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Introduction: With the increasing demand for energy utilization efficiency and
minimization of environmental carbon emissions in industrial parks, optimizing
the configuration and scheduling of integrated energy systems has become
crucial. This study focuses on integrated energy systems with massive flexible
load resources, aiming to maximize energy utilization efficiency while reducing
environmental impact.

Methods: To model the uncertainties in wind and solar power outputs, we
employed three-parameter Weibull distribution models and Beta distribution
models. Flexible loads were categorized into three types to match different
electricity consumption patterns. Additionally, an enhanced Kepler Optimization
Algorithm (EKOA) was proposed, incorporating chaos mapping and adaptive
learning rate strategies to improve search scope, convergence speed, and
solution efficiency. The effectiveness of the proposed optimization scheduling
and configuration methods was validated through a case study of an industrial
park located in a coastal area of southeastern China.

Results: The results show that using three-parameter Weibull distribution
models and Beta distribution models more accurately reflects the variations in
actual wind speeds and solar irradiance levels, achieving peak shaving and valley
filling effects and enhancing renewable energy utilization. The EKOA algorithm
significantly reduced curtailment rates of wind and solar power generation while
achieving substantial economic benefits. Comparedwith other operationmodes
of hydrogen, the daily average cost is reduced by 12.92%, and external electricity
purchases are reduced by an average of 20.2 MW h/day.

Discussion: Although our approach shows potential in improving energy
utilization efficiency and economic gains, this paper only considered hydrogen
energy for single-use pathways and did not account for the economic benefits
from selling hydrogen in the market. Future research will further incorporate
hydrogen demand response mechanisms and optimize the output of integrated
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energy systems from the perspective of spot markets. These findings provide
valuable references for relevant engineering applications.

KEYWORDS

integrated energy systems, flexible load, uncertainties in wind and photovoltaic power
generation, optimization of configuration, enhanced Kepler Optimization Algorithm

1 Introduction

Globally, the escalating ecological environmental degradation
and climate change issues have prompted countries to accelerate
the transformation of their energy structures. Faced with the
dual challenges of increasing energy demand and mounting
pressure to reduce carbon emissions, traditional single-energy
systems can no longer meet the modern society’s needs for
low-carbon, environmentally friendly, and secure energy supply.
As a result, the development of integrated energy systems with
multi-energy coupling has become a key path for achieving
energy transition (Peng et al., 2024). By integrating various
forms of energy, such as electricity, heat, cooling, and gas, and
optimizing resource allocation, integrated energy systems enhance
energy utilization efficiency and offer significant economic and
environmental benefits. These systems are gradually becoming a
research focus in the energy field.

With the rise of integrated energy systems, the optimization of
configuration and scheduling has become one of the key research
areas in energy studies. This issue involves how to reasonably
allocate various energy facilities within integrated energy systems
and achieve efficient energy management through intelligent
scheduling algorithms (Yang et al., 2023). Given the intermittency
and uncertainty of renewable energy power generation, as well as
multi-energy flow coupling issues, optimization of configuration
and scheduling has become crucial for improving environmental
friendliness and energy systems’ economic efficiency. Therefore,
exploring optimization algorithms and scheduling strategies suitable
for different scenarios to achieve optimal performance of integrated
energy systems has become an urgent research need.

Several methods have been proposed in the literature for
optimizing scheduling inmulti-energy complementary systems. For
instance, regarding wind-solar coupling systems, Xue et al. (2019)
used the two-parameter Weibull distribution and Beta distribution
for wind and solar uncertainty modeling. However, the simulation
results were unsatisfactory, with a significant gap between actual
and simulated wind power output. Akgül et al. (2016) proposed a
system optimization model with the goal of minimizing investment
and operational costs, and used Particle SwarmOptimization (PSO)
to solve themodel. However, the solution’s accuracy was insufficient,
and the algorithm was prone to falling into local optima. Jiang et al.
(2024) considered climate uncertainty factors and constructed a
regional integrated energy system scheduling model with the goal
of minimizing daily operational costs. Yang et al. (2022) proposed
a dynamic economic scheduling model that took into account
the depth of charge and discharge and battery life of energy
storage systems. Using a genetic algorithm, they optimized the
output of various power sources. Experimental results showed that
the method could help integrated energy systems better adapt
to complex real-world situations, improving energy utilization

efficiency while extending the lifespan of energy storage systems.
However, the algorithm had slow optimization speed and struggled
to handle high-dimensional optimization problems. Therefore, to
improve the solution efficiency of scheduling optimization problems
of integrated energy systems, there is an urgent need to research
more effective solution methods.

The Kepler Optimization Algorithm (KOA) (Von Loeper et al.,
2020) is a novel and reliable metaheuristic algorithm (Yuan et al.,
2024) based on Kepler’s laws of planetary motion, which treats
the position, mass, gravity, and orbital velocity of the planets as
four basic operators. In this algorithm, each planet and its position
represent a candidate solution, which is randomly updated relative
to the current best solution during the optimization process, thereby
enabling a more effective exploration and utilization of the search
space. Although KOA has demonstrated good performance in
solving continuous optimization problems, it still faces challenges
in handling high-dimensional optimization problems and achieving
rapid convergence. To further improve the algorithm’s convergence
speed and accuracy, it is crucial to make enhancements to the
algorithm. Therefore, this paper focuses on how to strengthen the
KeplerOptimizationAlgorithm to better adapt tomore complex and
large-scale optimization problems, thus better meeting the needs of
practical applications.

This paper mainly studies the configuration and scheduling
optimization problem of integrated energy systems. Firstly, a
mathematical model of the integrated energy system is established,
and awind-solar uncertaintymodel is introduced to better represent
the fluctuations in wind and solar output. Secondly, considering
the volatility of renewable energy output, hydrogen storage is
introduced to enhance the stability of the regional integrated energy
system. Furthermore, a low-carbon flexible planning and scheduling
model is established based on the multi-energy combined supply
benefits and the costs of curtailed wind and solar energy to
improve the absorption level of renewable energy and maximize the
economic benefits of the integrated energy system. An enhanced
Kepler Optimization Algorithm is introduced to improve the
model’s solution efficiency. Finally, the effectiveness of the proposed
planning and scheduling method is verified through an example of
an industrial park in the southeastern coastal region of China.

Based on the above research the innovations of this paper
are as follows:

(1) Firstly, in terms of flexible model modeling, the existing studies
usually focus on a single type of flexible loads (transferrable
loads or dispatchable loads), whereas in this paper, we have
comprehensively included non-interruptible loads for the first
time, transferrable loads and dispatchable loads into the unified
framework and precisely described their characteristics by
means of a mathematical modeling to accurately characterize
them. This multidimensional modeling approach can more
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realistically reflect the complex operating environment of the
actual system. Meanwhile, this paper also adds uncertainty
variables to characterize the impact of customer behavior and
tariff fluctuations on load demand, which further improves the
adaptability and robustness of the model.

(2) Secondly, in terms of algorithms, traditional meta-heuristic
algorithms (Particle Swarm Optimization PSO) usually use
random initialization, which may lead to low initial solution
quality. The improved KOA proposed in this paper generates
the initial population through the Latin hypercube sampling
technique, which ensures the uniform coverage of the solution
space, thus dramatically improving the convergence speed and
global search capability of the algorithm. Meanwhile, it avoids
falling into local optimality by introducing adaptive inertia
weights and dynamically adjusted local search mechanism.

(3) Thirdly, in terms of uncertainty modeling, the uncertainty
of wind speed and photovoltaic radiation is usually modeled
by simple probability distributions (two-parameter Weibull
distribution) in existing studies, with limited prediction
accuracy. In this paper, three-parameter Weibull and
Beta distributions are introduced for the first time to
model wind speed and photovoltaic radiation, respectively,
which significantly improves the prediction accuracy. The
combination of Monte Carlo method and K-means clustering
algorithm to generate typical scenarios further enhances the
computational efficiency and applicability of the model.

2 System modeling

2.1 Structure diagram of the integrated
energy system

An integrated energy system is a system that makes
comprehensive use of various energy resources to improve energy
utilization efficiency, reduce environmental impact, and ensure
the sustainability of energy supply (Yimen et al., 2022; Han et al.,
2024).The system combines renewable energy sources such as solar,
wind, and hydro energy with traditional energy sources such as
oil and natural gas, and through energy conversion, storage, and
transmission technologies, it achieves coordinated production,
conversion, storage, and utilization of energy. This study focuses
on the scheduling optimization of a park-level integrated energy
system, and its system structure is shown in Figure 1.

2.2 Flexible load modeling

2.2.1 Flexible load modeling
Non-interruptible loads (Song et al., 2020) refer to loads that do

not respond to real-time prices. Common non-interruptible loads in
integrated parks include lighting facilities, heating systems, etc. The
mathematical model is as shown in Equations 1, 2 below:

Pul(t) = γule (t)P
de
0 (t) (1)

Hul(t) = γulh (t)H
de
0 (t) (2)

Where, Pul(t)、 Hul(t) represent the electrical and thermal
power demand of non-interruptible loads. γule (t) and γ

ul
h (t) represent

the proportion of non-interruptible loads in the total electrical and
thermal load demand of the energy hub, and Pde0 (t) and Hde

0 (t)
represent the system’s electrical and thermal load values under the
benchmark electricity price.

2.2.2 Transferable load modeling
Transferable loads refer to loadswith fixed energy usage time but

flexible energy form selection based on needs. Typical transferable
loads include air conditioning systems and kitchen equipment based
on electrically-driven hybrid cooling. As shown in Equations 3, 4
below:

̃Pel(t) = γele (t)P
de
0 (t)[

[
1+
̃εel(t)(ρe(t) − ρh(t))

ρh(t)
]

]
(3)

H̃el(t) = γelh (t)H
de
0 (t) − δ

el[ ̃Pel(t) − γele (t)P
de
0 (t)] (4)

Where, ̃Pts(t) represents the electrical load demand of
transferable loads under real-time electricity prices, γts(t) represents
the proportion of transferable loads in the total electrical load
demand of the energy hub, ρe(t) and ρe0(t) represent the real-time
electricity price and the benchmark electricity price, and ̃εts(t), ̃εts(t′)
represent uncertain variables.

2.2.3 Shiftable load modeling
Shiftable loads refer to loads with a fixed total energy

consumption within a certain time period, but with flexible
adjustment of the energy usage time. Common shiftable loads
in energy systems include water heaters and electric vehicles.
In demand response based on real-time electricity prices,
users adjust their electricity usage time flexibly according
to dynamic changes in electricity prices, which can be
expressed by the following price elasticity model as shown in
Equation 5 below:

̃Pts(t) = γts(t)Pde0 (t)[1+
̃εts(t)(ρe(t) − ρe0(t))

ρe0(t)
]+

∑
t′∈T,t′≠t
 
γts(t′)Pde0 (t

′) ̃εts(t′)(ρe(t′) − ρe0(t
′))

ρe0(t
′)

(5)

Where, ̃Pts(t) represents the electrical load demand of
transferable loads under real-time electricity prices, γts(t) represents
the proportion of transferable loads in the total electrical load
demand of the energy hub, ρe(t) and ρe0(t) represent the real-time
electricity price and the benchmark electricity price, and ̃εts(t) and
̃εts(t′) represent uncertain variables.

2.3 Energy storage system modeling

2.3.1 Electric energy storage modeling
In microgrids that include renewable energy, using batteries

to compensate for the differences between energy production and
energy demand is one of the most common solutions. The available
energy of a battery is typically measured by the “State of Charge”
(SOC), and it can be calculated by monitoring the changes in
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FIGURE 1
Structure diagram of the integrated energy system of the industrial park.

charging power (PB,CH) and discharging power (PB,DIS) over time
as shown in Equation 6 below:

SOC(t) = SOC(t− 1) +
(PB,CH ⋅ ηB,CH − PB,DIS/ηB,DIS)Δt

NBUBQB
(6)

2.3.2 Flywheel energy storage modeling
Flywheel energy storage (Ali et al., 2023) is a type of energy

storage that converts electrical energy into mechanical energy and
vice versa. It uses a rotor to store electrical energy as mechanical
energy. During charging, a permanent magnet synchronous motor
drives the rotor to rotate and store energy, while during discharging,
the flywheel rotor drives the permanent magnet synchronous motor
to generate electrical energy. The parameters of a typical flywheel
unit are shown in Table 1.

The amount of energy stored in the flywheel is proportional
to the square of its rotational speed, and the energy expression is
as shown in Equation 7 below:

E = 1
2
Jω2 = 1

2
J(2πn

60
)
2
= π2J
1800
× n2 (7)

TABLE 1 Parameters of a flywheel unit.

Items Data

Rated Power of Single Unit/kw 600

Rated Energy Storage of Single Unit/(kw.h) 150

Rated Load Output Duration/(min) 18

Rated Speed/(r.min-1) 5,200

Response Speed Millisecond level

Lifetime 12 million cycles

Self-Consumption Rate/% 0.3∼0.6

Where, J is the polar moment of inertia of the flywheel rotor,
measured in kg ·m2; ω is the angular velocity of the flywheel rotor,
measured in rad/s; and n is the rotational speed of the flywheel rotor,
measured in r/min.
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2.3.3 Thermal energy storage modeling
In integrated energy systems, the thermal energy storage

system is often a thermal storage tank. Its mathematical model is
as shown in Equation 8 below:

Ee(t) = (1− τe)Ee(t− 1) +(qes(t)ηes +
qed(t)
ηed
)Δt (8)

Where, ηes and ηed are the charging and discharging rates of
the thermal storage system respectively; qes(t) and qed(t) are the
charging power anddischarging power of the thermal storage system
respectively; τe is the decay rate; Ee(t) and Ee(t− 1) are the energy
stored at time t and t− 1 respectively; Δt is the unit scheduling
time interval.

2.3.4 Cooling energy storage modeling
The general mathematical model for cooling energy storage in

the integrated energy system is As shown in Equations 9–13 below:

Schs (t) ⋅ P
ch
s,min ≤ P

ch
s (t) ≤ Schs (t) ⋅ Pchs,max (9)

Sdiss (t) ⋅ P
dis
s,min ≤ P

dis
s (t) ≤ S

dis
s (t) ⋅ P

dis
s,min (10)

Es(t) = (1− δs)Es(t− 1) + ηchs Pchs (t− 1) −
Pdiss (t− 1)

ηdiss

(11)

Es,T = Es,0 (12)

Es,min ≤ Es(t) ≤ Es,max (13)

Where, Pchs (t) and Pdiss (t) are the generalized expressions for the
charging power and discharging power of the cooling energy storage
in the integrated energy system; Schs (t) and Sdiss (t) are the charging
and discharging states of the cooling energy storage; Pchs,min, P

ch
s,max,

Pdiss,min, and Pdiss,max are the upper and lower limits of the charging
power and discharging power of the cooling energy storage in the
system; Es(t) is the cooling energy storage capacity; δs is the self-
discharge rate coefficient of the energy storage; ηchs and ηdiss are
the charging and discharging efficiency coefficients of the cooling
energy storage; Es,0 and Es,T are the capacities of the energy storage
device at the beginning and end times respectively; Es,max and Es,min
are the upper and lower limits of the cooling energy storage capacity.

2.4 Hydrogen storage system modeling

2.4.1 Electrolyzer
The electrolyzer (Wang et al., 2023; Dong et al., 2024) is an

essential facility for hydrogen production throughwater electrolysis.
In an electrolyzer, water reacts with electricity, producing hydrogen
at the cathode and oxygen at the anode. The hydrogen production
rate is expressed as shown in Equations 14, 15 below:

qH2 = ηf
ncIE
2F

(14)

ηf = 96exp(
0.09
IEl
− 75.5
I2El
) (15)

Where, qH2 is the hydrogen production rate of the electrolyzer;
nc is the number of cells in series; F is the Faraday constant; IE is the

current; ηf is the Faraday efficiency. The electricity consumption of
the electrolyzer is defined as shown in Equation 16 below:

PE = BE ×HN +AE ×H (16)

Where, PE is the electricity consumption of the electrolyzer;HN
is the nominal hydrogen production rate of the electrolyzer;H is the
actual hydrogen production rate; AE and BE are consumption curve
coefficients (kWh/kg).

2.4.2 Fuel cell
Fuel cells (Zheng et al., 2023; Yang et al., 2014) are composed of

multiple single cells connected in series. The voltage and power of
the fuel cell are calculated using the following equations 17, 18:

Pstack = ncellVcell ×Ai (17)

Vstack = ncellVcell (18)

Where, Vcell is the voltage of a single cell. Due to unavoidable
energy losses, the actual operating voltage of the cell is lower than
the theoretical voltage. Common losses include activation loss ηa,
ohmic loss ηo, and concentration loss ηc. Therefore, the operating
voltage is calculated as shown in Equations 19–23 below.

Vcell = ENe − ηa − ηo − ηc (19)

ENe = 1.229−
163.23
2F
(T− 298.15)

+RT
2F

ln[
pmH2

1.01× 105
×(

pcO2

1.01× 105
)

0.5

]
(20)

ηa =
RT

2αH2
F
ln(

i+ ile
iH2

)+ RT
4αO2

F
ln(

i+ ile
iO2

) (21)

ηc =
RT
2F
(1+ 1

c
)× ln

i1
i1 − (i+ ile)

(22)

ηo =
iδM

αc(0.52λ− 0.33)exp[1268(
1

303.15
− 1

T
)]
+ iAR0 (23)

Where, ENe is the voltage; pmH2
is the partial pressure of hydrogen

in the anode channel; pcO2
is the partial pressure of oxygen in the

cathode channel. T is the stack temperature; λ is themembranewater
content; ile is the current density loss; A is the effective area of the
cell; δM is the thickness of the dry membrane; αc is the conductivity
ratio coefficient; iH2

and iO2
are the hydrogen and oxygen exchange

current densities respectively; αH2
and αO2

are the hydrogen and
oxygen charge transfer coefficients respectively; R0 is the internal
resistance; F is the Faraday constant; R is the gas constant.

2.4.3 Methanation reactor
Excess hydrogen is converted into methane through a

methanation reactor, providing raw materials for chemical plants
or natural gas networks and generating additional revenue. The
Power-to-Gas (P2G) process consists of two steps: water electrolysis
and methanation. Electrical energy is first converted into hydrogen
(H2) via water electrolysis in the electrolyzer. The hydrogen can
either be directly injected into the natural gas network or enter
a methanation reactor to react with carbon dioxide (CO2) to
produce methane (CH4), which is then injected into the natural
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gas network. The chemical equation for the methanation reaction is
as shown in Equation 24 below:

2H2O→ 2H2 +O2

4H2 +CO2→ CH4 + 2H2O
(24)

2.4.4 Hydrogen storage tank
In the hydrogen storage system, when the power supplied by

renewable energy sources (RES) exceeds demand, the electrolyzer
generates hydrogen.Themolar flow rate of hydrogen (nel) produced
by the electrolyzer can be expressed as a function of the supplied
power (Pel) as shown in Equation 25 below:

nel =
ηelPel
H

(25)

Where, H is the lower heating value of hydrogen (Hui et al.,
2022) (240MJ/kmol); ηel is the efficiency of the electrolyzer. During
peak periods, hydrogen can generate electricity through fuel cells.
Thehydrogen consumption of a fuel cell is related to its power output
as shown in Equation 26 below:

nfc =
Pfc
H

(26)

Where, nfc is the efficiency of the fuel cell. pH2
(t) is the pressure

in the hydrogen storage tank at a specific time t, an important
control variable in the hydrogen storage system.The pressure in the
hydrogen storage tank serves as a measure of the hydrogen content
in the container and can be expressed using the molar flow rate
of hydrogen produced, the molar flow rate of hydrogen consumed,
and the pressure pH2

(t− 1) from the previous time step. The specific
formula is as shown in Equation 27 below:

pH2
(t) = pH2

(t− 1) +
RTH2

VH2

(nel − nfc) (27)

Where, R is the gas constant; TH2
is the average temperature

inside the container; VH2
is the total volume of the container.

2.5 Gas turbine

A gas turbine is a typical gas-powered generation device that
utilizes natural gas for electricity production.The gas turbine model
is expressed as shown in Equation 28 below:

qg(t) = ηtqtφg (28)

Where, qg(t) represents the electric power output of the gas
turbine at time t; φg denotes the lower heating value of the gas;
ηt represents the gas-to-electric conversion efficiency of the gas
turbine; qt indicates the gas consumption of the gas turbine.

2.6 Electric refrigeration

The mathematical model for electric refrigeration equipment is
expressed as shown in Equation 29 below:

qer(t) = qc(t)ηer (29)

Where, qer(t) represents the cooling power output of the electric
refrigeration power equipment at time t; qc(t) denotes the electric
power consumed by the electric refrigeration equipment at time t;
ηer represents the electric-to-cooling power conversion efficiency of
the electric refrigeration equipment.

2.7 Electric heating

Electric heating equipment can reduce the heating burden of
an integrated energy system by consuming electrical energy to
provide users with high-grade thermal energy, offering an additional
pathway for renewable energy utilization. Its mathematical model is
expressed as shown in Equation 30 below:

{{{{{{
{{{{{{
{

0 ⩽ Peb(t) ⩽ Pebmax

Heb(t) = μebP
eb(t)

Ceb = ωeb

24

∑
t=1
 Peb(t)

(30)

Where, μeb represents the electric-to-heat conversion efficiency
of the electric heating equipment; Heb(t) represents the thermal
power of the electric heating equipment at time t; Peb(t) and Pebmax
represent the power of the electric heating equipment at time t
and its maximum value respectively; ωeb and Ceb represent the
electric energy conversion coefficient and cost of the electric heating
equipment respectively.

2.8 Absorption refrigeration equipment

The absorption refrigeration plant can be expressed by the
following (Equation 31).

qa(t) = qh(t)ηa (31)

Where, qa(t) represents the cooling power output of the
absorption chiller at time t; qh(t) represents the thermal
power consumed by the absorption chiller at time t; ηa
represents the heat-to-cooling conversion efficiency of the
absorption chiller.

2.9 Modeling of the uncertainty of wind
and photovoltaic power output

2.9.1 Modeling of the uncertainty of wind power
output

Wind power generation is closely related to wind speed,
which exhibits significant natural variability, making its uncertainty
more pronounced. The accuracy of wind power generation
predictions is directly affected by how well wind speed is
modeled and forecast. In this study, the three-parameter Weibull
distribution (de Miguel et al., 2017) is introduced to reduce the
error between simulated and actual wind speeds, thereby improving
the accuracy of the wind and solar power uncertainty model.
Assuming that wind speed follows the three-parameter Weibull

Frontiers in Energy Research 06 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1556000
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Wang et al. 10.3389/fenrg.2025.1556000

distribution, its probability density function can be expressed
as shown in Equation 32 below:

f(v) =
β

ηβ
(v− λ)(β−1) exp[−(v− λ

η
)
β
] (32)

Where, v represents the wind speed; β, η, and δ represent
the shape parameter, scaling parameter, and location parameter
respectively. The distribution parameter is given by Equation 33:

F(ν) = 1− exp [−(v− λ
η
)]

β
(33)

2.9.2 Modeling of the uncertainty of photovoltaic
power output

Photovoltaic power output is significantly influenced by
environmental factors, and due to the strong randomness of solar
irradiance, it is difficult to accurately describe the solar irradiance.
Within a specific time period, solar irradiance approximately
follows the Beta distribution (Suresh and Sreejith, 2017). The
probability density function of solar irradiance is expressed
as shown in Equation 34 below:

f(
GT

GTS
) =

Γ(α+ δ)
Γ(α)Γ(δ)

(
GT

GTS
)
α−1
(1−

GT

GTS
)
δ−1

(34)

Where, GTS and GT represent the incident radiation on the
surface under ideal and actual conditions respectively; (•) represents
the Gamma function (Jiao, 2021) , as shown in Equation 35 below:

Γ(α) = ∫
∞

0
 xα−1e−xdx (35)

α and δ are the shape parameters of the Beta distribution.
As shown in Equation 36 below:

α = μ[
μ(1− μ)

γ2
− 1]

δ = (1− μ)[
μ(1− μ)

γ2
− 1]

(36)

Where, μ and γ represent the mean and variance of solar
irradiance during the corresponding time period respectively.

2.10 Generation of typical scenarios

2.10.1 Scenario generation based on the Monte
Carlo method

The Monte Carlo method is a numerical computational
technique based on random sampling and statistical simulation,
used to solve complex problems and evaluate system performance
(2017). The core idea of this method is to approximate the
calculation of target quantities or system characteristics by using
a large number of random samples, thereby obtaining an estimate
of the solution or performance of the problem. In this section, the
Monte Carlo method is used to generate wind-solar scenarios for an
entire year. The specific steps are as follows:

Step 1: Obtain the probability distribution model of wind and
solar power output.

Step 2: Randomly sample from the model obtained in Step 1.

Step 3: Generate scenarios that satisfy the probability
distribution model.

Step 4: Use the wind speed-to-wind power conversion
formula to obtain wind power scenarios. The
wind speed-to-wind power conversion formula is
as shown in Equation 37 below:

PWT,t =
{{{{
{{{{
{

0 VWT,t < Vin or Vout ≤ VWT,t

1
2
ρAV3

WT,tCP

PN

Vin ≤ VWT,t < Vrated

Vrated ≤ VWT,t < Vout

(37)

Where, PWT,t is the output power of the wind turbine at time t;
PN is the rated power of the wind turbine; VWT,t is the wind speed at
the hub height of the turbine at time t; Vrated is the rated wind speed
of the wind turbine; Vin is the wind speed reduction rate of the wind
turbine; Vout is the cut-out wind speed of the wind turbine; ρ is the
air density; A is the turbine swept area; CP is the Betz constant.

Step 5: Use the irradiance-to-power conversion formula
to obtain photovoltaic power generation scenarios.
The irradiance-to-power conversion formula is
as shown in Equation 38 below:

PPV = fPV(
GT

GTS
)[1+ μ(−TCS)] (38)

Where, YPV represents the nominal capacity of the photovoltaic
cell; GTS and GT represent the incident radiation on the surface
under ideal and actual conditions respectively; μ represents the
temperature coefficient of the conversion efficiency; TCS and TC
represent the surface temperature of the battery under standard and
actual conditions respectively. The temperature calculation for the
time step is as shown in Equation 39 below:

Tc =(
Ta + (−Tan)(

GT
GTS
)( [1−ηAS(1−μ⋅TCS)]

a
)

1+ (Tcn −Tan)(
GT
GTS
)( μaηAS

a
)
) (39)

Where, Tan and Tcn represent the surface temperature of the
battery under nominal and actual conditions respectively; ηAS
represents the solar system efficiency under maximum power
conditions; a is the temperature parameter.

2.10.2 K-means clustering for scenario reduction
K-means clustering (Vardakas and Likas, 2024) is a commonly

used unsupervised learning algorithm for dividing a dataset into
k distinct groups. The core idea of the algorithm is to iteratively
assign data points to the nearest cluster center and update the cluster
centers to minimize the squared error within the clusters. In this
section, this method is used to reduce the wind-solar scenarios from
the previous section. The specific steps are as follows:

Step 1: Select k scenarios as the initial cluster centers.
Step 2: Calculate the distance between each scenario and the

cluster centers, and assign each scenario to the nearest
cluster center, thus forming k clusters.

Step 3: For each cluster, calculate the average of its member
scenarios and use this average as the new cluster center.
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FIGURE 2
Flow chart of K-means clustering algorithm.

Step 4: Repeat Steps 2 and 3 until the maximum number of
iterations is reached or the cluster centers no longer change.

Step 5: Count the number of scenarios in each cluster, normalize,
and use it as the probability of selecting that cluster center.

Step 6: Based on the final scenario probabilities, randomly select
the corresponding scenarios to complete the scenario
reduction. The specific flow chart for generating wind-
solar uncertainty scenarios is shown in Figure 2.

3 Bi-level planning configuration and
scheduling optimization model

In this study, the planning and scheduling models are tightly
coupled and interact with each other to jointly optimize the system’s

operation and configuration. The planning model optimizes the
configuration of energy storage, electrical, and thermal equipment,
determines the system’s installed capacity and costs, and provides
equipment capacity and operational constraints for the scheduling
model. The scheduling model, based on the planning results,
schedules equipment (such as wind power, photovoltaic power,
energy storage, etc.) to maximize operational revenue, balancing
energy sales, purchases, operation and maintenance, subsidies,
and environmental costs. Conversely, the scheduling results feed
back into the planning process. If phenomena such as curtailment
of wind or solar energy occur, the planning model will be
prompted to adjust the system configuration to reduce waste and
optimize costs. Therefore, the planning and scheduling models
achieve overall system optimization through a dynamic feedback
mechanism.
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3.1 Planning objective function

Considering the costs associated with wind and solar
curtailment, the following planning configuration objective
function is designed, as shown in Equations 40–43 below:

ctotal =min(c1 + c2 + c3) (40)

Where, c1 represents the operating cost of the energy storage
system; c2 represents the generation cost of the generator units; c3
represents the penalty cost for wind and solar curtailment.

c1 = kuP∑
i∈φ

uPi + kuCHP∑
i∈φ

uCHP
i + kuGF∑

i∈φ
uGFi + kuEV∑

i∈φ
uEVi (41)

c2 = ∑
i∈SG

(αi + βiPGi + δiP
2
Gi) (42)

c3 = ppenal.l
T

∑
t=1

Ldes.t + ppenal.2
T

∑
t=1

Lloss.t (43)

Where, k is the annualized investment coefficient; φ represents
the total number of energy stations in the area; uPi , u

CHP
i , uGFi and

uEVi represent the total capacity of the grid, CHP system, wind power
and photovoltaic power systems in the park respectively; uP, uCHP,
uGF and uEV represent the unit construction costs; αi, βi and δi
are the cost coefficients of generation fuel; PGi represents the active
power of the generator; ppenal.l represents the penalty price per unit of
curtailed wind and solar energy; ppenal.2 represents the penalty price
per unit of lost regional load;Ldes.t represents the amount of curtailed
wind and solar energy; Lloss.t represents the amount of load lost due
to insufficient spinning reserve of the system; T represents the total
operation time of scheduling.

3.2 Scheduling objective function

This study aims to maximize the system’s operational revenue,
and its objective function is mathematically expressed as shown in
Equations 44–48 below:

max f1 = Re −Ce −Co −Cd −Cp (44)

Where, Re represents the system’s energy sales revenue; Ce
represents the energy purchase cost;Co represents the operation and
maintenance costs of various equipment; Cd represents the subsidy
cost; Cp represents the environmental cost.

Re =
T1

∑
t=1

pse(t)( ̃qe(t) + q
i
e(t) − q

o
e(t)) +

T1

∑
t=1

psh(t) ̃qh(t) +
T1

∑
t=1

psc(t) ̃qc(t)

(45)

Co =
T1

∑
t=1
(

cwqw(t) + ceqe(t) + caqa(t) + cwtqwt(t)

+cpvqpv(t) + ces(q
es
ch(t) + q

es
di(t))

+cte(q
te
ch(t) + q

te
di(t)) + cfqf(t)

) (46)

Cd =
T1

∑
t=1

cdq
o
e(t) (47)

Cp =
T1

∑
t=1
(ctqt(t) + crqr(t)) (48)

Where, T1 represents the scheduling period in the day-ahead
stage; pse(t), p

s
h(t) and psc(t) represent the sales prices of electricity,

heat, and cooling at time t respectively; ̃qe(t), ̃qh(t) and ̃qc(t)
represent the fuzzy parameters of electrical load, thermal load, and
cooling load at time t respectively; qie(t) and qoe(t) represent the
amount of electricity load shifted in and out of the system at time
t respectively; pbe(t) represents the electricity purchase price from
the grid at time t; qbe(t) represents the electricity purchased at time
t; pbg represents the natural gas purchase price; q

g(t) represents the
natural gas purchase volume at time t; cw, ce, ca, cwt, cpv, ces, cte and cf
represent the operation and maintenance costs of equipment power
for gas turbines, electric chillers, absorption chillers, wind power
units, photovoltaic units, energy storage systems, thermal storage
systems and other system equipment, respectively; qw(t), qe(t), qa(t) ,
qwt(t), qpv(t) and qf(t) represent the equipment power of gas turbines,
electric cooling systems, absorption cooling systems, wind power
units, photovoltaic units and other system equipment, respectively;
qesch(t) and q

es
di(t) represent the charging power anddischarging power

of the energy storage system respectively; qtech(t) and qtedi(t) represent
the storage power and release power of the thermal storage system
respectively; cd represents the subsidies provided by the system to
users; ct and cr represent the pollutant emission cost of gas turbines
and the cost of curtailed wind and photovoltaic power respectively;
qw(t) and qr(t) represent the output power of gas turbines and
curtailed renewable energy at time t , respectively.

3.3 Constraint conditions

3.3.1 Power balance constraint
As shown in Equation 49 below is power balance constraint.

Cr{ ̃qwt + ̃qpv + qg(t) + q
es
di(t) + q

b
e(t) + q

o
e(t) = q

es
ch(t) + ̃q

s
t + q

i
e(t)} ≥ αp

(49)

Where, Cr{·} represents the probability of event occurring in {·};
̃qwt and ̃qpv represent the fuzzy parameters of wind and photovoltaic

power output at time t , respectively.

3.3.2 Equipment power constraints
Equipment constraints include output constraints and ramp rate

constraints as shown in Equations 50, 51 below:

0 ≤ qm(t) ≤ q
max
m (50)

|qm(t+ 1) − qm(t)| ≤ q
max
m,r ⋅ Δt (51)

Where, qm(t) represents the output power of equipment m at
time; qmax

m represents the upper power limit of the corresponding
equipment; qmax

m,r represents the ramp-up rate.

3.3.3 Electricity purchase constraint
As shown inEquation 52 below is electricity purchase constraint.

0 ≤ qbe(t) ≤ q
grid
max (52)

Where, qgridmax represents the upper power limit of electric energy.

Frontiers in Energy Research 09 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1556000
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Wang et al. 10.3389/fenrg.2025.1556000

3.3.4 Energy storage constraint
As shown in Equations 53–56 below are energy storage

constraint.

0 ⋅ λesch(t) ≤ q
es
ch(t) ≤ q

es
maxλ

es
ch(t) (53)

0 ⋅ λesdi(t) ≤ q
es
di(t) ≤ q

es
maxλ

es
di(t) (54)

SOCmin ≤ SOC(t) ≤ SOCmax (55)

λesch(t) + λ
es
di(t) ≤ 1 (56)

Where, qesmax represents the upper power limit for charging and
discharging energy; λesch(t) and λesdi(t) represent the maximum and
minimum states of charge for the energy storage system; SOC(t)
represents the stored electric energy; SOCmax and SOCmin represent
the maximum and minimum storage energy levels of the energy
storage system, respectively.

3.3.5 Cost constraint
To prevent direct transactions with the grid, the cost of

purchasing energy from the integrated energy system should
not exceed the cost of purchasing energy directly from an
energy supplier. The cost constraint is expressed as shown in
Equations 57, 58 below:

T1

∑
t=1

[

[

pse(t)( ̃qe(t) + q
i
e(t) − q

o
e(t))+

psh(t) ̃qh(t) + p
s
c(t) ̃qc(t)

]

]

≤
T1

∑
t=1
[

[

pbe(t)( ̃qe(t) + q
i
e(t) − q

o
e(t))+

pbh(t) ̃qh(t) + p
b
c(t) ̃qc(t)

]

]

(57)

0 ≤ cdrt ≤ c
dr
max (58)

Where, pbh(t) represents the heating price of the heating
network at time t; cdrmax represents the maximum subsidy price for
demand response.

3.3.6 Demand constraint
The load shifting at time t in the integrated energy

system must satisfy its upper and lower limits, as shown in
Equations 59–61 below:

0 ≤ qoe(t),q
i
e(t) ≤ μ

l
max(t) ̃qe(t) (59)

T1

∑
t=1

qoe(t) =
T1

∑
t=1

qie(t) (60)

qoe(t) ⋅ q
i
e(t) = 0 (61)

Where, μlmax(t) represents the percentage of load shifted
at time t.

3.3.7 Fuzzy constraints
Electric PowerBalanceConstraint as shown inEquation 62 below:

(2− 2αp)[ ̃q3e(t) − ̃q
2
w(t) − ̃q

2
s (t)] + −q

b
e(t)

(2αp − 1)[ ̃q4e(t) − ̃q
1
w(t) − ̃q

1
s (t)] + q

i
e(t)

+qesch(t) − q
es
di(t) − qg(t) − q

o
e(t) = 0

(62)

Thermal Power Balance Constraint as shown in
Equation 63 below:

(2− 2αp) ̃q
3
h(t) + (2αp − 1) ̃q

4
h(t) + qa(t) + q

te
ch(t) − q

te
di(t) = 0 (63)

Cooling Power Balance Constraint as shown in
Equation 64 below:

(2− 2αp) ̃q
3
c(t) − qer(t)+(2αp − 1) ̃q

4
c(t) − qa(t) = 0 (64)

Where, ̃q3e(t), ̃q
4
e(t), ̃q

3
h(t), ̃q

4
h(t), ̃q

3
c(t) and ̃q

3
c(t) represent the

membership parameters for the predicted values of electrical load,
thermal load, and cooling load; ̃q2w(t), ̃q

1
w(t), ̃q

2
s (t) and ̃q

2
s (t) represent

the membership parameters for the predicted outputs of wind and
solar power.

3.3.8 Carbon emission cost function
The primary goal of our study is to optimize the configuration

and scheduling of an integrated energy system (IES) in a low-
carbon city whileminimizing operational costs and reducing carbon
emissions. The optimization objective function should explicitly
account for carbon emission costs as part of the overall operational
expenses. To address this, we have re-examined the formulation of
the objective function and ensured that it incorporates all relevant
cost components, including:

1) Energy procurement costs: costs associated with purchasing
electricity, natural gas, or other fuels.renewable

2) Energy curtailment costs: losses incurred due to the inability
to fully utilize wind and solar power.

3) Carbon emission costs: costs associated with greenhouse gas
emissions, which are typically quantified using a carbon tax or
cap-and-trade mechanism.

4) Hydrogen production and storage costs: Expenses related to
producing and storing hydrogen for energy storage and backup
generation.

The revised objective function can be expressed
as shown in Equation 65 below:

Ctotal = Cenergy +Ccurtailment +Ccarbon +Chydrogen (65)

Where, Cenergy represents the cost of procuring energy from
external sources.Ccurtailment represents the cost of curtailing renewable
energy output. Ccarbon represents the cost of carbon emissions,
calculated as theproduct of emission rates anda carbonprice.Chydrogen
represents the cost of hydrogen production and storage. This value
was used to calculate the carbon emission costs for each scenario.
Emission factors for different energy sources were derived from
standard databases, such as 0.82 kgCO2/kWh for coal-fired electricity
and 0.18 kg CO2/kWh for natural gas-fired electricity.

4 Enhanced Kepler Optimization
Algorithm

4.1 Traditional kepler algorithm

The Kepler Optimization Algorithm (Von Loeper et al., 2020;
Abdel-Basset et al., 2023) is a novel physics-based metaheuristic
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algorithm inspired by Kepler’s laws of planetary motion, which can
predict the position and velocity of planets at any given time. In
the Kepler Optimization Algorithm, each planet and its position
represent a candidate solution, which is randomly updated during
the optimization process. The computational steps of the Kepler
Optimization Algorithm are as follows:

Step 1: Initialization

In this initialization step, N planets are randomly distributed
within a d-dimensional search space. Each planet represents a
potential solution, corresponding to the decision variables of the
optimization problem. The initialization process is governed by the
following (Equation 66):

Xj
i = X

j
i,low + rand[0,1] × (X

j
i,up −X

j
i,low)

i = 1,2,…,N; j = 1,2,…,d
(66)

Where, Xj
i represents the j-th decision variable of the i-th

planet (candidate solution) in the search space; N represents the
number of candidate solutions in the search space; d represents
the dimension of the problem to be optimized; Xj

i,up and Xj
i,low

represent the upper and lower bounds of the j-th decision variable
respectively; rand[0,1] is a random number generated between 0 and
1. The orbital eccentricity ei of the i-th object is initialized using the
following (Equation 67):

ei = rand[0,1], i = 1,…,N (67)

Where, rand[0,1] is a random value generated within the interval
[0,1]. The orbital period of the i-th object is initialized using the
following (Equation 68):

Ti = |r|, i = 1,…,N (68)

Where, r represents the number randomly generated based on a
normal distribution.

Step 2: Define Gravity

Gravity is the fundamental force controlling the motion of
planets around the sun. Each planet exerts its own gravitational
force, which is proportional to its mass. The closer a planet is
to the sun, the higher its orbital velocity, and vice versa. The
gravitational attraction between the sun Xs and any planet Xi
is defined by Newton’s law of universal gravitation as shown in
Equation 69 below:

Fgi(t) = ei × μ(t) ×
Ms ×mi

R2
i + ε
+ r1 (69)

Where, Ms and mi represent the normalized values of Ms and
mi, corresponding to the masses of Xs and Xi; μ represents the
gravitational constant; ei represents the orbital eccentricity of the
planet, a value between 0 and 1; r1 is a random value generated
between 0 and 1; Ri represents the Euclidean distance between Xs
and Xi.

Step 3: Calculate the Velocity of Objects

The velocity of an object depends on its position relative to the
sun.The velocity of an object orbiting the sun can be calculated using
the following (Equation 70):

Vi(t) =

{{{{{
{{{{{
{

𝓁× (2r4X⃗i − X⃗b) +𝓁× (X⃗a − X⃗b) + (1−Ri−norm(t))
×F × U⃗1 × ⃗r5 × (X⃗i,up − X⃗i,low) , if Ri−norm(t) ≤ 0.5

r4 ×L× (X⃗a − X⃗i) + (1−Ri−norm(t)) ×F ×U2 × ⃗r5
×(r3X⃗i,up − X⃗i,low) , if Ri−norm(t) > 0.5

(70)

Where, Vi(t) represents the velocity of object i at time t; X⃗i
represents object i; r3 and r4 are random values generated within
the interval [0,1]; ⃗r5 is a random vector between 0 and 1. X⃗a and
X⃗b represent selected solutions.

Step 4: Escape from Local Optima

In the solar system, most celestial bodies rotate
counterclockwise; however, some celestial bodies orbit the sun in
a clockwise direction. KOA leverages this behavior to escape local
optima and simulates this behavior by changing the search direction
flag F, allowing a broader scan of the search space.

Step 5: Update Object Position

Celestial bodies revolve around the sun in their own elliptical
orbits. During their rotation, objects move closer to the sun for
a period and then move away. This behavior is simulated in the
algorithm through two main phases: the exploration phase and the
exploitation phase. The mathematical expression is given as:

X⃗i(t+ 1) = X⃗i(t) +F × ⃗Vi(t)+

(Fgi(t) + |r|) ×
⃗U × (X⃗S(t) − X⃗i(t))

(71)

Where, X⃗i(t+ 1) represents the new position of object i at time
t+ 1; ⃗Vi(t) represents the velocity required for object i to reach the
new position; X⃗S(t) is the best position of the sun discovered so far;
F serves as a flag for changing the search direction.

Step 6: Update the Relative Distance to the Sun

When a planet approaches the sun, KOA focuses on optimizing
exploitation operations; when the sun is farther away, KOA
prioritizes exploration operations. These behaviors are influenced
by the adjustment parameter h, which changes gradually over time.
When h is large, the exploration operator is used to expand the
distance between the planetary orbit and the sun. Conversely, when
h is small, the exploitation operator is applied to refine the search
in the current area. This step is randomly interchanged with Step
5. The mathematical principle of this step is expressed as shown in
Equations 72–74 below:

X⃗i(t+ 1) = X⃗i(t) × ⃗U1 + (1− ⃗U1)

×(
X⃗i(t) + X⃗S + X⃗a(t)

3.0
+ h×(

X⃗i(t) + X⃗S + X⃗a(t)
3.0

− X⃗b(t)))

(72)

Where, h is an adaptive factor controlling the distance between
the sun and the current planet at time. It is defined as:

h = 1
eηr

(73)
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Where, r is a random number generated based on a normal
distribution; η is a linearly decreasing factor ranging from −1 to −2.
It is defined as:

η = (a2 − 1) × r4 + 1 (74)

Where, a2 is a cycle control parameter.

Step 7: Obtain the Optimal Solution

This step can be understood simply as an elitist
selection strategy. The process is mathematically represented
as shown in Equation 75 below:

X⃗i,new(t+ 1) =
{
{
{

X⃗i(t+ 1) , i f f(X⃗i(t+ 1)) ≤ f(X⃗i(t))

X⃗i(t) , i f   f(X⃗i(t+ 1)) > f(X⃗i(t))
(75)

4.2 Enhanced Kepler Optimization
Algorithm

4.2.1 Chaotic mapping strategy
The initialization state of the algorithm determines the

convergence speed to some extent. To ensure that planetary
individuals are evenly distributed along their orbits, this section
introduces a chaotic mapping strategy to optimize the initialization
process described in Step 1 of Section 3.1. The enhanced formula is
as shown in Equation 76 below:

Xj
i = cos{icos

−1(Xj
i,low)}+ rand[0,1] × (X

j
i,up −X

j
i,low) (76)

4.2.2 Adaptive learning rate strategy
In the current algorithm, the flag F is introduced in Step 3 to

escape local optima.However, activating this flag from the beginning
of the algorithm is not realistic. The issue of escaping local optima
typically occurs in the later stages of optimization. At the beginning
of the optimization, this strategy should be minimized to improve
the efficiency of the optimization process. Therefore, an adaptive
learning rate is introduced in this study to reduce changes in flag F
during the early iterations and increase them in the later iterations.
The mathematical expression of the adaptive learning rate designed
in this paper is as shown in Equation 77 below:

η =
{{
{{
{

(η− ηE) ⋅ e
−k⋅ floor(V/R) + ηE, rand ≥ p

(η− ηE) ⋅ e
−k⋅ floor(V/R) +(V

R
)
0.7
⋅ ηE, rand < p

(77)

Where, ηE represents the final learning rate from the last
iteration; k is the variation factor; V is the number of iterations;
R represents the mutation interval; floor is the quotient function;
p is the mutation probability term. The flag F is defined
as shown in Equation 78 below:

F =
{
{
{

F i f(p1 ≤ η)

−F i f(p1 > η)
(78)

Where, p1 represents themutation probability. It can be seen that
the adaptive learning factor η decreases as the number of iterations
increases, while the algorithm’s ability to escape local optima
increases with more iterations. This strategy not only enhances the
algorithm’s ability to escape local optima but also avoids unnecessary
computational power in the early stages of iteration.

4.2.3 Adaptive adjustment parameter
As previously described in Step 6 of Section 3.1, the adjustment

parameter h greatly influences the algorithm’s exploration and
exploitation balance. In the original algorithm, the adjustment
parameter h changes randomly. While this randomness enhances
the algorithm’s global search capability, it also reduces its
optimization efficiency. To balance the algorithm’s efficiency and
performance, this section introduces an adaptive adjustment
parameter h that decreases progressively with the number of
iterations. In the early iterations, the algorithm focuses on global
exploration, while in the later iterations, it concentrates on
local exploitation. The mathematical expression for the designed
adjustment parameter h is as shown in Equation 79 below:

h =
{{
{{
{

1
eηr
.(

qmax − q
qmax
) i f(h < h′)

h′ i f(h ≥ h′)
(79)

Where, h is the current adjustment parameter; h′ is the
previous adjustment parameter; qmax is the maximum number
of iterations; and q is the current number of iterations. The
flow chart of the enhanced Kepler Optimization Algorithm
is shown in Figure 3.

4.3 Algorithm performance verification

To verify the performance of the enhanced Kepler Optimization
Algorithm proposed in this paper, tests were conducted using the
3rd, 5th, 13th, and 15th test functions from theCEC2017 benchmark
function set. The graphical representations of these test functions
are shown in Figure 4.

Based on the above test functions, the enhanced Kepler
Optimization Algorithm proposed in this paper was used to
compute the extreme values of the test functions. The enhanced
Kepler algorithm was compared with the traditional Kepler
algorithm, the Dung Beetle Optimization Algorithm (Jiachen and
Li-hui, 2024), and the Starling Algorithm (Cai et al., 2021). The
initial conditions for all four algorithms were the same, with
a population size of 100 and 100 iterations. The simulation
environment for the above algorithmswasMATLAB2022b, running
on a computer with an Intel Core i9-13900K processor, 64 GB
3200 MHz RAM, and an RTX 4060 GPU. The final optimization
iteration curves are shown in Figure 5.

FromFigure 5, it can be seen that the enhancedKepler algorithm
proposed in this paper outperforms the other three traditional
methods in terms of convergence speed and computational
accuracy. To more clearly demonstrate the effectiveness of the
proposed method, the optimization process was repeated 100
times, and the mean, variance, optimal value, and average runtime
of all optimization results were calculated. The statistical results
are shown in Table 2.

Based on Table 2, it can be observed that the proposed method
in this paper outperforms the other three algorithms in all four
evaluation metrics: mean, standard deviation, optimal value, and
runtime, demonstrating the superiority of the proposed method
in performance. Specifically, in terms of the mean value of the F3
test function, the proposed method achieved 3.96E-04, significantly
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FIGURE 3
Flow chart of the enhanced Kepler optimization algorithm.

lower than the other algorithms’ 5.01E-03, 9.99E-03, and 1.61E-03.
For the optimal value of the F5 test function, the proposed method
achieved 5.00E-04, which is also lower than the other algorithms’

3.70E-03, 1.04E-02, and 3.04E-02. This indicates that the proposed
method has higher computational accuracy. In terms of standard
deviation, for example, on the F13 test function, the standard

Frontiers in Energy Research 13 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1556000
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Wang et al. 10.3389/fenrg.2025.1556000

FIGURE 4
Images of test functions.

FIGURE 5
Iterative convergence curves of the four algorithms.
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TABLE 2 Final results of the 100 iterations.

Test function Metric Proposed
algorithm

Kepler
algorithm

Dung beetle
algorithm

Starling
algorithm

Optimal
solution of
the function
(function
extremum)

F3

Mean Value 3.96E-04 5.01E-03 9.99E-03 1.61E-03

0
Standard Deviation 2.49E-04 3.68E-03 6.37E-03 1.36E-03

Optimal Value 3.74E-04 3.74E-03 8.52E-03 1.12E-02

Runtime (seconds) 4.47E-01 5.75E-01 7.98E-01 6.04E-01

F5

Mean Value 5.83E-04 5.13E-03 1.20E-02 4.04E-02

0
Standard Deviation 3.37E-04 4.27E-03 7.09E-03 3.17E-02

Optimal Value 5.00E-04 3.70E-03 1.04E-02 3.04E-02

Runtime (seconds) 6.42E-02 9.43E-02 1.16E-01 1.21E-01

F13

Mean Value 3.03E-04 1.09E-03 1.63E-02 4.62E-02

0
Standard Deviation 2.74E-04 6.97E-04 1.46E-02 3.13E-02

Optimal Value 1.32E-04 8.00E-04 1.08E-02 1.29E-02

Runtime (seconds) 1.53E-01 1.83E-01 2.53E-01 2.36E-01

F15

Mean Value 3.85E-04 2.56E-03 6.92E-03 2.79E-02

0
Standard Deviation 2.10E-04 1.53E-03 4.47E-03 2.27E-02

Optimal Value 1.61E-04 1.05E-03 3.67E-03 1.25E-19

Runtime (seconds) 5.84E-01 7.30E-01 8.54E-01 6.73E-01

FIGURE 6
(A) Energy price curve; (B) Cooling, heating and· electrical load curves.

deviation of the proposed method was 2.74E-04, much lower than
the other algorithms’ 6.97E-04, 1.46E-02, and 3.13E-02, indicating
better stability. Regarding runtime, for example, on the F15 test
function, the proposed method’s runtime was 5.84E-01 s, clearly

faster than the other algorithms’ 7.30E-01 s, 8.54E-01 s, and 6.73E-
01 s, improving computational efficiency by approximately 28.8%. In
summary, the method proposed in this paper demonstrates better
search capabilities and can achieve efficient model solving.
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FIGURE 7
(A) Total wind power scenarios; (B) Total solar power scenarios.

5 Simulation example

In the simulation analysis, the proposed enhanced Kepler
algorithm was used to solve the planning configuration and
scheduling model. In the planning phase, the objective variable
is the total system cost, and the decision variables include

the capacities of energy storage, wind power, and photovoltaic
power. In the scheduling phase, the objective variable is the total
operational income, and the decision variables include energy
procurement, power load, natural gas procurement, equipment
power, as well as the charging power and discharging power
of the energy storage system.
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FIGURE 8
(A) Six typical wind power scenarios; (B) Six typical solar power scenarios.

TABLE 3 Economic parameters and capacity limits of equipment.

Equipment name Investment cost (CNY/kW) Operating cost (CNY/kW) Capacity limit (kW)

Wind Power Units 5,600 30 5,000

Photovoltaic Units 4,130 10 5,000

Battery Energy Storage 2,700 180 2,000

Electrolyzer 2,400 150 2,000

Methanation Reactor 3,500 150 2,000

Hydrogen Storage Facility 10 70 500

Fuel Cell 2,803 180 2,000

TABLE 4 Three system operation scenarios.

Scenario Hydrogen is fully used for
fuel cell power generation

Hydrogen is fully used to
provide natural gas

Hydrogen is used both for
providing natural gas and
power generation

1 Yes No No

2 No Yes No

3 No No Yes

5.1 Basic data

This section conducts a simulation analysis based on the
operational data of an industrial park-level integrated energy system
in a coastal area of southeasternChina.The electricity price is a time-
of-use pricing model, and the natural gas price is fixed. The energy
price variation curve is shown in Figure 6A, and the load variation
curve is shown in Figure 6B. From this figure, it can be seen that the
thermal load of the industrial park shows little variation throughout
the day, while the cooling load exhibits a pattern of being small at
night and large at noon. The electrical load has a distinct pattern of

being high during the day and low at night, and the natural gas load
shows a significant increase during meal times.

Based on the local meteorological data, typical wind and solar
power output scenarios were generated using the typical scenario
generationmethod proposed in this paper, as shown in Figure 7.The
scenario reductionmethodwas then applied to reduce the scenarios,
resulting in six typical wind power scenarios with probabilities of
0.1, 0.15, 0.1, 0.2, 0.2, and 0.25, and six typical photovoltaic power
output scenarios with probabilities of 0.15, 0.25, 0.15, 0.2, 0.05,
and 0.2. The final scenarios are shown in Figure 8. The stochastic
optimization theory used in the subsequent analysis optimizes
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the system’s capacity and operating conditions, and therefore, the
final wind and solar scenarios used are the expected values of the
scenarios shown in Figure 8.

5.2 Analysis of system configuration results

This section is based on the integrated energy system
constructed in Figure 1. It is assumed that no new conventional units
such as gas generators and gas boilers will be added, and the capacity
of distributed wind-solar renewable energy units and energy
storage devices will be configured. Based on the wind-solar power
output curves and data of typical load curves from Section 4.1, the
economic investment coefficients and capacity limits of each device
are shown in Table 3, with other system parameters referenced from
reference [26]. The system operation conditions are divided into
three types, as shown in Table 4. The final system configuration
is presented in Table 5. For ease of calculation, this paper ignores
equipment depreciation, adopts integer values for the configuration,
and uses 100 kW as the base for variation. Additionally, the capacity
of hydrogen storage facilities is represented in KWh, which refers
to the total electricity generated when the hydrogen stored in the
hydrogen storage tanks is fully used for power generation. It is
also assumed that the equipment operates steadily throughout the
system’s operating cycle.

From the tables above, it can be seen that the configuration
of wind and solar units remains the same in all scenarios. This
configuration is unrelated to the hydrogen energy’s operation mode
and is only dependent on the local wind and solar resource
endowment and whether excess electricity is fed back into the grid.
In the integrated energy system simulated in this paper, the capacity
of wind, solar, and other new energy sources is relatively small,
and excess electricity is not fed into the grid. The penalty price for
wind and solar curtailment is low. Therefore, the capacity of wind
and solar units depends solely on the local wind and solar resource
endowment. If the penalty price for wind and solar curtailment
is higher, the configuration of wind and solar units will change,
with a reduction in the capacity of new energy units. Moreover,
the capacity configuration will be negatively correlated with the
penalty price.

5.3 Analysis of scheduling optimization
results

In the three scenarios mentioned above, the penalty price
for wind and solar curtailment is set at 50% of the time-of-use
electricity price. The scheduling optimization is then performed
for each scenario, and the final operation results are shown in
Figure 9. The detailed statistical data of each optimized scenario are
presented in Table 6.

Qualitative analysis of Figure 9 reveals that Scenario 3 has
the best operational economy, with the lowest wind and solar
curtailment rates and the least external electricity and gas
purchases. Quantitative analysis of Table 6 shows that, compared
to Scenario 1, Scenario three reduces the daily electricity purchase
by 16,464.8 kWh, and the daily gas purchase by 3,400.1 cubic
meters, resulting in a 10.5% reduction in daily costs. Compared
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FIGURE 9
(A) scheduling result of scenario 1; (B) scheduling result of scenario 2; (C) scheduling result of scenario 3; (D) cost of scenario 1; (E) cost of scenario 2;
(F) cost of scenario 3.

TABLE 6 Cost statistics of different scenarios.

Scenario Daily
electricity
purchase
(kWh)

Daily gas
purchase
(cubic
meters)

Daily wind
power

curtailment
(kW)

Daily solar
power

curtailment
(kW)

Daily
electricity
cost (CNY)

Daily gas
cost (CNY)

Total cost
(CNY)

1 151,905.7 53,085 14,102.76 8,829.14 118,307 15,925.5 134,232.6

2 159,422 49,684.9 16,452.54 10,594.9 125,195 14,905.4 140,100.7

3 135,440.9 49,684.9 4,700.752 1765.83 106,565 14,905.4 121,471.3
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FIGURE 10
(A) The winter load characteristics; (B) The summer load
characteristics.

to Scenario 2, Scenario three reduces the daily electricity purchase
by 23,981.1 kWh, leading to a 15.34% reduction in daily costs. In
summary, the investment construction costs of the three scenarios,
ranked from lowest to highest, are Scenario 1, Scenario 2, and
Scenario 3. When ranked by operating costs, the order from lowest
to highest is Scenario 3, Scenario 2, and Scenario 1. Assuming a 10-
year investment period, Scenario 3 has a total investment of nearly
5 million yuan higher than Scenario 1, but the annual operating
cost of Scenario three is about 4.66 million yuan less than Scenario
1. From this comparison, it can be seen that when the investment
payback period exceeds 2 years, the configuration in Scenario three
is the most cost-effective. When the payback period is less than
2 years, the configuration in Scenario 1 is more cost-effective, and
Scenario 2 is the least economical. This is because the domestic
natural gas price is relatively low and stable, and in Scenario 2,
the cost of natural gas produced by the methanation reactor is
higher than the cost of purchasing gas, making Scenario 2 the
least economical.

5.4 Typical seasonal characteristics and
validity analysis of different arithmetic
examples

In order to be able to reflect the scheduling results in
different phases and different periods, we have considered the
optimal scheduling under different seasonal characteristics in
a year, which is divided into the summer energy consumption
process and the winter energy consumption process, and
optimized scheduling is carried out based on the different load
demands of different energy consumption seasonal characteristics.
Based on 2 years of winter and summer data, we obtain
the typical winter and summer energy use characteristics in
the region, and simulation analysis based on this data, the
relevant winter and summer load characteristics obtained are
as shown in Figure 10 below.

It is shown that there is a clear load difference characteristic
between winter and summer, with higher thermal loads in
winter and somewhat higher PV outputs in summer. Based
on this typical load characteristics, the results after optimal
scheduling using the algorithm in this paper are as shown in
Figures 11, 12 below:

From the distribution pattern of loads, it can be seen that there
is a clear seasonal difference between winter and summer, which is
reflected in the fact that the overall electricity demand in summer is
higher than that in winter, and due to the access of air-conditioning
and industrial loads, the overall electricity load in summer is higher
than that in winter, and at the same time, the renewable energy
output in summer is higher than that in winter, which is particularly
obvious in the photovoltaic output, based on the algorithm in this
paper, when there is new energy consumption, it will be prioritized
Based on the algorithm of this paper, when there is new energy
consumption, it will prioritize the new energy consumption, which
further saves the carbon cost and improves the consumption of wind
and solar power.

To test the convergence performance of the proposed algorithm
in different scales, we have chosen two typical scenarios, namely, the
improved 32-node thermal system-33-node electric system and the
relatively small-scale 6-node thermal system-7-node gas system-14-
node electric system, to test whether the algorithm is able to solve
the optimal solution and whether it can converge normally, and the
corresponding convergence time. optimal solution, and whether it
can converge normally, and the corresponding convergence time.
The results are shown in Figure 13 below:

It can be seen that the algorithm proposed in this paper is able
to converge the iteration error to a reasonable threshold in a limited
number of iterations for different scales, which indicates that the
algorithm has a certain degree of universality.

Comprehensive the above content, this paper in the following
aspects of the content can provide a certain reference value for the
relevant engineering applications:

1. For renewable energy modeling: for the uncertainty of
wind and solar energy output in the actual operation
process, a three-parameter Weibull distribution model
(Weibull distribution) and a beta distribution model (Beta
distribution) are used to describe it. Compared with the
traditional two-parameter Weibull distribution model, our
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FIGURE 11
Dispatch results for typical summer character days.

FIGURE 12
Dispatch results for typical winter character days.
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FIGURE 13
The convergence iteration error of the algorithm for different cases.

method can more accurately reflect the change patterns of
actual wind speed and light intensity. This improvement
provides more reliable input data for subsequent dispatch
optimization.

2. For terms of load modeling: Based on the above research,
we classify flexible loads into three types and combine
them with different electricity consumption patterns to
achieve the effect of peak shaving and valley filling. This
classification method not only helps to reduce the peak-
to-valley difference of the system, but also improves the
utilization of renewable energy. In industrial scenarios, certain
production processes can be adjusted to better match the
new energy generation curve by adjusting the running
time, thus reducing the phenomenon of wind and light
abandonment.

3. For terms of solving algorithm: In order to overcome the
deficiencies of traditional optimization algorithms in solving
complex scheduling problems, we propose an Enhanced
Kepler Optimization Algorithm (EKOA) based on chaotic
mapping and adaptive learning rate strategy. The following
are the main features of the algorithm and its practical
value in engineering applications mainly in the following
aspects: accuracy and solution efficiency: EKOA significantly
expands the search range of the algorithm and avoids the
problem of locally optimal solutions by introducing the
chaoticmappingmechanism.This is particularly important for
solving high-dimensional optimization problems, especially
when multiple variables are involved in an integrated energy
system. By dynamically adjusting the learning rate parameter,
EKOA is able to accelerate the convergence speed while
ensuring accuracy. This enables the algorithm to respond
quickly to real-time scheduling demands and is suitable
for dynamically changing power system environments.
We have verified the role of EKOA in reducing the

operating cost of the system and significantly reducing
the curtailment rate of wind and photovoltaic power to
improve the overall economy in a real case study of an
industrial park along the southeast coast. A comparative
analysis of different scenarios (Scenario 1, Scenario 2 and
Scenario 3) reveals the optimal configuration under different
payback cycles.

6 Conclusion

This paper aims to maximize energy utilization efficiency and
minimize environmental carbon emissions in industrial parks,
involving both system modeling and optimization algorithms. The
study focuses on the configuration and scheduling optimization
of integrated energy systems with flexible loads, and draws the
following conclusions.

(1) This paper employs the three-parameter Weibull distribution
model and the Beta distribution model to better describe the
uncertainty of wind and solar power output. By categorizing
flexible loads into three types and accounting for their distinct
electricity consumption patterns, peak shaving and valley
filling are achieved, reducing the peak-to-valley difference of
the system and thereby increasing the proportion of renewable
energy utilization.

(2) An enhanced Kepler algorithm is proposed, incorporating
chaotic mapping and adaptive learning rate strategies.
Compared to traditional algorithms, the proposed algorithm
offers a broader search range, faster convergence speed, and
higher solution efficiency, achieving an efficient solution of the
integrated energy system’s planning and scheduling models.

(3) The paper proposes an optimal scheduling and configuration
method for integrated energy systems and validates the
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optimization process through a case study of an industrial
park’s integrated energy system in the southeastern coastal
area. The results show that the proposed method effectively
achieves peak shaving and valley filling, reduces wind and solar
power curtailment rates, and yields good economic benefits.

It should be noted that this paper only considers hydrogen
energy power generation as a single usage path and does not account
for the economic benefits of hydrogen sales in the hydrogen energy
market. Future research will further incorporate hydrogen energy
demand-side response and optimize the integrated energy system’s
output from the perspective of the spot market.
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