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The current study’s objective is to reveal the best possible solution for an optimal
power flow (OPF) problem. The driving training-based optimization (DTBO)
technique has been applied in this work to achieve the goal where quasi-
oppositional based learning (QOBL) has been integrated with DTBO and referred
to as quasi-oppositional driving training-based optimization (QODTBO). The
experiments have been carried out on IEEE 57 & 118 bus systems. Four different
test scenarios have been considered here. The first one is the traditional IEEE
57 bus network; the IEEE 57 bus with renewable energy sources (RESs) (i.e.,
solar and wind units) is chosen in the second one, and the third one considers
the IEEE 57 bus with RESs and unified power flow controller (UPFC) and
finally the IEEE 118 bus network with RESs and UPFC. In each test scenario,
there are four objective functions, among which one is single objective and
three of them are multi-objective. Obtaining minimum total cost comes under
the single-objective function. Simultaneous reduction in the overall cost and
emission, concurrent reduction in overall cost and voltage deviation (VD), and
simultaneous reduction in overall cost and voltage stability index come under
multi-objective cases. The acquired test outcomes by QODTBO have been
contrasted with the outcomes found by the use of DTBO, backtracking search
optimization algorithm (BSA), and sine cosine algorithm (SCA). The effect of
inherent uncertainties within RESs is gauged in the current study by the choice
of appropriate probability density functions (PDF). Based on the experimental
outcomes using different optimization techniques over thirty trials, a statistical
report has been prepared that ascertains that QODTBO is the most robust
optimization scheme among the optimization tools taken into consideration
in this study. To represent the statistical analysis, pictorially box plots and
error-bar plots are provided. One-way analysis of variance (ANOVA) tests have
also been conducted on test outcomes to enhance the degree of reliability
of the inferences made based on statistical results. From this work, it is also
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explored that integrating RESs and UPFC with the traditional IEEE-57 bus system
can improve the overall execution of the test system. If the performances
of the conventional system, RES-based system, and RES- and UPFC-based
system are observed, it can be noticed that for cost reduction, the RES-based
system gives a better result by 1.364790635% and the RES- and UPFC-based
system gives a better result by 2.175247484% better result as compared to the
conventional system.

KEYWORDS

optimal power flow, renewable energy sources, unified power flow controller, quasi-
oppositional driving training based optimization, power flow controller

1 Introduction

Mitigating the issue of the optimal power flow (OPF)
(Burchett et al., 1984) has become an indispensable challenge in
the current energy system scenario for the sake of satisfactory
electric power production, operation, monitoring and control. OPF
is an inherent non-linear problem. The objective of the OPF is
to obtain an optimal solution for the design variables of the grid
or network that minimizes the objective function under several
operating constraints. Design variables include the active power
of the generator, generator voltage, and transformer tap settings
of the transformer. The capacity of the generators, the equations
of power flow, the thermal limit of the lines, the limits of the bus
voltage, etc. belong to system constraints. Objective functions may
belong to single- or multi-objective categories (Roy and Mandal,
2012). In the single-objective category, there is only one objective
to be fulfilled, while in the multi-objective category, simultaneously
more than one objective has to be met. These goals can include
minimizing the fuel costs of power generation, reducing power
plant emissions, reducing power losses, and improving voltage
stability (Roy et al., 2012). It is very evident that conventional
energy resources stocks are decreasing over time. In addition to
that, conventional energy sources, such as fossil fuels, have an
adverse effect on the atmosphere. These lead to an increase in the
usage of RESs (Riaz et al., 2021).Whenever RESs are introducedwith
conventional sources, the uncertainties present within RESs become
a matter of important concern. To maintain several attributes
of power quality, flexible AC transmission system (FACTs) tools
have been increasingly used in recent times. Incorporating RES
and FACTs devices with the existing network increases the overall
complexity of the power network.

1.1 Literature review

Several schemes and techniques have been developed for solving
OPF issues during the last couple of years. These approaches
can be categorized into classical means, evolutionary-based
approaches, and methods based on metaheuristic algorithms
(Riaz et al., 2021).Numerical approaches like the interior point
algorithm (Yan and Quintana, 1999), Newton–Raphson algorithm
(Zhang and Irving, 1994; Sun et al., 1984), linear programming
(Olofsson et al., 1995), and quadratic programming (Burchett et al.,
1984), referred as classical approaches, were being used for

resolving OPF problems. But these conventional methods have
some severe demerits such as prolonged computational periods
and sticking into local optimums instead of global optimums
(Mohamed et al., 2021). Existing non-linearities within the OPF
problem also reduce the effectiveness of these methods. In the
evolutionary algorithm, the best possible solutions are computed
by the concept of evolution where the next generation is produced
by the process of matting from parentages. To find OPF solutions,
two widespread evolutionary algorithms genetic algorithm
(Devaraj and Yegnanarayana, 2005), (Moeini-Aghtaie et al., 2014),
(Bakirtzis et al., 2002), and differential evolution (Biswas et al.,
2018a) are employed. Optimization algorithms that are developed
from the social activities of living species or the physical rules
of nature are metaheuristic algorithms, for example, particle
swarm optimization (PSO) (Ben Attous and Labbi, 2009), whale
optimization algorithm (WOA) (Papi Naidu et al., 2021), the moth-
swarm algorithm (MSA) (Ali Mohamed et al., 2017), elephant
herding optimization (EHO) (Bentouati et al., 2017), gray wolf
optimization (GWO) (Siavash et al., 2017a), and gravitational search
algorithm (GSA) (Roy et al., 2012).

Various optimization techniques found in literature which were
used to resolve OPF problems are presented below.The effectiveness
of the modified sine–cosine algorithm on different types of IEEE
bus systems to improve economic and operational aspects has been
inspected by Attia et al. (2018). To find the solution to OPF issues,
the PSO-based fuzzy satisfactionmaximization technique is adopted
in Surender Reddy (2017). In Bouchekara et al. (2016), improved
colliding bodies optimization was presented. Siavash et al. (2017b)
demonstrated that the application of GWO to resolve the OPF issue
considering the wind unit gave superior results than the use of the
genetic algorithm.Ullah Khan et al. (2020) had also utilizedGWO to
solve OPF issues for different bus systems. To minimize power loss
in transmission lines, minimize the operating cost, and improving
voltage stability, the teaching learning-based optimization algorithm
has been implemented by Maheshwari et al. (2022) on the modified
IEEE 30-bus test system including RESs (solar, wind and tidal energy
systems). For RESs on the IEEE 30-bus, by using jellyfish search (JS)
optimizer, Farhat et al. (2021) have minimized the total generation
cost. Guvenc et al. (2021) had tested the distance balance-based
adaptive guided differential evolution (AGDE) algorithm on the
IEEE 30 node test system including RESs. To solve the OPF problem
(for minimizing emission, the fuel cost, voltage deviation, and
real power loss), the utility of the equilibrium optimizer technique
(EO) was examined by Nusair and Alhmoud (2020), where solar
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photovoltaic (PV) and wind are integrated. Over different bus
systems, Shaheen et al. (2021) had applied the Chaotic hunger
games search (CHGS) optimization algorithm for minimizing fuel
cost and appropriate positioning of RESs. In Alasali et al. (2021),
manta ray foraging optimization (MRFO) had been utilized to
obtain feasible OPF with RESs included. The flower pollination
algorithm was tested by Abdullah et al. (2020). Over several IEEE
bus systems, the performance of the modified JAYA algorithm
has been inspected by Elattar and ElSayed (2019) to extract the
best possible solution. To find optimal results on different bus test
systems, Shaheen etal have used the heap optimization algorithm in
(Mohamed et al., 2021) and considered RESs. Biogeography-based
optimization was tested by Mosbah et al. (2018) to curtail power
losses and to achieve the optimal size and location of photovoltaic-
based DG. In Shilaja (2021), cost- and time-effective solutions
have been shown for IEEE buses of 30 & 57 using chaotic PSO
and GSA. The use of levy coyote optimization to satisfy multiple
objectives in the OPF (having RESs on the IEEE 30/57/118 bus
system) is shown by Kaymaz et al. (2021). Duman et al. (2021) have
tested the symbiotic organisms search algorithm on numerous IEEE
bus systems where RESs (solar, wind, and tidal) had been taken
into account. Hoang Bao Huy et al. (2022) suggested the multi-
objective group search algorithm (MOSGA) to solve the OPF issue
on IEEE 30-bus and 57-bus systems with solar and wind energy
aiming to reduce emissions, real power loss, and total cost. Pandya
and Jariwala (2020) suggested use of non-dominated sort multi-
objective GWO for solving the OPF problem with RESs (wind and
solar) on the IEEE-30 bus system. To minimize generation cost,
power loss, and simultaneously cost and emission, barnacles mating
optimizer has been tried on modified IEEE 30 & 57-bus systems by
Herwan Sulaiman and Mustaffa (2021). To solve the OPF problem,
the competence and firmness of the circle search algorithm have
been verified by Shaheen et al. (2022) on the IEEE 57 & 118-bus test
network allied with RESs (wind and solar). Targeting to reduce total
fuel cost, total emission, voltage magnitude deviation, and active
power loss, Kumar Avvari and Vinod Kumar (2022) have offered
a new multi-objective evolutionary algorithm which is established
on hybrid decomposition, for IEEE 30, 57 & 118 bus systems
associated with RESs (solar and wind) and its needful PDFs to
handling its uncertainties.Themayfly algorithm has been employed
to reduce power loss, fuel cost, emissions, and keep voltage security
index (VSI) on the 30 bus with RESs (solar and wind) in order to
solve the OPF problem by Khamees et al. (2023). In most of the
systems where RESs are included, appropriate PDFs like lognormal,
Weibull, and Gumbel were considered to overcome the volatility
within RESs (Maheshwari et al., 2022), (Nusair andAlhmoud, 2020),
(Duman et al., 2021), (Kumar Avvari and Vinod Kumar, 2022),
(Khamees et al., 2023). Hybridization ofmore than one optimization
technique is done often to enhance the searching ability globally.The
heftiness and performance of the joined PSO-GWO algorithm on
the modified IEEE 30-bus containing RESs (solar and wind) have
been verified by Riaz et al. (2021). Alghamdi etal had carried out
combined firefly and JAYA algorithms (Ali, 2022) to solve the OPF
problem for a 30-bus IEEE network. Ullah et al. (2019) have attained
the OPF results via mutual phasor PSO and glowworm swarm
optimization (GSO) on the IEEE 30-bus test systemwith RESs (solar
and wind). Annapandi et al. (2021) have described the OPF problem
using combined spotted hyena optimization and EHO including

RESs (wind and solar), battery, and fuel cell. Hassan et al. (2024)
applied a hybrid approach for solving the OPF problem with the
consideration of RESs like wind, solar, and electric vehicle (EV) for
optimal solutions. The enhanced wombat optimization algorithm
has been used byNagarajan et al. (2025) to findOPF solutions under
RESs and EV-based power network. Hassan et al. (2023) used the
hybrid AEO-CGO algorithm Hassan etal to resolve RESs including
theOPF issue. Optimization of proton exchangemembrane fuel Cell
(PEMFC) models through the depth information-based differential
evolution (Di-DE) algorithmwas performed by Jangir et al. (2024a).
Mutational Northern goshawk and Elite opposition learning-based
artificial rabbits optimizer (MNEARO) was used by Jangir et al.
(2024b) in their recent endeavor employing enhanced versions of the
artificial hummingbird algorithm, as shown in Jangir et al. (2024c).
In Jangir et al. (2025), a cooperative strategy-based differential
evolution algorithm is utilized. In order to solve the stochastic
OPF problem with optimal integration of RESs and a thyristor
controlled series compensator (TCSC), Mohamed et al. (2023)
suggests a modified version of the Runge Kutta optimizer (MRUN).
Adaptive Lightning Attachment Procedure Optimizer (ALAPO)
with RES integration was used by Adhikari et al. (2023) study to
solve the stochastic OPF problem. Ebeed et al. (2018) performed
a thorough analysis of contemporary optimization methods for
resolving optimal power flow issues Ebeed etal. In order to solve
the issues of the normal Gorilla Troops Optimizer being susceptible
to local optima and the potential for stagnation, Jamal et al. (2024)
using suggests an effective modified Gorilla Troops Optimizer.
Zhang et al. (2024) suggests an approach for calculating OPF
that takes demand-side responsiveness and RES uncertainty into
account. An enhanced chaotic flower pollination algorithm was
presented by Daqaq et al. (2022) in order to address the OPF
problem by incorporating RESs and producing the best control
variable settings. An optimal power flow model that accounts for
the uncertainty in the probability distribution of wind power was
proposed by Dai et al. (2024).

Contemporary researchers are engaged in solvingOPFproblems
considering FACTs tools within the system, which improves
the power quality attributes. In the following part, few such
studies are presented. In the OPF problem, optimal positioning
and sizing of certain FACTS devices were accomplished by
Amal et al. (2022) using a hybrid gradient-based optimizer with
moth–flame optimization algorithm. Fruitful placement and sizing
of the FACTS devices in the IEEE 30-bus system (including
wind farms) for lessening transmission costs, generation costs,
and power losses and concurrently protecting voltage profile
were analyzed by Aghaebrahimi et al. (2016) using honey-bees
mating optimization. To resolve difficult nonlinear OPF problems
for the IEEE 30-bus test system integrating RES and FACTs
devices, Nusair et al. (2021) tested four biology and nature-
inspired optimization algorithms, namely, artificial ecosystem-based
optimization (AEO), slime mold algorithm (SMA), JS, and marine
predators algorithm (MPA). GWO-based optimal tuning has been
implemented by Rambabu et al. (2019) to find the optimal power
flow solution considering FACTs devices and RESs on the IEEE
57-bus system. Panda et al. (2017) had revealed the advantage of
using the modified bacteria foraging algorithm to solve the OPF
problem (combined hydro-thermal-wind (HTW) systemwith shunt
fact devices). Duman et al. (2020) resolved the OPF problem with
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use of FACTS devices and that of uncertain wind energy unit
had resolved using hybrid PSO and GSA (PSOGSA) with chaotic
maps Duman etal. Biswas et al. (2021) employed the history-based
adaptive differential evolution algorithm to achieve the best OPF
solution where the IEEE 30 bus systemwas considered with RES and
FACTs tools.

1.2 Research gaps

1. Local optimum problems plague the majority of current
optimization approaches.

2. The majority of optimization strategies currently in use suffer
from computational complexity.

3. The majority of current optimization algorithms have not yet
been implemented on large-scale grids connecting FACTs and
renewable energy-based network.

4. For scheduling a greater number of renewable energy
sources with more nonlinearity, the majority of current
optimization algorithms have not been validated on
complicated systems.

5. Analysis of variance (ANOVA), box plot, and error bar were
not used in the majority of optimizations to determine the
means of the data that were produced.

6. Statistical analysis is not used to discuss the robustness of the
majority of current algorithms.

7. Instead of applying applied to multi-objective functions, the
majority of optimization techniques were focused on single-
objective functions.

8. Most of the existing systems do not test error bar analysis,
which aids in calculating the standard deviation and
standard errors to validate the value of the maximum and
minimum ranges.

1.3 Motivation and incitement

According to the literature review, the existing optimization
strategies have the following features:

1. Effective solutions to many non-linear-based problems.
2. There are no derivatives associated in the population-based

optimization methods mentioned above.
3. Robustness can be demonstrated for most of the current

approaches.

In this presentation, authors were motivated to employ a
new optimization method to overcome the previously described
drawbacks.

1.4 Contribution

The following are the primary contributions of this
research work:

• The proposed study adopts a new approach for solving theOPF-
based combined heat and power economic dispatch (CHPED)
problem of IEEE 57 and IEEE 118 bus systems.

• Suggested study integrates wind–solar units with two OPF-
/CHPED-based systems, namely, IEEE 57 and IEEE 118 buses,
considering the significance of the fossil fuel source’s constant
evolution.

• Moreover, the FACTS device UPFC has been integrated with
the wind–solar-based OPF system on IEEE 57 and IEEE 118
bus systems.

• To cope up with these non-linearities, a new approach
QODTBO is implemented on the proposed work that
provides optimal solutions over cost and emission with a fast
convergence rate.

• The suggested optimization technique’s robustness has been
assessed using statistical analysis.

• An analysis of variance (ANOVA) test, box plot, and error bar
plots are used for scrutiny in a rigorous manner so that the
robustness of QODTBO may be assessed more accurately.

• An analysis has been conducted by comparing the proposed
QODTBO algorithm with efficient optimization methods in
order to address its superiority.

The suitability of any optimization algorithm is dependent on
the nature of the optimization problem. So the upgradation of
algorithms or development of new algorithms is always an ongoing
process so as to increase the effectiveness of the optimization
technique to reach numerous objectives of the OPF problem. In
the current study, there are three types of test systems. In the first
type, a simple IEEE 57 bus system has been chosen, the IEEE 57 bus
integrated with RESs (Wind–PV unit) is adopted as the second type
test system, and in the third type of test system, the IEEE 57 bus is
studied with RESs and UPFC. Single- and multi-task objectives are
addressed here. The briefs of the test systems and the set objectives
are provided in Table 1. The objectives of the present study are
minimization of the generation cost, simultaneous minimization
of total cost and emission, concurrent reduction of generation
cost and improvement in the voltage profile, and simultaneous
minimization of the generation cost and the voltage stability index.
In the present study, a newly developed optimization technique
DTBO (Dehghani et al., 2022) is employed. The method has been
established recently based on driving training courses for human
beings. DTBO maintains a decent balance between exploitation
and exploration. Dehghani et al. (2022) have revealed that DTBO
offers enhanced performances in optimization applications than 11
other contestant algorithms. To make the response faster and obtain
a superior optimal solution based on quasi-oppositional learning
(QOBL), Warid et al. (2018) integrated it with the original DTBO,
which is referred to as quasi-oppositional DTBO (QODTBO). It will
explore the search region more proficiently and avoid getting stuck
in a native solution. The test results obtained have been compared
with the results obtained by Chaib et al. (2016).

1.5 Limitation of the QODTBO approach

The following are the limitations of the QODTBO approach.

1. Though the suggested approach has the potential to refine
near-optimal solutions globally, it may be hybridized with
other counterparts to further accelerate its searching capability.
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TABLE 1 Summaries of different case studies under consideration.

Case Single
Objective

Multi
Objective

Considered
Objectives

Constraints Test system

1 ✓ - Overall cost reduction with
valve point effects

Equality and non-equality IEEE 57-bus

2 - ✓ Simultaneous declining of
cost and emission

,, ,,

3 - ✓ Simultaneous declining of
cost and voltage profile

,, ,,

4 - ✓ Simultaneous declining of
cost and voltage stability

index

,, ,,

5 ✓ - Whole cost declining with
valve point effects over
thermal and wind-PV

,, IEEE 57 bus incorporating
wind-PV energy

6 - ✓ Simultaneous dropping of
cost and emission

,, ,,

7 - ✓ Simultaneous lessening of
cost and voltage profile

,, ,,

8 - ✓ Simultaneous lessening of
cost and voltage stability

index

,, ,,

9 ✓ - Total cost lessening with valve
point effects on thermal and

wind-PV

,, IEEE 57 bus incorporating
wind-PV energy and UPFC

10 - ✓ Simultaneous reduction of
cost and emission

,, ,,

11 - ✓ Simultaneous reduction of
cost and voltage profile

,, ,,

12 - ✓ Simultaneous reduction of
cost and voltage stability

index

,, ,,

13 ✓ Total cost minimization with
valve point effects for thermal

and wind-PV energy

Equality and non-equality IEEE 118 bus incorporating
wind-PV energy and UPFC

14 ✓ Simultaneous minimization
of cost and emission

” ”

15 ✓ Simultaneous minimization
of cost and voltage profile

” ”

16 ✓ Simultaneous minimization
of cost and voltage stability

minimization

” ”

2. Theperformance of the algorithm is crucially dependent on the
choice of input control parameters.

3. There is a scope of population diversification
4. Challenges may arise when a very high-dimensional

optimization problem is to be resolved.

1.6 Organization of the paper

The remaining sections of this paper are organized as follows:
Section 2 includes a model of the FACTs devices, wind power,
and solar power generation. In Section 3, formulation of the
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FIGURE 1
Design framework of the proposed research work.

problem of the proposed system is demonstrated. Section 4
includes a flowchart and a discussion of the various steps of
the suggested optimization approach. The benchmark functions
and simulation results are covered in Section 5, along with
a comparison of multiple examples using statistical analysis.
Section 6 of the proposed system reports the conclusion. The
design frame of the proposed research work is illustrated
in Figure 1.

2 Model: FACTs devices and RESs

2.1 Modeling of UPFC

To control power transmission networks, UPFC (Dutta et al.,
2015) is considered the best FACTs tool. It is adaptive in nature. It can
regulate both active and reactive power flows within the terminals.
It also compensates for reactive power at the linked node (Gyugyi,
1992), (Abdollahi et al., 2020). In this device, there are series and
shunt-connected voltage source converters that have a common
direct current (DC) link. The series part of the device is similar to

FIGURE 2
Circuit model for the UPFC.

the static synchronous series compensator (SSSC), while the shunt
part resembles that of the static compensator (STATCOM). Figure 2
depicts the UPFC tool, which is placed between the
eth & fth buses.
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The injected active and reactive power of the eth & fth buses
are given by (Dutta et al., 2015); (Radman and Raje, 2007)
Equations 1–4:

{{{{{{{{{
{{{{{{{{{
{

Pe = (GP +GS) |Ve|
2 − |Ve| |Ep| |Yp|cos(θp − δe + δp)

+|Ve| |Es| |Ys|cos(θs + δs − δe)

−|V f | |V f | |Ys|cos(θs − δe + δ f)

+
NB

∑
k=1
|Ve| |V f | |Ye f |cos(θe f − δe + δ f)

. (1)

{{{{{{{{{
{{{{{{{{{
{

Qe = −(BP +BS) |Ve|
2 + |Ve| |Ep| |Yp| sin(θp − δe + δp)

−|Ve| |Es| |Ys| sin(θs + δs − δe)

+|Ve| |V f | |Ys| sin(θs − δe + δ f)

+
NB

∑
k=1
|Ve| |Vk| |Y fk| sin(θek − δ f + δk)

. (2)

{{{{{{
{{{{{{
{

P f = GS|V f |
2 − |V f | |Ve| |Ys|cos(θs − δ f + δe)

−|V f | |Es| |Ys|cos(θs + δs − δe)

+
NB

∑
k=1
|V f | |Vk| |Y fk|cos(θ fk − δ f + δk)

. (3)

{{{{{{
{{{{{{
{

Q f = −BS|V f |
2 + |V f | |Ve| |Ys| sin(θs − δ f + δp)

−|V f | |Es| |Ys| sin(θs + δs − δ f)

+
NB

∑
k=1
|V f | |Vk| |Y fk| sin(θek − δ f + δk)

. (4)

Due to presence of the UPFC, the flow of active and reactive
power (Radman and Raje, 2007) through the transmission line
placed within eth & fth buses is expressed as follows Equations 5–8:

{{{{
{{{{
{

Pe f = (GP +GS) |Ve|
2 − |Ve| |Ep| |Yp|cos(θp − δe + δp)

+|Ve| |Es| |Ys|cos(θs + δs − δe)

−|Ve| |V f | |Ys|cos(θs − δe + δ f)

. (5)

{{{{
{{{{
{

Qe f = −(BP +BS) |Ve|
2 + |Ve| |Ep| |Yp| sin(θp − δe + δp)

−|Ve| |Es| |Ys| sin(θs + δs − δe)

+|Ve| |V f | |Ys| sin(θs − δe + δ f)

. (6)

{
{
{

P fe = GS|V f |
2 − |V f | |Ve| |Ys|cos(θs − δ f + δe)

−|V f | |Es| |Ys|cos(θs + δs − δe)
. (7)

{
{
{

Q fe = −BS|V f |
2 + |V f | |Ve| |Ys| sin(θs − δ f + δp)

−|V f | |Es| |Ys| sin(θs + δs − δ f)
. (8)

There is no net power loss in the UPFC, which can be
represented as Equation 9,

{{{{
{{{{
{

Gp|Ep|
2 +Gs|Es|

2 − |Ep| |Ve| |Yp| × cos(δp − δe − θp)

+|Es| |Ve| |Ys| × cos(δs − δe − θs)

−|Es| |V f | |Ys| × cos(δs − δ f − θs) = 0

, (9)

where Ve,V f , respectively, indicate the magnitude of voltages at
the eth & f th buses; Gp, Bp and Yp are the parallel component
conductance, susceptance, and admittance, respectively. The overall
admittance of the transmission line present between the e–f bus
and the series component of the UPFC is Ys, the UPFC series
component’s conductance and susceptance are respectively; the

admittance angle of the transmission line positioned betweenGs, BS
eth and f th bus is θe f ; the admittance angle between the admittance
of the UPFC series component and the admittance that contains
the admittance of the line e–f is θs; the phase angles of the UPFC’s
parallel and series component voltage source are the δp and δs,
respectively; the voltages of the parallel and series converter’s voltage
sources of the UPFC device are Ep,Es, respectively.

2.2 Wind power model

Wind speed (vm/s) (Paul et al., 2024a) fluctuation is well
characterized (Rambabu et al., 2019; Duman et al., 2020)
by two-parameter (scale factor “ξ” and shape factor “κ”)
Weibull PDF as Equation 10,

f (v) = (κ
ξ
)×(v

ξ
)
κ−1
×(e−(

v
ξ
)κ) 0 < v <∞ (10)

The output power from awind turbine is given in terms of cut-in
speed vin, rated speed vr, cut-out speed vout, and rated output of the
wind turbine Pwr as Equation 11,

Pw (v) =

{{{{{
{{{{{
{

0

Pwr(
v− vin
vr − vin
)

Pwr

for v < vin  &  v > vout
for vin ≤ v ≤ vr
for vr < v ≤ vout

. (11)

Now, the probabilities of wind power at the distinct wind speed
zone can be described by Equations 12–14,

f(Pw)|Pw=0 = 1− exp[−(
vin
ξ
)
κ
]+ exp[−(

vout
ξ
)
κ
]. (12)

f(Pw)|Pw=Pwr = exp[−(
vr
ξ
)
κ
]− exp[−(

vout
ξ
)
κ
]. (13)

f(Pw)|0<Pw<Pwr = [
κ× (vr − vin)
ξκ × Pwr

]× [vin +(
Pw
Pwr
)(vr − vin)]

κ−1

×exp[[

[

−(
vin + (

Pw
Pwr
) × (vr − vin)

ξ
)

κ

]]

]

.

(14)

2.3 Solar power model

In the solar power unit, solar energy (Paul et al., 2024a)
is converted to electrical energy. Power output depends on
solar irradiance and other climatic conditions. The probability
distribution L(I) of solar irradiance (I) is very much close with
(Abdullah et al., 2020; Rambabu et al., 2019) lognormal PDF, so
it is commonly used to estimate the solar irradiance, and it is
represented as Equation 15,

L (I) = 1
Iλ√2π

exp(
−(ln I− ε)2

2λ2
), I > 0 (15)

ε: mean of I distribution.
λ: Standard deviation.
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The relation between solar irradiance and the electrical output
power from the PV unit is given by Equation 16,

P (I) =
{{{
{{{
{

Pnm
I2

IstIc
, for 0 < I < Ic

Pnm
I
Ist
, for I ≥ Ic

(16)

Pnm: nominal output power of the PV unit; Ist: standard solar
irradiance; Ic: critical irradiance point.

3 Mathematical problem formulation

3.1 Cost model of thermal power
generation

The cost model of fossil fuel-driven thermal units (Biswas et al.,
2018b; Rambabu et al., 2019; Pandya and Jariwala, 2020) is usually
considered a quadratic function. The generation cost in $/hour unit
is given by Equation 17,

CT1k (PTGk) = ak + bkPTGk + ckP2TGk. (17)

ak, bk, and ck are the cost coefficients for kth thermal unit
and generated power PTGk

. While the valve-point loading effect is
taken into consideration, generation cost $/h of the kth thermal
unit becomes Equation 18,

{
{
{

CT2k (PTGk) = (ak + bkPTGk + ckP2TGk)

+|dk × sin(ek × (Pmin
TGk − PTGk))|

(18)

dk and ek are the coefficients related to valve-point
loading. Pmin

TGk is the minimum output power of the kth

thermal unit. Table 2 provides the cost coefficients of all
thermal units.

3.2 Direct cost of PV and wind power
generating unit

In the PV and wind power unit, there is no fuel cost because
no fuel is required for the said units. In this kind of power,
a direct cost that is proportional to the scheduled power is
provided by the grid operators to the owner of PV or wind plants
(Kumar Avvari and Vinod Kumar, 2022). In terms of scheduled
power Pssl, the direct solar power cost for lth PV unit is given
by Equation 19,

Csl (Pssl) = γslPssl (19)

γsl: coefficient of the direct cost for the lth PV unit.
Similarly, the direct cost for the kth wind power unit

is given by Equation 20,

Cwk (Pwsk) = ρwkPwsk (20)

ρwk: coefficient of direct cost for the kth wind power unit.
Pwsk: scheduled power from the kth wind power unit.

3.3 Cost assessment of wind power
uncertainties

Uncertainties are inherent in wind power. While actual
produced wind power is less than the scheduled power (Pwsk)
(i.e overestimated wind power), to mitigate the demand, the cost
associated with reserve generating units has to be considered, which
is called reserve cost (Kumar Avvari and Vinod Kumar, 2022). It can
be represented as Equation 21,

{{{{
{{{{
{

CRwk (Pws,k − Pwavk) = KRwk (Pwsk − Pwavk)

= KRwk

Pwsk

∫
0

(Pwsk − pwk) fw (pwk)dpwk
. (21)

KRwk: coefficient of reserve cost for the kth wind power unit;
Pwavk: available power from the kth wind power unit; fw (pwk): PDF
of the kth wind power plant.

On the other hand, while the actual power from the wind power
plant is higher than the scheduled power (i.e underestimation of
wind power), there will be a penalty cost to be paid.The penalty cost
for the kth wind power unit due to wind power underestimation is
represented as Equation 22,

{{{{
{{{{
{

CPwk (Pwavk − Pwsk) = KPwk (Pwavk − Pwsk)

= KPwk

Pwrk

∫
Pwsk

(pwk − Pwsk) fw (pwk)dpwk
.

(22)

KPwk: coefficient of penalty cost for the kth wind power unit. Pwsk:
rated output power from the kth wind power plant.

3.4 Evaluation of cost for solar
photovoltaic uncertainties

Similar to the wind power unit, uncertainty is involved with the
solar PV unit where both cases of over- and underestimation of solar
power may occur. So, in the case of the solar PV unit, reserve and
penalty costs have to be considered like wind power units. Solar
radiation distribution is close to the lognormal PDF, whereas wind
speed matches closely with Weibull PDF. Therefore, reserve and
penalty cost functions for the solar PV unit is different from those
of the wind power unit.

The reserve cost of the lth solar unit can be shown as Equation 23,

{
CRsl (Pssl − Psavl) = KRsl (Pssl − Psavl)

= KRsl ∗ fs (Psavl < Pssl) ∗ [Pssl −E(Psavl < Pssl)]
(23)

KRsl: reserve cost coefficient for the lth PV unit Psavl: available actual
power of the same unit. Pssl: power scheduled of that PV unit;
fs (Psavl < Pssl): likelihood of solar power being lower than planned.
E(Psavl < Pssl): chances that the PV power is beneath Pssl.

The lth PV unit’s penalty cost is shown as Equation 24,

{
CPsl (Psavl − Pssl) = KPsl (Psavl − Pssl)

= KPsl ∗ fs (Psavl > Pssl) ∗ [E(Psavl > Pssl) − Pssl]
(24)
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FIGURE 3
Flowchart for QODTBO.

KPsl: reserve cost coefficient for the lth PV unit; fs (Psavl > Pssl):
probabilities of solar power more than scheduled solar power.
E(Psavl > Pssl): expectation that PV power is above Pssl.

3.5 Objective function

In the present work, selected objectives (Herwan Sulaiman
and Mustaffa, 2021; Biswas et al., 2021; Kumar Avvari and
Vinod Kumar, 2022; Chaib et al., 2016) include (a) minimization
of total generation cost; (b) upgrading of the voltage profile; (c)

improvement in the stability of voltage; (d) reduction of emission.
Furthermore, various combinations amid these objective functions
are considered too.

3.5.1 Single objective
Total generation cost: (i) when only thermal generators are

considered, the total generation cost (CGC) is expressed as [using
(Equations 18, 25)]

CGC =
NTG

∑
k=1

CT2k (PTGk) (25)
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FIGURE 4
(A) Wind speed PDF; (B) solar irradiance PDF.

NTG denotes the number of thermal generators. In (Equation 25),
the valve-point loading effect is considered.

(ii)Theoverall generation cost while RESs are taken into account
is expressed as [using (Equations 18–24, Equation 26)],

{{{{{{{{{{{
{{{{{{{{{{{
{

CGC =
NTG

∑
k=1

CT2k (PTGk) +
NW

∑
k=1
[Cwk (Pwsk)]

+
NW

∑
k=1

CRwk (Pws,k − Pwavk) +CPwk (Pwavk − Pwsk)

+
Ns

∑
l=1
[Csl (Pssl) +CRsl (Pssl − Psavl) +CPsl (Psavl − Pssl)]

.

(26)

Voltage stability index: In the power system, the extent of voltage
stability is a matter of great importance. To gauge it, Kessel and
Glavitsch (1986) have introduced the voltage stability index (Lmax),
which is given by Equation 27,

Lmax =max(Lk) k = 1,2,…,NL, (27)

where (Lk denotes an local indicator of bus k expressed as
Equation 28),

Lk = |1−
NG

∑
h=1

HLGkh

Vh

Vk
| k = 1,2,…NL. (28)

NL: count of load buses. NG: number of generators.
H: partial inverse matrix of the bus admittance matrix. The

magnitude of Lmax lies between 0 and 1: while it approaches 0, the
system stability improves.

Voltage deviation (voltage profile): for load buses to maintain a
healthy voltage profile, variations in voltage at load buses have to be
minimized, and it is given by Equation 29,

VD =
NL

∑
l=1
|Vl − 1| . (29)

NL: no of load buses.
Emission: the overall emission of environmental pollutants like

carbon dioxide, oxides of sulfur, oxides of nitrogen, etc. triggered by
the thermal generators can be represented as Equation 30,

EC =
NTG

∑
h=1

10−2 (χh + ηhPTGh + σhP
2
TGh) + (ωhe(

μhPTGh)) . (30)

Here, χh,ηh,σh,ωh & μh are emission coefficients of the hth

thermal generator. PTGh is the power generated by the hth thermal
generator.

3.5.2 Multi-objective
It regularly occurs that the aforementioned objective

(minimization) functions are mutually contradicting among
themselves. Regularly, in order to get the best possible solution
that optimizes those contradictory goals at a time without violating
various constraints. These types of optimization issues are referred
to as multi-objective optimization problems.

Simultaneously cost and emission minimization: Using
(Equations 25, 26, 30) the bi-objective function (OFcomb1) is
designed to simultaneously reduce fuel cost and emission.
Mathematically, the function can be written as Equation 31,

OFcomb1 = CGC + αEC (EC) . (31)

αEC represents the weighting factor corresponding
to emission (Chaib et al., 2016).

Combination of generation cost reduction and voltage profile
improvement: With the help of (Equations 25, 26, 29), the blended
objective function (OFcomb2) to reduce the fuel cost and improve
voltage profile can be represented (Chaib et al., 2016) by Equation 32,

OFcomb2 = CGC + αvd (VD) . (32)

αvd: weighting factor.
αvd is considered 1000 in this work (Chaib et al., 2016).
Simultaneous minimization of cost and voltage stability

index: to achieve an optimum solution such that generation cost
and voltage profile index become minimum, we simultaneously
combine the objective function (OFcomb3) represented (using
(Equations 25–27) as Equation 33,

OFcomb3 = CGC + αLmax
(Lmax) . (33)

αLmax
is a weighting coefficient.

Frontiers in Energy Research 11 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1562758
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Sarkar et al. 10.3389/fenrg.2025.1562758

TABLE 3 Statistical comparison of QODTBO on CEC 2017 with 30D for F1− F16.

CEC 2017 (D = 30)

Function BWM_HS CVnew SGSADE HGSO SCA DTBO QODTBO

Unimodal

F1

Mean 3.798E+03 1.199E+10 3.498E-08 5.497E+03 0.000E+00 2.953E-08 3.512E-08

SD 4.799E+03 0.000E+00 3.945E-08 1.123E+03 0.000E+00 2.049E-08 2.029E-08

Sign + + - - - -

F3

Mean 1.199E-07 1.515E+02 1.338E+02 5.958E+02 2.119E-08 3.311E-08 2.023E-07

SD 4.499E-08 9.459E+01 1.173E+02 2.875E+02 2.198E-08 2.046E-08 2.099E-07

Sign + + + + + +

Multi-modal

F4

Mean 6.799E+01 1.558E+01 1.399E+01 4.729E+02 4.342E+01 3.198E-08 2.801E-08

SD 3.101E+01 2.797E+01 2.598E+01 3.012E+02 2.897E+00 2.398E-08 1.239E-08

Sign + + + + + -

F5

Mean 5.101E+01 1.298E+02 8.901E+01 6.196E+02 1.448E+01 3.698E+00 3.102E+01

SD 1.901E+01 2.801E+01 1.799E+01 9.896E+00 2.399E+00 2.701E+00 1.102E+01

Sign + + + + - -

F6

Mean 1.199E-05 2.124E+01 2.304E-08 5.983E+02 1.101E-08 1.115E-08 8.230E+00

SD 2.224E-05 8.231E+00 1.499E-08 7.701E+00 1.502E-08 1.298E-08 1.116E-07

Sign - + - + - -

F7

Mean 5.988E+01 2.299E+02 1.297E+02 8.398E+02 4.891E+01 3.602E+01 5.983E+00

SD 9.701E+00 2.099E+01 1.599E+01 6.196E+01 2.252E+00 8.195E-01 5.401E-01

Sign + + + + + +

F8

Mean 4.988E+01 1.197E+02 8.289E+01 8.302E+02 1.295E+01 3.699E+00 3.301E+00

SD 1.303E+01 2.701E+01 1.603E+01 2.604E+01 2.789E+00 1.777E+00 2.596E+00

Sign + + + + + =

F9

Mean 1.099E+01 2.198E+03 5.972E-08 1.801E+03 0.199E+00 0.403E+00 0.000E+00

SD 8.0044E+01 8.505E+02 6.033E-08 2.402E+02 0.303E+00 0.702E+00 5.278E-08E+00

Sign + + + + + +

F10

Mean 2.755E+03 4.498E+03 5.099E+03 5.194E+03 1.101E+03 1.901E+03 4.111E+02

SD 4.801E+02 3.035E+02 5.499E+02 3.098E+02 2.396E+02 3.607E+02 8.899E+01

Sign + + + + + +

(Continued on the following page)
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TABLE 3 (Continued) Statistical comparison of QODTBO on CEC 2017 with 30D for F1− F16.

CEC 2017 (D = 30)

Function BWM_HS CVnew SGSADE HGSO SCA DTBO QODTBO

F11

Mean 9.501E+01 3.704E+01 5.036E+01 1.502E+03 1.803E+01 4.199E+00 3.398E+00

SD 3.199E+01 1.888E+01 3.099E+01 2.901E+01 2.001E+01 3.701E+00 1.786E+00

Sign + + + + + =

F12

Mean 5.011E+05 5.099E+09 1.906E+04 5.002E+04 4.199E+02 4.981E+02 4.986E+00

SD 4.501E+05 5.899E+09 6.988E+03 3.098E+04 1.503E+02 2.801E+02 4.001E+00

Sign + + + + + +

F13

Mean 1.901E+04 7.988E+01 2.987E+02 5.501E+04 2.112E+01 0.901E+01 7.299E-01

SD 2.197E+04 2.902E+01 3.001E+02 2.099E+03 0.983E+01 5.001E+00 4.056E-01

Sign + + + + + +

F14

Mean 4.011E+03 5.023E+01 6.222E+01 2.299E+03 1.889E+01 2.801E+01 3.099E-01

SD 3.301E+03 7.099E+00 8.912E+00 1.803E+00 2.501E+00 2.001E+00 0.701E-01

Sign + + + + + +

F15

Mean 8.112E+03 3.778E+01 4.888E+01 3.812E+03 4.018E+00 4.712E+00 4.098E+01

SD 8.908E+03 8.803E+00 3.001E+01 5.012E+02 2.101E+00 2.897E+00 1.401E+01

Sign + = + + - -

F16

Mean 4.888E+02 7.509E+02 5.054E+02 3.299E+03 2.706E+01 4.199E+01 5.901E+00

SD 1.972E+02 2.112E+02 1.801E+02 3.399E+02 2.978E+01 5.801E+01 3.101E+00

Sign + + + + + +

3.6 Constraints

While FACTs devices are considered, the OPF
constraints (Kumar Avvari and Vinod Kumar, 2022) are provided
as follows.

3.7 Equality constraints

Constraint (Equation 34) provides a power flow equation which
is shown below Equation 34:

{{{{{
{{{{{
{

Ns

∑
c=1
(PGc − PLc) +

NUPFC

∑
c=1

Pcs =
Ns

∑
c=1

Ns

∑
d=1
|Vc| |Vd| |Ycd|cos(φcd − βcd)

Ns

∑
c=1
(QGc −QLc) +

NUPFC

∑
c=1

Qcs = −
Ns

∑
c=1

Ns

∑
d=1
|Vc| |Vd| |Ycd| sin(φcd − βcd)

(34)

Here PLc and QLc are the active and reactive power demand of the
cth bus, respectively; PGc and QGc are the active and reactive power
of generation and demand, respectively, of the cth bus; Pcs and Qcs

are the injected active and reactive power of UPFC, respectively, of
the cth bus; Ycd is the admittance of the transmission line connected
between the cth and the dth bus; φcd is the admittance angle of the
transmission line connected between the cth and the dth bus; Ns is
the number of buses; NUPFC is the number of UPFCs.

3.8 Inequality constraints

All inequality constraints are represented by Equations 35-43,
(i) Generator constraints:

{{{{
{{{{
{

Vmin
Gb ≤ VGb ≤ V

max
Gb

Pmin
Gb ≤ PGb ≤ P

max
Gb b ∈ NP

Qmin
Gb ≤ QGb ≤ Q

max
Gb

. (35)

(ii) Load bus constraints:

Vmin
Lb ≤ VLb ≤ V

max
Lb b ∈ NBL. (36)

(iii) Transmission line constraints:

SLb ≤ S
max
Lb b ∈ NLT. (37)

Frontiers in Energy Research 13 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1562758
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Sarkar et al. 10.3389/fenrg.2025.1562758

TABLE 4 Statistical comparison of QODTBO on CEC 2017 with 30D for F17− F30.

CEC-2017 (D = 30)

Function Statistics BWM_HS CVnew SGSADE HGSO LSHADE-
cnEpSin

LSHADE-
SPACMA

QODTBO

Hybrid

F17

Mean 3.099E+02 2.011E+02 8.099E+01 2.014E+03 3.199E+01 2.987E+01 1.955E+01

SD 1.889E+02 6.901E+01 2.198E+01 1.983E+01 4.986E+00 7.401E+00 1.101E+01

Sign + + - + - -

F18

Mean 1.501E+05 4.009E+01 1.988E+03 1.001E+04 1.986E+01 3.801E+01 1.813E+03

SD 5.901E+04 6.985E+00 1.801E+03 5.712E+04 6.901E-01 2.021E+00 1.802E-01

Sign + - = + - -

F19

Mean 7.907E+03 1.897E+01 2.199E+01 1.966E+03 4.512E+00 8.201E+00 7.612E-01

SD 9.902E+03 3.101E+00 6.190E+00 2.901E+03 1.901E+00 2.303E+00 6.213E+00

Sign + + + + + +

F20

Mean 1.799E+02 1.812E+02 0.909E+02 1.701E+03 2.512E+01 7.805E+01 3.222E+02

SD 8.901E+01 9.615E+01 4.905E+01 2.988E+02 6.501E+00 4.201E+01 2.111E+01

Sign + + + + = +

F21

Mean 2.604E+02 1.801E+02 2.803E+02 2.899E+03 1.899E+02 1.799E+02 6.099E+00

SD 1.501E+01 2.712E+01 2.199E+01 2.499E+01 2.815E+00 3.533E+00 1.012E+00

Sign + + + + + +

F22

Mean 1.912E+03 1.198E+03 1.801E+02 3.899E+03 2.901E+02 2.612E+02 1.301E+01

SD 1.599E+03 1.907E+03 1.199E+01 8.278E+02 1.499E+01 2.901E+01 8.281E+00

Sign + + = + = =

Composite

F23

Mean 4.111E+02 3.808E+02 3.966E+02 1.977E+03 2.701E+02 2.212E+02 4.111E+01

SD 4.889E+01 4.714E+00 2.692E+01 5.394E+01 2.981E+01 3.502E+01 1.990E+00

Sign + + + + + +

F24

Mean 5.001E+02 4.502E+02 3.099E+04 2.099E+03 4.098E+02 1.901E+01 2.397E+02

SD 2.194E+01 2.601E+02 2.199E+01 8.701E+01 2.515E+00 1.712E+00 3.801E+01

Sign + + + + + +

F25

Mean 3.901E+02 3.612E+02 4.099E+02 2.866E+02 2.404E+02 1.888E+01 1.798E+01

SD 2.401E+00 7.312E-01 4.901E+00 2.887E+01 7.401E-03 1.828E-02 1.601E-03

Sign + + + + + +

(Continued on the following page)
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TABLE 4 (Continued) Statistical comparison of QODTBO on CEC 2017 with 30D for F17− F30.

CEC-2017 (D = 30)

Function Statistics BWM_HS CVnew SGSADE HGSO LSHADE
-
cnEpSin

LSHADE
-
SPACMA

QODTBO

F26

Mean 2.701E+03 3.711E+02 2.912E+03 4.701E+03 9.310E+02 9.831E+02 1.099E+02

SD 6.401E+02 3.201E+01 2.101E+02 1.889E+02 4.701E+01 3.498E+01 3.001E+01

Sign + + + + + +

F27

Mean 5.618E+02 5.301E+02 5.615E+02 3.701E+03 5.099E+02 5.198E+02 4.190E+02

SD 1.401E+01 9.901E+00 1.815E+00 1.099E+02 6.603E+00 1.789E+01 1.701E+00

Sign = = = + = =

F28

Mean 4.501E+02 3.312E+02 3.601E+02 3.214E+03 2.901E+02 2.888E+02 8.717E+01

SD 6.501E+01 3.919E+01 5.097E+01 7.501E+01 3.883E+01 5.803E+01 3.199E+01

Sign + + + + + +

F29

Mean 5.099E+02 8.412E+02 6.504E+02 3.811E+03 4.415E+02 3.901E+02 6.881E+02

SD 1.812E+02 1.301E+02 6.601E+01 1.402E+02 7.096E+00 4.111E+01 1.199E+02

Sign + + + + + +

F30

Mean 1.111E+04 2.401E+03 2.719E+03 9.828E+03 1.502E+03 8.828E+02 8.198E+02

SD 5.801E+03 5.242E+02 9.401E+02 3.615E+03 4.299E+03 9.099E+02 2.812E+02

Sign = - - = - -

TABLE 5 The results of the Wilcoxon signed−rank test and Friedman rank test, considering the mean error value for CEC 2017 (D = 50).

Sign QODTBO Vs BWM_HS CVnew SGSADE HGSO LSHADE-
cnEpSin

LSHADE-
SPACMA

+/ = /- 27/00/02 22/02/05 26/00/03 28/00/01 17/04/08 18/03/08

Statistical rank BWM_
HS

CVnew SGSADE HGSO LSHADE
-cnEpSin

LSHADE
-SPACMA

QODTBO

Friedman rank 5.515 4.712 5.084 7.018 2.765 2.354 1.362

Overall rank 6 4 5 7 3 2 1

(iv) Transformer tap constraints:

Tmin
b ≤ Tb ≤ T

max
b b ∈ NT. (38)

(v) Shunt compensator constraints:

Qmin
Cb ≤ QCb ≤ Q

max
Cb b ∈ Nsc. (39)

(vi) UPFC series source constraints:

Emin
Sb ≤ ESb ≤ E

max
Sb i ∈NUPFC. (40)

δmin
Sb ≤ δSb ≤ δ

max
Sb i ∈NUPFC. (41)

(vii) UPFC shunt source constraints:

Emin
Pb ≤ EPb ≤ E

max
Pb i ∈NUPFC. (42)

δmin
Pb ≤ δPb ≤ δ

max
Pb i ∈NUPFC, (43)

where Vmin
Gb ,V

max
Gb indicate, respectively, lower and upper voltage

limits, for the bth generator bus; Pmin
Gb ,P

max
Gb are the lower and

upper boundaries of active power production, respectively, of the
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TABLE 6 An overview of the IEEE 57-bus setup at test scenario-1.

Items Quantity Details

Buses 57 Chaib et al. (2016)

Branches 80 Chaib et al. (2016)

Thermal units 7 Buses: 1 (swing), 2, 3, 6, 8, 9, and 12

Tap changing transformer 17 Branches: 19, 20, 31, 35, 36, 37, 41, 46, 54, 58, 59, 65, 66,71, 73,76, and 80

Scheduled real power for 6 Nos

Control variables 33 Bus voltages of each generator buses (7 Nos.) tap setting of transformer and compensation tools

Load demand 1250.8 MW, 336.4 MVAr

Range of load bus voltage 50 [0.94–1.06]p.u

Compensation devices 3 Buses-18, 25, and 53

bth bus; Qmin
Gb ,Q

max
Gb are the respective minimum and maximum

reactive power generation margins of the bth bus; Vmin
Lb ,V

max
Lb

are the least and peak voltage edges of the bth load bus,
respectively; SLb

min,Smax
Lb are, respectively, the two extremes of

apparent power flow limits, of the bth branch; Tmin
b ,T

max
b are

the bottom and extreme tap setting limits, respectively, of the
bth regulating transformer; Qmin

Cb ,Q
max
Cb are the lowest and highest

reactive power injection restrictions, respectively, for the bth shunt
compensator; Emax

sb ,E
min
sb are the maximum and minimum limits of

series source voltage, respectively, of the bth UPFC; δmax
sb ,δ

min
sb are the

maximum and minimum limits of phase angle of the series voltage
source, of the bth UPFC, respectively; Emax

pb ,E
min
pb are maximum

and minimum limits of the shunt source voltage, respectively,
of the bth UPFC; δmax

pb ,δ
min
pb are, respectively, the maximum and

minimum limits of the phase angle of the shunt source of
the bth UPFC;

NP is the count of generator buses; NBL is the count of
load buses; NLT is the count of the transmission line; NT
is the count of regulating transformers; Nsc is the count of
shunt compensators.

4 Algorithm for optimization

4.1 DTBO

DTBO was first launched by Dehghani et al. (2022). The
design of DTBO is modeled around the manner in which
a driving instructor instructs students in a driving school.
The mathematical framework of DTBO is divided into three
stages: 1) the driving instructor’s training, 2) trainee driver
patterning based on instructor skills, and 3) self-practice. Beginners’
intelligence is used in the driving training process to help
them learn and become proficient drivers. A learned driver
might learn from a variety of instructors at a driving school.

A student improves his driving abilities by practicing on his
own and according to the instructor’s instructions. The core
foundation of the mathematical modeling of DTBO is these
learner–teacher interactions and self-practice for improving driving
abilities.

DTBO is a population-based meta-heuristic approach. The
following is an illustration of the DTBOpopulationmatrix, in which
each row member denotes one of the solutions to the specified
problem given in Equation 44,

Z =

[[[[[[[[[[[[[[[[

[

{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{
{

Z1

.

.

Zp

.

.

ZN

]]]]]]]]]]]]]]]]

]N×m

=

[[[[[[[[[[[[[[[[

[

{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{
{

z11 . . z1q . z1m
. . . . . .

. . . . . .

zp1 . . zpq . zpm
. . . . . .

. . . . . .

zN1. . . zNq . zNm

]]]]]]]]]]]]]]]]

]N×m

. (44)

Z is the population of DTBO; Zpis the population’s pth

member, or the pth potential solution to the issue; The qth

variable of the problem’s pth solution is zpq; m is the number
of problem variables, while N is the population size. DTBO
members’ (i.e candidate solutions’) initial positions are set at
random at the start of the implementation process as given in
Equation 45,

zpq = z
min
pq + r∗ (z

max
pq − z

min
pq ) for p = 1 toN  &  q = 1 to m

(45)

where zmax
pq and zmin

pq are the highest and lowest
boundary, respectively, for the qth variable of the problem
under consideration; r is a random, unbiased number
between 0 and 1.
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FIGURE 5
Convergence curves for (A) Case 1; (B) Case 5; (C) Case 9; and (D) Case 13.

For each potential solution, the magnitude of the
objective function is computed, and it is represented as
follows given in Equation 46,

F =

[[[[[[[[[[[[[[[[

[

{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{
{

F1
.

.

Fp
.

.

FN

]]]]]]]]]]]]]]]]

]N×1

=

[[[[[[[[[[[[[[[[

[

{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{
{

F (Z1)

F(Zp)

F (ZN)

]]]]]]]]]]]]]]]]

]N×1

. (46)

The computed values of the objective function become the
essential criteria for evaluating the caliber of the solutions. The
potential answer that generates the finest objective function value
is regarded as the best member. As the iteration continues, the top
performer is revised. The procedure for updating of the candidate
solution in DTBO follows three steps as follows:

Step 1: The driving instructor’s training (Exploration): From the
DTBO population, some of the finest participants are hired

as driving instructors, while the other participants are
regarded as learners. Choosing the right instructors and
learning their skills allow for a worldwide search to find
the best location for DTBO. In every iteration, evaluating
the objective function’s values, using a driving matrix DI,
L DTBO members are selected to serve as instructors, as
follows given in Equation 47,

DI =

[[[[[[[[[[

[

{{{{{{{{{{
{{{{{{{{{{
{

DI1
.
.
DIp

DIL

]]]]]]]]]]

]L×m

=

[[[[[[[[[[[[[

[

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

DI11 . . DI1q . DI1m
. . . . .
. . . .

DIp1 . . DIpq . DIpm
. . . . .
. . . . .
DIL1. . . DILq . DILm

]]]]]]]]]]]]]

]L×m
(47)

where the pth driving instructor isDIp.DIpq is the pth instructor’s qth

variable given in Equation 48,

L = ⌊0.1×N×(1− s
S
)⌋ (48)
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FIGURE 6
Bus voltage deviation for (A) Case 3; (B) Case 7; (C) Case 11.

s indicates the present iteration, and S is the highest number
of iterations. This phase yields the DTBO population member’s
changed position as Equation 49,

zst1pq =
{
{
{

zpq + r. (DIkpq − I.zpq) , FDIkp < Fp

zpq + r. (zpq −DIkpq) , otherwise
. (49)

As the objective function value increases, the old position is
swapped out for a new one by Equation 50,

Zp =
{
{
{

Zst1
p , Fst1p < Fp

Zp, otherwise
. (50)

Zst1
p is the freshly calculated pth possible solution at the first

step of DTBO, zpqst1 represents its q
th variable, the magnitude of its

objective function is Fst1p , the random number I in the collection
1,2, and the random number r falls between 0 and 1. In DIkpq,
a random selection of k is made from the set 1,2,….L i.e. kth

driving instructor and FDIkp is the value of its objective function.
p denotes the pth member of the population, being taught by
the instructor kth.

Step 2: Trainee driver patterning based on instructor skills
(Exploration): In step 2, the trainee driver mimics the tactics
and abilities of the instructor to enhance DTBO solutions.
Through this process, DTBO members travel to a distinct
area of the search field. It makes DTBO’s exploration more
potent. Through a linear combination among the DTBO
members and instructors, a modified position is created,
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TABLE 8 Statistical assessment (30 trials) among different algorithms for the IEEE 57-bus system for cracking diverse cases.

Case Statistics QODTBO DTBO (Paul et al.,
2024b)

BSA (Chaib et al., 2016) SCA (Attia et al., 2018)

Case 1

Best (min) 6430.1511 6451.8934 6462.4093 6454.6752

Mean (average) 6431.2341 6453.7611 6464.3423 6457.3427

Median 6432.0981 6454.9812 6463.7772 6456.0076

Worst (max) 6435.7612 6457.0781 6468.4281 6460.5674

Standard deviation 0.98453 1.2348 1.6066 1.3356

Average function evaluation 3010 3105 NA 3150

Average time (Sec) 24 26 NA 29

Case 2

Best (min) 7749.1893 7856.8921 7932.5169 7894.5634

Mean (average) 7751.8921 7859.7802 7936.6698 7897.8975

Median 7751.0023 7857.9812 7935.9449 7898.2341

Worst (max) 7755.2341 7861.0012 7941.1416 7905.0567

Standard deviation 1.2348 1.9824 2.4404 2.1023

Average function evaluation 3040 3190 NA 3205

Average time (Sec) 25 27 NA 30

Case 3

Best (min) 13282.1378 13301.9871 13325.0513 13317.0067

Mean (average) 13298.1237 13363.7612 13438.7459 13364.2078

Median 13315.0012 13387.1002 13430.9976 13363.6754

Worst (max) 13327.3457 13427.9801 13601.2447 13411.0507

Standard deviation 7.9801 31.0102 56.5258 44.6732

Average function evaluation 3075 3195 NA 3220

Average time (Sec) 27 29 NA 31

Case 4

Best (min) 8782.0152 9006.3452 9175.5107 9104.3324

Mean (average) 8784.1342 9022.8712 9197.5527 9114.9857

Median 8785.8901 9030.1002 9198.5524 9115.4986

Worst (max) 8787.0098 9042.8901 9217.469 9126.0231

Standard deviation 1.8976 8.0912 11.9426 9.5632

Average function evaluation 3105 3204 NA 3230

Average time (Sec) 26 30 NA 32

Case 5

Best (min) 6342.393 6402.4132 6424.7822

Mean (average) 6343.5871 6403.8561 6425.9802

Median 6344.7611 6404.7611 6426.0011

Worst (max) 6346.0027 6407.9812 6428.1002

The bold values represents the optimal solution of the problem.
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TABLE 8 (Continued) Statistical assessment (30 trials) among different algorithms for the IEEE 57-bus system for cracking diverse cases.

Case Statistics QODTBO DTBO (Paul et al.,
2024b)

BSA (Chaib et al., 2016) SCA (Attia et al., 2018)

Standard deviation 0.6436 0.7109 0.9783

Average function evaluation 2450 2500 2544

Average time (Sec) 27 31 Not available 33

Case 6

Best (min) 7631.1488 7711.6751 7787.8942

Mean (average) 7632.8971 7713.1209 7790.0236

Median 7633.6501 7714.6517 7790.6785

Worst (max) 7634.9945 7716.0989 7792.0291

Standard deviation 0.8723 1.0045 1.3452

Average function evaluation 2552 2575 2595

Average time (Sec) 28 33 Not available 35

Case 7

Best (min) 13168.435 13200.7659 13269.4438

Mean (average) 13173.7649 13209.8451 13277.4532

Median 13177.0192 13217.8921 13277.8935

Worst (max) 13181.8265 13224.0091 13284.0453

Standard deviation 2.7651 4.8976 6.4532

Average function evaluation 2564 2584 2598

Average time (Sec) 28 32 Not available 34

Case 8

Best (min) 8456.1207 8645.9815 8512.5564

Mean (average) 8457.7981 8647.0083 8514.7522

Median 8458.5605 8648.9981 8514.5697

Worst (max) 8459.7822 8650.7601 8516.5674

Standard deviation 0.8765 1.0076 1.3452

Average function evaluation 2570 2592 2596

Average time (Sec) 29 33 Not available 35

Case 9

Best (min) 6290.2794 6325.0067 6388.0984

Mean (average) 6291.3129 6326.2081 6389.2664

Median 6292.5601 6327.6798 6389.1098

Worst (max) 6294.0012 6329.0125 6392.5873

Standard deviation 0.5341 0.6011 0.8976

Average function evaluation 3910 4008 4040

Average time (Sec) 35 38 Not available 40

The bold values represents the optimal solution of the problem.
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TABLE 8 (Continued) Statistical assessment (30 trials) among different algorithms for the IEEE 57-bus system for cracking diverse cases.

Case Statistics QODTBO DTBO (Paul et al.,
2024b)

BSA (Chaib et al.,
2016)

SCA (Attia et al., 2018)

Case 10

Best (min) 7578.7746 7603.0983 7675.4429

Mean (average) 7579.3219 7604.4301 7676.8732

Median 7579.9988 7605.6201 7676.9908

Worst (max) 7580.6591 7606.4513 7678.5564

Standard deviation 0.3321 0.67801 0.9876

Average function evaluation 3965 4075 4105

Average time (Sec) 36 39 Not available 42

Case 11

Best (min) 12927.6084 13004.1009 13083.8862

Mean (average) 12929.2191 13008.7182 13086.5632

Median 12931.0911 13011.8761 13087.6792

Worst (max) 12933.9866 13016.4512 13091.5427

Standard deviation 1.0982 1.9876 2.2765

Average function evaluation 3970 4098 4104

Average time (Sec) 37 38 Not available 41

Case 12

Best (min) 8390.0053 8410.0089 8445.6523

Mean (average) 8390.9861 8411.8711 8447.0781

Median 8391.2101 8412.0981 8447.6754

Worst (max) 8391.7855 8413.4305 8449.0043

Standard deviation 0.4087 0.6514 0.9734

Average function evaluation 3975 4104 4115

Average time (Sec) 37 39 Not available 40

The bold values represents the optimal solution of the problem.

which is mathematically represented by (Equation 51).
Using (Equation 52), the fresh position substitutes the
preceding position if the amount of the objective functions
is improved than the former given in Equations 51, 52,

zst2pq = ξ.zpq + (1− ξ) .DIkpq (51)

Zp =
{
{
{

Zst2
p , Fst2p < Fp

Zp, otherwise
(52)

Zst2
p is the modified pth candidate solution on the second stage

of DTBO, zst2pq is its qth variable, and Fst2p is the corresponding

objective function’s value. ξ is named the patterning index described
by Equation 53,

ξ = 0.9(1− s
S
)+ 0.01. (53)

Step 3: Self-practice (Exploitation): In this step, learner drivers’
driving abilities are improved by individual practice. In
fact, it strengthens DTBO’s local search capabilities. Each
learner looks for a better position nearby based on their
existing position. (54) is used to create new positions near
the existing position. (55) replaces the previous position if
the new one improves the objective function value as given
in Equations 54, 55,
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FIGURE 7
Box plots through QODTBO, DTBO, BSA, and SCA for (A) case 1; (B) Case 2; (C) Case 3; and (D) Case 4.

zst3p,q = zpq + (1− 2r) .R.(1−
s
S
).zpq. (54)

Zp =
{
{
{

Zst3
p , Fst3p < Fp

Zp, otherwise
. (55)

Zst3
p is the modified pth potential solution in the DTBO’s third

stage; its qth variable is zst3p,q; the corresponding objective function
output is Fst3p ; the random number r ranges from 0 to 1; R = 0.05;
s and S are current and maximum iterations, respectively. One
DTBO iteration is completed by updating the population members
of DTBO through stages 1–3. Afterward, the subsequent iteration
begins with a freshly updated population and so on

through (47) to (55)

until the last iteration is finished. The optimal candidate
solution is noted as the problem’s resolution at the
conclusion of the last iteration.

4.2 Oppositional-based learning (OBL)

The OBL is a vigorous optimization procedure established
by Tizhoosh (Hamid, 2005). It supports increasing the solution
exactness and convergence velocity. There are many studies where
OBL is incorporated with fundamental optimization techniques
to improve the speed of searching (Xu et al., 2014). In the OBL
scheme, an opposite quantity is occupied at the mirror location
of the candidate solution. Here, an opposite population (OP) is
generated, which has a higher probability to achieve a global solution
in comparison with a random population. The mathematical
description of the opposite number z0 for OBL is represented as
follows given in Equation 56,

zo = c+ d− z (56)

where z is the randomly created candidate value and zo is its
corresponding opposite quantity, and lower and higher bounds are
denoted by c and d, respectively as in Equation 57.
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TABLE 9 Simulation findings and the best control variable settings for CASE 5 through CASE 8 (RESs included in the modified IEEE 57 bus test system).

Control parameters Min Max CASE 5 CASE 6 CASE 7 CASE 8

Generation (MW)

PTG1 0 575.88 527.66 365.24 492.65 540.07

PWG2 0 100 99.43 82.47 97.67 99.55

PTG3 0 140 76.26 139 4.52 61.45

PWG6 0 100 91.84 99.44 93.53 98.99

PTG8 0 550 179.51 151.51 164.56 183.11

PPV9 0 100 99.73 93.68 99.99 97.38

PTG12 0 410 212.03 347.9 337.74 207.42

Voltage (p.u.)

V1 0.94 1.06 1.0872 0.9898 1.0075 1.0898

V2 0.94 1.06 1.0851 0.9847 0.95 1.0638

V3 0.94 1.06 1.0407 1.0336 0.9955 1.0855

V6 0.94 1.06 1.0527 0.9997 1.0038 1.0959

V8 0.94 1.06 1.0253 0.9852 1.0259 1.098

V9 0.94 1.06 1.0136 1.0003 1.0392 1.0927

V12 0.94 1.06 1.0228 1.0001 1.0225 1.099

Transformers’ turns ratio

Line4− 18 0.9 1.1 0.922 1.0279 0.9444 0.9

Line4− 18 0.9 1.1 0.9266 0.9118 0.9791 0.9

Line21− 20 0.9 1.1 0.9961 0.9426 0.9972 1.054

Line24− 26 0.9 1.1 0.9949 0.9816 1.0372 1.0563

Line7− 29 0.9 1.1 0.9274 0.9861 0.9537 0.9

Line34− 32 0.9 1.1 0.9316 1.0726 0.9231 0.9

Line11− 41 0.9 1.1 0.9 1.0374 0.9 0.9

Line15− 45 0.9 1.1 0.9287 1.0293 0.993 0.9

Line14− 46 0.9 1.1 0.9198 0.9222 0.9436 0.9

Line10− 51 0.9 1.1 0.9154 1.0225 1.0197 0.9

Line13− 49 0.9 1.1 0.9 0.9366 0.9 0.9013

Line11− 43 0.9 1.1 0.9372 0.9123 0.9951 0.9

Line40− 56 0.9 1.1 1.0459 1.0119 0.9581 1.0964

Line39− 57 0.9 1.1 0.9476 0.9244 0.9448 1.0635

Line9− 55 0.9 1.1 0.9223 0.9651 1.0343 0.9

QC (MVAr)

QC18 0 0.05 0.0135 0.0222 0.043 0.048

QC25 0 0.05 0.0488 0.0462 0.0497 0.0497

QC53 0 0.05 0.0479 0.021 0.0492 0.0493

The bold values represents the optimal solution of the problem.
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TABLE 9 (Continued) Simulation findings and the best control variable settings for CASE 5 through CASE 8 (RESs included in the modified IEEE 57 bus
test system).

Control parameters Min Max CASE 5 CASE 6 CASE 7 CASE 8

Cost ($/h)

Thermal 5754.8419 5882.8612 5838.5551 5801.6259

Wind 289.6487 267.1313 289.2082 306.6619

Solar 297.9025 279.7562 298.6717 290.8329

Total 6342.393 6429.7488 6426.435 6399.1207

Emission ((t/h) 1.8365 1.2014 1.8078 1.9125

Ploss (MW) 35.66 28.44 39.86 37.17

VD (p.u.) 2.9613 2.1018 0.6742 2.9695

L-index 0.2604 0.352 0.296 0.2057

The bold values represents the optimal solution of the problem.

For the m-dimensional case, the expression becomes

zok = ck + dk − zk, (57)

where k = 1,2, …,m and zk ∈ [ck,dk].
From the existing population P, the opposite population (OP) is

produced as Equation 58,

OPk,l = cl + dl − Pk,l, (58)

where NP: population size, m: dimension of the problem. OPk,l and
Pk,l are the lth variable of the kth row vector of opposite population
and current population, respectively.

From the literature, it is found that the introduction of Quasi-
oppositional based learning (QOBL) provides an improved solution
thanOBL (Roy andMandal, 2012), (Warid et al., 2018), and (Mandal
and Roy, 2014). The quasi-oppositional based learning zqok is
obtained from random generated population value z as Equation 59,

zqok = rand(
ck + dk

2
,ck + dk − zk), (59)

where k = 1,2, …m.

4.3 Use of QODTBO in obtaining the OPF
solution

In this study, DTBO is combined with QOBL (known as
QODTBO) to boost the efficiency of the method. The flow chart of
QODTBO is shown in Figure 3:The following describes the steps of
the QODTBO algorithm used to solve the OPF problem.

Step 1: Arbitrarily produce starting population Z that denotes
independent factors of the OPF issue, like the active powers
of every generator (apart from the slack bus), voltages,
and regulating transformers’ tap settings and variables with
compensating tools. Z should be restricted within equality
and inequality constraints.

Step 2: The quasi-oppositional population (QOP) is created as
Equations 61, 62,

QOPk,l = rand(vl, OPk,l) (60)

vl =
cl + dl
2

(61)

OPk,l = cl + dl −Zk,l (62)

where k = 1,2, ……,NP and l = 1,2, ……m.
NP: population size,
m: number of independent variables.
Zk,l and OPk,l are lth, respectively, independent variable of kth

population vector Z and opposite population (OP).

Step 3: use the Newton–Raphson (NR) technique to achieve
load flow (Pai, 1989) and evaluate entire dependent
variables, for instance, active power for slack bus and
load voltages.

Step 4: Determine the objective function’s value for Z and QOP.
Step 5: Choose the NP count of fittest members from Z and QOP

based on computed objective function values.
Step 6: Contrasting the magnitude of the objective function, and

get the driving instructor matrix DI.
Step 7: Opt a driving instructor in an arbitrary way from the

DImatrix.
Step 8: Using (Equation 49), get the pth DTBO member’s

new position.
Step 9: Use the NR procedure to confirm whether or not the

constraints are inside the bounds.
Step 10: Considering (Equation 50), the position of the pth DTBO

member is updated. Patterning of the instructor skills of
the student driver (Exploration)

Step 11: Use (Equation 53) to compute the patterning index.
Step 12: Appraise a fresh position of the pth DTBO

component by (Equation 51).
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FIGURE 8
Box plots through QODTBO, DTBO, and SCA for (A) Case 5; (B) Case 6; (C) case 7; and (D) case 8.

Step 13: Verify whether the restrictions are within the bounds using
the NR procedure.

Step 14: Use (Equation 52), to modify the pth DTBO member’s
position. Personal practice (Exploitation)

Step 15: Determine the pth DTBO member’s new
location using (Equation 54).

Step 16: Make sure whether the constraints are inside the bounds
using the NR method.

Step 17: Use (Equation 55), to revise the situation of the pth DTBO
constituent.

Step 18: On the basis of the jumping rate Jr (probability based),
following the creation of new populations Z using DTBO,
the QOP is computed as described below.Then, the fitness
value QOP is evaluated.

Step 19: Proceed to step 5 for the subsequent iteration until the
terminating criterion is reached

Step 20: Output: The best candidate solution achieved by
QODTBO

5 Simulation results and comparisons
for several cases

The following segment contains the simulation results of diverse
OPF case studies applying the QODTBO technique with the
pertinent analytical explanation. The MATLAB environment is
being adopted for the entire simulations. IEEE 57 & 118 bus setups
are being considered in this paper. The entire study can be broadly
divided into four test scenarios. In each of them, there are four
different objective functions. Table 1 provides the summaries of
several test scenarios and their corresponding cases.The considered
cost and emission factors for thermal generators are tabulated
in Table 2. Parameters for distribution of wind flow and solar
irradiance and power rating of wind and PV units with their cost
coefficients are also provided in Table 2. Weibull-based wind speed
PDF for scale factor 9 and shape factor 2 is shown in Figure 4A.
Lognormal-based solar irradiance PDF is given in Figure 4B.
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TABLE 10 Results of simulations and the best control variable settings were discovered for CASE 9 through CASE 12 (an adapted IEEE 57 bus test system
with UPFC).

Control parameters Min Max CASE 9 CASE 10 CASE 11 CASE 12

Generation (MW)

PTG1 0 575.88 428.36 375.08 539.15 441.13

PWG2 30 100 97.61 100 85.19 92.88

PTG3 0 140 86.4 124.74 13.12 88.86

PWG6 30 100 100 100 89.87 90.02

PTG8 0 550 165.2 160.23 141.87 155.94

PPV9 30 100 100 97.2 78.42 96.55

PTG12 0 410 303.3 319.85 351.78 331.06

Voltage (p.u.)

V1 0.95 1.1 1.0639 1.0311 1.0108 1.0948

V2 0.94 1.06 1.0265 1.0278 0.9684 1.0917

V3 0.94 1.06 1.0419 0.9952 1.0004 1.0974

V6 0.94 1.06 1.0547 0.9952 1.0067 1.099

V8 0.94 1.06 1.0797 1.0077 1.0015 1.0989

V9 0.94 1.06 1.0685 1.0004 1.0856 1.0984

V12 0.94 1.06 1.0467 1.0086 0.9975 1.0995

Transformers’ turns ratio

Line4− 18 0.9 1.1 1.0254 0.9082 1.0853 0.9871

Line4− 18 0.9 1.1 1.0366 0.9277 0.9252 0.9564

Line21− 20 0.9 1.1 1.0258 0.9588 0.9875 1.0961

Line24− 26 0.9 1.1 1.0367 0.9146 1.0054 1.0913

Line7− 29 0.9 1.1 1.0663 0.932 0.9575 0.9432

Line34− 32 0.9 1.1 0.983 0.9449 0.916 0.9123

Line11− 41 0.9 1.1 0.9018 0.9446 0.9 0.9541

Line15− 45 0.9 1.1 0.9522 0.9994 0.9404 0.9

Line14− 46 0.9 1.1 0.9502 0.9511 0.9693 0.9

Line10− 51 0.9 1.1 1.0512 1.0206 1.03 0.912

Line13− 49 0.9 1.1 0.9484 0.9917 0.9 0.9

Line11− 43 0.9 1.1 1.0225 0.9853 1.0281 0.965

Line40− 56 0.9 1.1 0.9839 0.9941 1.047 1.0969

Line39− 57 0.9 1.1 0.9769 0.9827 0.9 1.0967

Line9− 55 0.9 1.1 1.0365 0.9664 1.0552 0.9

QC (MVAr)

QC18 0 0.05 0.024 0.0197 0.0349 0.0487

QC25 0 0.05 0.05 0.0381 0.047 0.0498

QC53 0 0.05 0.0497 0.0254 0.0449 0.05

(Continued on the following page)
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TABLE 10 (Continued) Results of simulations and the best control variable settings were discovered for CASE 9 through CASE 12 (an adapted IEEE 57
bus test system with UPFC).

Control parameters Min Max CASE 9 CASE 10 CASE 11 CASE 12

LocationUPFC 52–53 41–42 31–32 31–30

VUPFCseries (p.u.) 0.001 0.2 (p.u.) 0.0143 0.00133 0.0321 0.0122

ϕUPFCseries (deg) 0 2π 76.3451 77.8976 55.6754 65.657

VUPFCshunt (p.u.) 0.9 1.1 (p.u.) 1.0098 0.9851 1.0043 1.0065

ϕUPFCshunt (deg) 0 2π 0.0981 0.0898 0.872 0.0768

Cost ($/h)

Thermal 5637.3379 5741.78 5819.5437 5767.8871

Wind 354.2365 360.4871 251.0966 315.7734

Solar 298.705 290.3076 233.968 288.3444

Total 6290.2794 6392.5746 6304.6084 6372.005

Emission ((t/h) 1.39 1.1862 2.097 1.4967

Ploss (MW) 30.07 26.3 48.6 45.64

VD (p.u.) 1.3383 1.9099 0.6623 2.3256

L-index 0.2982 0.3348 0.2971 0.2018

The coefficients of penalty and reserve cost are the same
for wind and solar units. It should be noted that all the
evaluated significant values of the various objective functions are
noted in the provided Tables throughout the entire article for
better visibility.

5.1 CEC benchmark system

The IEEE CEC benchmark system comprises a number of
benchmark functions designed to evaluate the performance and
behavior of various multi-objective combinatorial optimization
tasks (MCTs). These functions are used to assess the MCT’s ability
to explore different solutions, intensify toward optimum solutions,
and converge successfully. The IEEE CEC benchmark system comes
with 10D, 30D, 50D, and 100D dimensions as setup choices. In
this study, however, we explicitly investigate the IEEE CEC 2017
benchmark system using 30D and 50D dimensions. In the IEEE
CEC 2017 benchmark system, there are many functions that can be
classified as unimodal,multi-modal, hybrid, or composite functions.
The source of these functions is (Awad et al., 2017). Unimodal
functions are used to assess the optimization process’s capacity to
intensify toward a single optimal solution. Multi-modal functions
evaluate the algorithm’s ability to investigate several solutions.
Hybrid functions combine unimodal and multimodal properties.
Composite functions are created by combining two or more
unimodal and multimodal functions. For each experiment of the
IEEE CEC benchmark systems, we set a maximum limit of function
assessments as 104 ×D. The present authors evaluate the algorithm’s
performance in 30 different runs. As mentioned earlier, there are

several groups into which the test functions of the benchmark
system under consideration may be separated: F1− F3, F4− F16,
F17− F22, and F23− F30 are unimodal, multimodal, hybrid, and
composite functions, respectively. As stated in (Awad et al.,
2017), it is important to note that F2 is not included in the
IEEE CEC 2017 benchmark system because of its unstable
characteristics.

5.1.1 CEC 2017 (30D)
The best mean error values and standard deviations (SD)

obtained by the proposed QODTBO and other MCTs for jointly
unimodal and multimodal benchmark functions are shown
statistically in Table 3 in the perspective of 30 dimensions (30D).
Mean error values less than 10e-08 are considered to be 0 for
all participating MCTs. Table 3 clearly shows that, in terms of
mean error values, our proposed MCT outperforms most of the
other cutting-edge MCTs utilized in this work for the majority
of the test functions. In contrast to the other MCTs considered,
the modifications we made to our proposed MCT have effectively
increased its capacity for intensification and diversification, as
evidenced by the enhanced performance in reaching optimal
values for unimodal and multimodal test functions. Furthermore,
it is evident from the SD values in Table 3 that out of all the
MCTs considered, the proposed QODTBO has the highest level
of precision. Table 4 compares the best mean error values and
SD generated by differentMCTs for hybrid and composite functions.
The results in Table 4 show that the proposed QODTBO performs
better in terms of mean error values and SD when compared to the
otherMCTs in the experiment, suggesting that it has the potential to
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FIGURE 9
Box plots through QODTBO, DTBO, and SCA for (A) case 9; (B) case 10; (C) case 11; and (D) Case 12.

TABLE 11 An overview of IEEE 118- bus System under study.

Items Quantity Details

Buses 118 Kumar Avvari and Kumar DM (2023)

Branches 186 Kumar Avvari and Kumar DM (2023)

Thermal generators 54 Buses: 69 (swing), 1, 4, 6, 8, 10, 12, 15, 18, 19, 24, 25, 26, 27, 31, 32, 34, 36, 40, 42, 46, 49, 54, 55, 56, 59, 61, 62, 65, 66, 69, 70,
72, 73, 74, 76, 77, 80, 85, 87, 89, 90, 91, 92, 99, 100, 103, 104, 105, 107, 110, 111, 112, 113, and 116

Wind generators (WG) 2 Bus: 81 and 117

Solar PV unit (SPV) 1 Bus: 64

Tap changing transformer 9 Branches: (8–5), (26–35), (30–17), (38–37), (63–59), (64–61), (65–66), (68–69), and (81–80)

Control variables 134 Generator bus real powers (57)+voltages (54)+transformer tap settings (9)+shunt capacitor (14)

Load demand 4242.0 MW; 1439.0 MVAr

Range of load bus voltage 64 [0.95–1.05]p.u

Compensation devices 14 Buses: 5, 34, 37, 44, 45, 46, 48, 74, 79, 82, 83, 105, 107, and 110
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TABLE 13 Statistical comparison (30 trials) among various algorithms for the IEEE 118 bus system for solving different cases.

Case Statistics QODTBO DTBO (Paul et al., 2024b) SCA (Attia et al., 2018)

Case 13

Best (min) 125060.014 125189.894 125245.441

Mean (average) 125081.672 125228.008 125299.763

Median 125083.228 125231.553 125297.556

Worst (max) 125099.907 125278.201 125356.698

Standard deviation 15.564 34.786 52.783

Average function evaluation 2100 2204 2210

Average time (Sec) 47 49 50

Case 14

Best (min) 139270 139384 139414

Mean (average) 139317 139459 139489

Median 139321 139464 139495

Worst (max) 139366 139532 139580

Standard deviation 41.675 67.7862 77.894

Average function evaluation 2160 2220 2232

Average time (Sec) 49 52 53

Case 15

Best (min) 130100 130207 130268

Mean (average) 130138 130265 130334

Median 130140 130268 130340

Worst (max) 130177 130327 130408

Standard deviation 35.785 54.328 62.675

Average function evaluation 2175 2224 2228

Average time (Sec) 48 51 52

Case 16

Best (min) 129070 129126 129187

Mean (average) 129095 129172 129242

Median 129098 129174 129249

Worst (max) 129122 129217 129298

Standard deviation 21.6754 42.563 48.675

Average function evaluation 2182 2232 2234

Average time (Sec) 49 52 54

provide very accurate and effective outcomes.TheWilcoxon signed-
rank test with a significance threshold of 0.05 is used to compare
the mean error values of the proposed MCT with the other MCTs
for each test function in order to assess the statistical significance
(Derrac et al., 2011). The competing MCTs are assigned “+,” “ =

,” and “-” signs based on their statistical performance versus the
suggested QODTBO, as determined by the results of the signed-
rank test. AnMCT’s performance better, equal to, or worse than that
of the recommended QODTBO is indicated by the “+“, “ = “, and
“-” symbols, respectively. Making this distinction is crucial. Table 4
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 for p = 1:NP do

  for q = 1:m do

   if jumpingrate > rand then

    QOP (p,q) = rand( cpq+dpq
2
,cpq +dpq −Z (p,q));

   end if

  end for

 end for

Algorithm 1. Opposite population based on the jumping rate.

TABLE 14 ANOVA result for Case 13.

Source SS df MS F Prob>F

Columns 100189.7 2 50094.8 41.27 2.92929E-05

Error 10924 9 1213.8

Total 111113.7 11

TABLE 15 ANOVA result for Case 14.

Source SS df MS F Prob>F

Columns 69513.5 2 34756.8 10.63 0.0043

Error 29414.8 9 3268.3

Total 98928.3 11

confirms the statistical robustness of the proposed QODTBO over
its rivals, which shows that among the participating MCTs, the
proposedMCT receives themost “+” signs. Moreover, the Friedman
rank test (Derrac et al., 2011) is used to assess the proposed MCT’s
overall statistical performance. Based on the Friedman rank, the
proposed QODTBO ranks first among all MCTs considered.

5.1.2 CEC 2017 (50D)
The best mean error values and standard deviations (SD) for

the 50D scenario are shown in Table 4, which has been compiled
by the suggested QODTBO and other participating MCTs. The
competitiveness of the suggested QODTBO’s performance across
most uni-modal and multi-modal functions is illustrated by the
best mean error values displayed in Table 4. Additionally, the
SD values show that the proposed strategy performs consistently
better than the other strategies considered. According to Table 4,
the recommended approach outperforms alternative approaches in
terms of mean error values and SD for the majority of hybrid and
composite functions. Since the proposed QODTBO receives more
“+” signs than the other eligible MCTs, the results of the Wilcoxon
signed-rank test, which are shown in Table 5, further substantiate its
statistical superiority. Last but not least, the bottom row of Table 5
provides an unmistakable proof that, according to the Friedman
rank test, the recommended QODTBO ranks first among all
participating MCTs.

5.2 Test scenario-1

Table 6 shows the overall system layout which is considered
under test scenario-1. A similar system has been considered by
Chaib et al. (2016) during their studywhereBSAhadbeen employed.
With the identical objectives as in Chaib et al. (2016), in the
present work, in test scenario-1, the QODTBO algorithm has been
proposed. From the obtained results, significant improvement in
all considered cases has been noticed. The acquired results are
displayed in Table 7.

In Table 7, results for case 1 to case 4 are observed. In case 1, it is
found that the generation cost using QODTBO is 6430.1511 ($/h),
whereas using BSA (Chaib et al., 2016), it was 6462.4093 ($/h). So the
reduction in cost using QODTBO is 32.2582 ($/h) with respect to
BSA. A comparative convergence curve among QODTBO, DTBO,
and SCA for total cost reduction (case 1) is presented in Figure 5A
which shows that QODTBO has accomplished improved results
than DTBO and SCA. In case 2, where cost reduction and emission
reduction are considered simultaneously, the use of QODTBO gave
6503.1893 ($/h) and 1.246(t/h), respectively. Both these quantities
are superior to what was found by BSA (from Table 7). In case 3,
reduction in cost and VD is considered simultaneously where the
computed values are 6453.1378 ($/h) and 0.6829 (p.u.), respectively,
using QODTBO (in Table 7) and are 6463.7551 ($/h) and 0.6888
(p.u), respectively, by BSA (Chaib et al., 2016). So it is observed that
in case 3, the use of QODTBO provides a better outcome than BSA.
The variations in bus voltages (in case 3) are depicted in Figure 6A.
In test scenario 1, the aim of the last considered case (i.e., case 4)
is to obtain minimum total cost and L-Index (a marker of voltage
stability: the lower the index value, the higher the stability) at a
time. In this case, the value of total cost and L-index is 6452.0152
($/h) and 0.233, respectively, usingQODTBO,whereas by BSA, their
respective values are 6482.9946 ($/h) and 0.2746 (shown in Table 7).
In addition, in this case, QODTBO performed better than BSA. In
addition, test result statistical analysis has been conducted, and the
statistical data are provided in Table 8. Based on these data, box plots
are produced in Figures 7A–D, for Cases 1 to 4, respectively.

5.3 Test scenario-2

In test scenario-2, the considered test system is the revised IEEE
57 bus systemwhere RESs (PV andwind unit) are incorporated with
the test system which was adopted during test scenario-1 in this
work. The summaries of this test network are provided in Table 6.
In this test network, including single and multi-objective types, four
different cases are studied like the cases considered in the last test
scenario. Computed results for different cases (case 5 to case 8) are
given in Table 9. Here, in case 5, lessening the total cost is the target.
The computed value of the total price is 6342.393 ($/h). Results
shown in Table 9 are obtained by QODTBO. It can be noticed that
in the identical test network when RESs are included, the reduction
in the overall cost is 87.7581 ($/h)[Comparing the obtained value
in Table 6 and 9]. The value of the total cost (Case 5) that evolved
with optimization iteration is displayed in Figure 5B, where the
converging ability of QODTBO is compared with that of DTBO
and SCA. In case 6, the goal is to diminish the overall cost and
emissions together. The respective computed values are 6429.7488
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FIGURE 10
(A) Case 13: ANOVA result; (B) Case 14: ANOVA result; (C) error bar diagram for Case 15; and (D) error bar diagram for Case 16.

($/h) and 1.2014 (t/h). If these two values are compared with the
values (6503.1893($/h) and 1.246(t/h)) found in case 2, test scenario
1, it can be said that the use of RESs has improved the objective
function values. Case 7 and case 8 both aremulti-objective problems,
where the first one aims to simultaneously minimize total cost and
VD and the second one intends to simultaneously reduce total cost
and L-index. For case 7, obtained values are 6426.435 ($/h) and
0.6742 (p.u), respectively, while for case 8, the evaluated objective
function values are 6399.1207 ($/h) and 0.2057, respectively. The
voltage fluctuation (Case 7) over buses is shown in Figure 6B. If the
results which are presented in Table 6 for case 3 and case 4 and the
results displayed in Table 9 for case 7 and case 8 are being observed,
it will again evidently reveal that the inclusion of RESs with IEEE
57 bus network enhances the whole performance. To compare the
performances of QODTBO, DTBO and SCA, the statistical data are
prepared upon 30 unbiased trials for each algorithm to carry out
Case 5 to Case 8. The statistical records are produced in Table 8,
and the box plots are placed in Figures 8A–D, for Case 5 to Case
8, respectively.

5.4 Test scenario-3

In test scenario 3, the test system considered is similar to
the immediate previous test network, but the only change is
incorporating UPFC with it. The objective functions (through case
9 to case 12) that are taken care of in this test scenario are identical

to the last two test scenarios. The quantities that are evaluated in
this section are shown in Table 10. In case 9, where the goal is to
obtain minimum total cost, the computed value is 6290.2794 ($/h).
If case 1, case 5, and case 9 are looked at comparison, it is obvious
that the overall cost is smallest in case 9, which signifies that the
introduction of UPFC on the IEEE 57 bus system allied with RESs
has improved the system performance. Figure 5C shows the curve
of convergence for total cost (Case 9) minimization utilizing SCA,
DTBO, and QODTBO. Case 10, case 11, and case 12 are designed
to solve multi-objective functions as the last two test scenarios
which are concurrently total cost and emission minimization,
simultaneously total cost and VD reduction, and diminishing total
cost and L-index at the same time, respectively. Obtained results
for case 10 are 6392.5746($/h) and 1.1862 (t/h), respectively. For
case 11, values of objective functions are 6304.6084($/h) and
0.6623 (p.u.), respectively. The deviation of bus voltages (in Case
11) are shown in Figure 6C. In case 12, the respective computed
values are 6372.005 ($/h) and 0.2018. The important matter that
has to be noticed is that for all considered objectives (it may be
single or multi-objective), utilization of UPFC has upgraded all the
test results.

Table 8 is prepared to present a statistical measure over all the
considered cases under the 57 bus network. These are computed
using QODTBO, DTBO, BSA, and SCA, respectively. The statistical
parameters which are concerned here are best (minimum), mean,
median, and worst (maximum) values of the objective functions and
standard deviation over 30 trials for case 9 to 12. The box plots over
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the statistical results for Case 9 to 12 are given in Figures 9A–D,
respectively.

Finally, when a close look is placed on Table 8, the following
important points are evident: (a) For all the considered cases (case
1–12), the obtained best (minimum) values of the total cost are
lowest when QODTBO is used with respect to other optimization
techniques. (b) Obtained standard deviations for all the cases
with the help of QODTBO have been found to be minimum
ones. Additionally, Table 8 shows the average number of function
evaluations and average simulation time of 30 independent trials for
case studies 1–12 in order to assess the effectiveness of the suggested
method in terms of time and space complexity. The time and space
complexity of the suggested QODTBO algorithm is clearly superior
to those of other recently established DTBO and SCA algorithms, as
indicated by the aforementioned time and space complexity related
characteristics displayed in Table 8. Consequently, it can be said that,
in terms of time and space complexity, the suggested QODTBO
outperforms DTBO (Paul et al., 2024b) and BSA (Chaib et al.,
2016). These pieces of evidence establish the fact that QODTBO
is superior to other two optimization techniques (i.e., DTBO and
BSA) andQODTBO is the most robust optimization scheme among
optimization algorithms that are considered in this study.

5.5 Test scenario-4

At the last test scenario, the IEEE 118 bus system with RESs
and UPFC is being opted for the experiment, which is briefed in
Table 11. Moreover, to check the algorithm’s efficacy, cases 13–16
are taken care here. The outcomes are shown in Table 12. Based on
obtained results, statistical data have been produced and displayed
in Table 13 to contrast the potential of QODTBO, DTBO, and
SCA algorithms to obtain the best OPF solution. Furthermore, in
order to judge the efficacy of the proposed algorithm in terms
of time and space complexity, the average number of function
evaluation and average simulation time after 30 independent trials
for cases 13–16 are illustrated in Table 13. The aforesaid time-
and space complexity-related parameters shown in Table 13 clearly
demonstrate that both time and space complexity of the proposed
QODTBO algorithm are better than those of recently developed
DTBO and SCA methods. Therefore, it can be concluded that the
proposed QODTBO is the best fit among all suggested algorithms
in terms of time and space complexity. The convergence diagrams
for case 13 obtained by QODTBO, DTBO, and SCA algorithms are
illustrated in Figure 5D. It is evident from this Table that QODTBO
is themost robust, accurate, and reliable tool in solving theOPF issue
among the considered algorithms. To make the statistical results
more trustworthy, the one-way ANOVA test has been carried out for
cases 13 and 14 whose outcomes are given in Tables 14 and 15 and
on Figures 10A,B respectively. For cases 15 & Case 16, the error-bar
plots are placed in Figures 10C,D, respectively.

6 Conclusion and future scope

In this study, the QODTBO scheme has been employed to
explore OPF solutions for the IEEE 57 & 118 bus test system. The
considered four different test setups are as follows: at the beginning

traditional IEEE 57 bus system, then IEEE 57 bus network with
RESs, IEEE 57 bus network with RESs and UPFC, and finally IEEE
118 bus system having RESs and UPFC are accesses. For these
entire test scenarios, there is one single-objective function and three
multi-objective functions. Achieving minimum generation cost,
simultaneously obtaining minimum generation cost and emission,
simultaneously accomplishing minimum generation cost and VD,
and attaining minimum generation cost and voltage stability index
at a time are being chosen as single- and multi-objective functions,
respectively. The results that have been evaluated by QODTBO
are compared with the results found using DTBO, BSA, and SCA.
It is observed that in every considered case for every test setup,
QODTBO outperforms DTBO, BSA, and SCA. From statistical
measures of the test results, it is understood that QODTBO is
the most robust technique among the stated optimization tools
used in this paper. Another significant observation is that, when
RESs are incorporated with the traditional IEEE 57 bus system,
the performance of the system has been enhanced, and while RESs
and UPFC both are being introduced with the traditional IEEE
57 bus network, the performance has been further enriched. The
performance of QODTBO is tested on higher IEEE bus systems
(i.e 118 bus system), and the effectiveness and superiority of
QODTBO are again established from the experimental outcomes.
The statistical analysis accompanied with one-way ANOVA test
firmly assures the fact that QODTBO has a better performance
among other considered algorithms. The experiments can be re-
performed with the advent of more efficient new optimization
techniques in the future.Consequently, the proposed approach
effectively manages the large and complex power system, which
may inspire future researchers to use the QODTBO algorithm in
other contexts.

• The proposed system can be expanded to include more sources
in order to assess the QODTBO optimization’s superiority.

• By incorporating additional, more complex renewable energy
sources into the suggested system, the dynamic ability of the
QODTBO algorithm can be evaluated.

• By combining machine learning and evolutionary techniques,
the proposed QODTBO algorithm can be extended in a real-
time practical power system.
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