j.enbuild.2018.08.003

Cochran et al., J (2014). Flexibility in 21st century power systems. Available online
at: https://www.nrel.gov/docs/fy14osti/61721.pdf.

Corradi, O., Ochsenfeld, H., Madsen, H., and Pinson, P. (2013). Controlling
electricity consumption by forecasting its response to varying prices. IEEE Trans.
Power Syst. 28, 421–429. Conference Name: IEEE Transactions on Power Systems.
doi:10.1109/TPWRS.2012.2197027

Cui, W., Ding, Y., Hui, H., Lin, Z., Du, P., Song, Y., et al. (2018). Evaluation and
sequential dispatch of operating reserve provided by air conditioners considering
lead–lag rebound effect. IEEE Trans. Power Syst. 33, 6935–6950. Conference Name:
IEEE Transactions on Power Systems. doi:10.1109/TPWRS.2018.2846270

De Coninck, R., and Helsen, L. (2016). Quantification of flexibility in buildings
by cost curves – methodology and application. Appl. Energy 162, 653–665.
doi:10.1016/j.apenergy.2015.10.114apenergy.2015.10.114

Eid, C., Codani, P., Chen, Y., Perez, Y., and Hakvoort, R. (2015). “Aggregation of
demand side flexibility in a smart grid: a review for European market design,” in
2015 12th international conference on the European energy market (EEM) (ISSN), 1–5.
doi:10.1109/EEM.2015.7216712

Fischer, D., Wolf, T., Wapler, J., Hollinger, R., and Madani, H. (2017). Model-
based flexibility assessment of a residential heat pump pool. Energy 118, 853–864.
doi:10.1016/j.energy.2016.10.1111016/j.energy.2016.10.111

Ghaemi, R., Abbaszadeh, M., and Bonanni, P. G. (2019). Optimal flexibility control
of large-scale distributed heterogeneous loads in the power grid. IEEE Trans. Control
Netw. Syst. 6, 1256–1268. Conference Name: IEEE Transactions on Control of Network
Systems. doi:10.1109/tcns.2019.2933945TCNS.2019.2933945

Jensen, S. O., Marszal-Pomianowska, A., Lollini, R., Pasut, W., Knotzer, A.,
Engelmann, P., et al. (2017). IEA EBC Annex 67 energy flexible buildings. Energy Build.
155, 25–34. doi:10.1016/j.enbuild.2017.08.044

Junker, R. G., Azar, A. G., Lopes, R. A., Lindberg, K. B., Reynders, G., Relan, R., et al.
(2018). Characterizing the energy flexibility of buildings and districts.Appl. Energy 225,
175–182. doi:10.1016/j.apenergy.2018.05.037

Junker, R. G., Kallesoe, C. S., Real, J. P., Howard, B., Lopes, R. A., and Madsen, H.
(2020). Stochastic nonlinearmodelling and application of price-based energy flexibility.
Appl. Energy 275, 115096. doi:10.1016/j.apenergy.2020.115096115096

Kiljander, J., Gabrijelcic,D.,Werner-Kytola,O., Krpic, A., Savanovic, A., Stepancic, Z.,
et al. (2019). Residential flexibility management: a case study in distribution networks.
Ieee Access 7, 80902–80915. doi:10.1109/access.2019.2923069

LightGBM (2024). Welcome to LightGBMs documentation! –LightGBM 3.3.1.99
documentation. Available online at: https://lightgbm.readthedocs.io/en/latest/.

Mancini, F., Cimaglia, J., Basso, G. L., and Romano, S. (2021). Implementation
and simulation of real load shifting scenarios based on a flexibility price
market strategy–the Italian residential sector as a case study. Energies 14, 3080.
doi:10.3390/en141130803390/en14113080

Mohandes, B., Moursi, M. S. E., Hatziargyriou, N., and Khatib, S. E. (2019). A review
of power system flexibility with high penetration of renewables. IEEE Trans. Power Syst.
34, 3140–3155. doi:10.1109/tpwrs.2019.28977272897727

Muller, F., and Jansen, B. (2019). Large-scale demonstration of precise demand
response provided by residential heat pumps. Appl. Energy 239, 836–845.
doi:10.1016/j.apenergy.2019.01.202apenergy.2019.01.202

Nuytten, T., Claessens, B., Paredis, K., Van Bael, J., and Six, D. (2013). Flexibility of a
combined heat and power systemwith thermal energy storage for district heating.Appl.
Energy 104, 583–591. doi:10.1016/j.apenergy.2012.11.02911.029

Oldewurtel, F., Sturzenegger, D., Andersson, G., Morari, M., and Smith, R. S. (2013).
“Towards a standardized building assessment for demand response,” in 52nd IEEE
conference on decision and control (ISSN), 7083–7088. doi:10.1109/CDC.2013.6761012

Optuna (2020). Optuna - a hyperparameter optimization framework. Available
online at: https://optuna.org/.

OSCP (2024). OSCP 2.0, protocols, home - open charge alliance. Available online at:
https://www.openchargealliance.org/protocols/oscp-10/.

Ozaki, Y., Tanigaki, Y., Watanabe, S., and Onishi, M. (2020). “Multiobjective tree-
structured parzen estimator for computationally expensive optimization problems,”
in Proceedings of the 2020 genetic and evolutionary computation conference (New
York, NY, USA: Association for Computing Machinery), GECCO ’20), 533–541.
doi:10.1145/3377930.3389817

Palensky, P., and Dietrich, D. (2011). Demand side management: demand response,
intelligent energy systems, and smart loads. IEEE Trans. Industrial Inf. 7, 381–388.
doi:10.1109/TII.2011.2158841

Parvania, M., Fotuhi-Firuzabad, M., and Shahidehpour, M. (2013). Optimal
demand response aggregation in wholesale electricity markets. IEEE Trans.
Smart Grid 4, 1957–1965. Conference Name: IEEE Transactions on Smart Grid.
doi:10.1109/TSG.2013.2257894

Petersen, M. K., Edlund, K., Hansen, L. H., Bendtsen, J., and Stoustrup, J. (2013).
“A taxonomy for modeling flexibility and a computationally efficient algorithm for
dispatch in Smart Grids,” in 2013 American control conference (ISSN), 1150–1156.
doi:10.1109/ACC.2013.6579991

Ponocko, J., and Milanovic, J. V. (2018). Forecasting demand flexibility of
aggregated residential load using smart meter data. IEEE Trans. Power Syst.
33, 5446–5455. Conference Name: IEEE Transactions on Power Systems.
doi:10.1109/TPWRS.2018.2799903

Portela, C. M., Klapwijk, P., Verheijen, L., Boer, H. d., and Enexis (2015). OSCP-an
open protocol for smart charging of electric vehicles

Reynders, G., Diriken, J., and Saelens, D. (2017). Generic characterization method
for energy flexibility: applied to structural thermal storage in residential buildings.Appl.
Energy 198, 192–202. doi:10.1016/j.apenergy.2017.04.061

Six, D., Desmedt, J., Vahnoudt, D., and Bael, J. (2011). “Exploring the flexibility
potential of residential heat pumps combined with thermal energy storage for smart
grids,” in 21th international conference on electricity distribution, paper, 442.

Valles, M., Bello, A., Reneses, J., and Frias, P. (2018). Probabilistic characterization of
electricity consumer responsiveness to economic incentives.Appl. Energy 216, 296–310.
doi:10.1016/j.apenergy.2018.02.058

Yin, L., and Qiu, Y. (2022). Long-term price guidance mechanism of flexible
energy service providers based on stochastic differential methods. Energy 238, 121818.
doi:10.1016/j.energy.2021.1218181016/j.energy.2021.121818

Zheng, W., Wu, W., Zhang, B., and Lin, C. (2018). Distributed optimal
residential demand response considering operational constraints of unbalanced
distribution networks. Iet Generation Transm. and Distribution. doi:10.1049/iet-gtd.
2017.1366

Frontiers in Energy Research 14 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1547617
https://doi.org/10.3182/20140824-6-ZA-1003.00718
https://doi.org/10.1016/j.enconman.2008.12.01212.012
https://doi.org/10.1002/9781118896846.ch4
https://doi.org/10.1016/j.enbuild.2018.08.003
https://www.nrel.gov/docs/fy14osti/61721.pdf
https://doi.org/10.1109/TPWRS.2012.2197027
https://doi.org/10.1109/TPWRS.2018.2846270
https://doi.org/10.1016/j.apenergy.2015.10.114apenergy.2015.10.114
https://doi.org/10.1109/EEM.2015.7216712
https://doi.org/10.1016/j.energy.2016.10.1111016/j.energy.2016.10.111
https://doi.org/10.1109/tcns.2019.2933945TCNS.2019.2933945
https://doi.org/10.1016/j.enbuild.2017.08.044
https://doi.org/10.1016/j.apenergy.2018.05.037
https://doi.org/10.1016/j.apenergy.2020.115096115096
https://doi.org/10.1109/access.2019.2923069
https://lightgbm.readthedocs.io/en/latest/.%20%3ci%3eLightGBM%3c/i%3e
https://doi.org/10.3390/en141130803390/en14113080
https://doi.org/10.1109/tpwrs.2019.28977272897727
https://doi.org/10.1016/j.apenergy.2019.01.202apenergy.2019.01.202
https://doi.org/10.1016/j.apenergy.2012.11.02911.029
https://doi.org/10.1109/CDC.2013.6761012
https://optuna.org/
https://www.openchargealliance.org/protocols/oscp-10/
https://doi.org/10.1145/3377930.3389817
https://doi.org/10.1109/TII.2011.2158841
https://doi.org/10.1109/TSG.2013.2257894
https://doi.org/10.1109/ACC.2013.6579991
https://doi.org/10.1109/TPWRS.2018.2799903
https://doi.org/10.1016/j.apenergy.2017.04.061
https://doi.org/10.1016/j.apenergy.2018.02.058
https://doi.org/10.1016/j.energy.2021.1218181016/j.energy.2021.121818
https://doi.org/10.1049/iet-gtd.2017.1366
https://doi.org/10.1049/iet-gtd.2017.1366
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org

	1 Introduction
	1.1 Related works
	1.2 Contributions

	2 Problem statement and system description
	3 Global forecasting modes for flexibility simulation and control
	3.1 Dataset generation
	3.2 Model description
	3.3 Ablation studies
	3.3.1 Evaluation metrics
	3.3.2 Sampling schemes
	3.3.3 Energy unbalance awareness

	3.4 Characterization of the rebound effect

	4 Using metamodels for optimal flexibility control
	4.1 Controlling multiple groups
	4.2 Ensuring comfort for the end users

	5 Using metamodels for closed-loop emulations
	5.1 Open-loop operational accuracy
	5.2 Closed-loop economic performances

	6 Conclusions and extensions
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

