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Unlike conventional bioethanol production, which raises environmental
concerns such as a high carbon footprint from resource-intensive crops,
deforestation, and food security issues, non-conventional bioethanol
production offers a more sustainable alternative. However, non-traditional
feedstock availability and its pretreatment are the main challenges, importantly
feedstock availability is either underreported or poorly forecasted, while
pretreatment is costly, reaching up to 40% of the overall process or it might
generate inhibitors that hamper ethanol production in commercial scale, as
well as environmental impact. The literature further lacks the recent update
for conventional and non-conventional microbial ability to ferment these
feedstocks or their tolerance for inhibitors compared with the conventional
yeast. Therefore, this review discusses Europe’s non-conventional feedstock
availability in national levels and pretreatment, highlighting pretreatment’s
cost industrially, scalability, and its impact on microbial fermentation and
the environment. Moreover, recent European policies that might impact the
commercialization of non-conventional bioethanol are discussed, emphasizing
the revised RED III policy, certification scheme, and how to eliminate fraudulent
biofuel imports to boost advanced ethanol production. Finally, this review
discusses the pilot-scale case studies that investigated the non-conventional
methods besides the recent update on non-conventional microbes’ ability,
inhibitors, and the techniques such as the immobilization to improve
ethanol yield.
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1 Introduction

The type of feedstock and fermenting microorganisms are the
primary factors that determine whether bioethanol production
is conventional or non-conventional; the procedure used is the
secondary factor. Bioethanol derived from non-food crops, such
as food waste, agricultural residues, and gaseous by-products,
utilizing either conventional or non-conventional fermenting
microorganisms, or both, is known as non-conventional bioethanol.
Similarly, non-conventional bioethanol is also produced when
non-conventional microorganisms are employed, regardless
of the type of feedstock (International Energy Agency, 2022;
Ndubuisi et al., 2023; Sun et al., 2024).

Non-conventional feedstocks, such as lignocellulosic materials,
food waste, and agricultural residues, offer significant advantages
over conventional crops by utilizing renewable, low-cost, and
widely generated. However, utilizing these feedstocks at the
commercial scale remains challenging due to many technical
and economic constraints, particularly feedstock availability, the
biochemical complexity of the feedstock, the cost compared with the
traditional ways, the microbial potential to utilize these feedstock,
and the recent policies that are related to commercialization of
advanced biofuels (Novia et al., 2025).

First of all, feedstock availability including in the developed
countries is generally not reported or forecasted comprehensively,
and these feedstocks often require advanced pretreatment
techniques to break down lignin and hemicellulose to enhance
sugar yields, potentially increasing the overall production cost.
Furthermore, the non-conventional pretreatment processes such
as deep eutectic solvents, organic solvents, and ionic liquids often
introduce inhibitory by-products that can impede fermentation
efficiency. On the other hand, other processes, particularly the
conventional such as acid or alkaline pretreatment, could have a
direct environmental impact, while the cost on industrial level of
these processes are varied and some of them are not feasible for the
industrial scale (Shukla et al., 2023).

To overcome the inhibitory factor that was generated during
or after the pretreatment or by other sources, environmental
impact, and reduce the overall production cost, many
strategies are suggested. Non-conventional microorganisms
are increasingly engineered or selected for their ability to
withstand these inhibitors while maintaining robust metabolic
activity, paving the way for higher bioethanol yields under
industrially relevant conditions. The use of extremophiles
in bioethanol production adds a unique dimension to the
process by exploiting their natural adaptability to extreme
environments, such as high temperatures, salinity, or acidic
conditions. These characteristics reduce the need for stringent
sterile conditions, which can significantly lower operational costs
in industrial applications. For example, thermophilic bacteria
and thermotolerant yeasts, like Kluyveromyces marxianus, can
ferment diverse sugars, including pentoses and hexoses, at elevated
temperatures, improving process integration and efficiency.
Beyond feedstock and microbial selection, process innovations
such as pretreatment process (Shukla et al., 2023), employing
mixed or sequential fermentation (Estrada-Martínez et al., 2019),
cell immobilization (Sertkaya et al., 2021), and consolidated
bioprocessing (Singh et al., 2022) could be a keypoint to

commercialize the non-conventional bioethanol by overcoming
the mentioned challenges.

This review fills the existing research gap regarding the
feedstock availability in Europe as indicated earlier and classifies
the pretreatment processes and the potential of each process
in industrial scale, environmental impact, and inhibitory
generation along with other inhibitory factors that hinder non-
conventional ethanol production. The most updated European
policies are discussed as well since it could play a significant
role in non-conventional ethanol adoption. Furthermore, this
review highlights the latest technical advancements, challenges,
and potential of utilizing extremophiles and non-conventional
microorganisms/methods in bioethanol production compared with
the traditional pathways, focusing on innovative approaches like cell
immobilization. Finally, detailed case-studies are provided regarding
the scaled (pilot-scale) non-conventional ethanol production and
their feasibility is reviewed.

This paper offers a bridge with existing knowledge gaps and
provides actionable insights for researchers, industry stakeholders,
and policymakers. By outlining the opportunities and barriers in
non-conventional bioethanol production, this work contributes
to the broader bioenergy literature, fostering innovation and
collaboration in the field. Furthermore, the strategies discussed
here may accelerate the development of sustainable bioethanol
production processes, offering viable solutions to global energy
challenges and advancing the transition toward a circular
bioeconomy.

2 Opportunities
extremophiles/non-conventional
microbes bring to bioprocesses

Conventional methods for bioethanol production have
limitations, leading to the adoption of non-conventional
organisms. Generally, yeasts and bacteria are preferred for
bioethanol generation due to their broad substrate range and
optimal fermentation conditions. Saccharomyces cerevisiae and
Saccharomyces uvarum dominate industrial ethanol production
due to their ability to ferment glucose, maltose, and fructose.
However, as ethanol accumulates, product formation is
inhibited, and these species cannot utilize xylose sugars, a
major component of hemicellulose and lignocellulosic biomass
(Ibrahim, 2023).

Commonly used bacterial strains include Zymomonas mobilis
and Escherichia coli indicated higher production yields relative to
yeast species. However, most bacterial strains cannot ferment pure
ethanol, necessitating additional purification processes (Bayrakci
and Koçar, 2013). While conventional yeasts and bacteria offer
some benefits, their limitations, such as substrate specificity
and process inefficiencies, underscore the need for innovative
approaches.

From an environmental perspective, extremophiles and non-
conventional microorganisms recover waste products, such as
sugarcane bagasse, pine needles, and sugar beet pulp, through
the valorization of agricultural and forest wastes. These processes
support bioethanol production andmitigate environmental hazards,
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such as forest fires, while reducing waste accumulation (Sharma and
Chauhan, 2024).

Thermophilic organisms hold significance for bioethanol
production due to their unique capabilities, including their
enzymatic system and the advanced adaptation to harsh conditions.
The enzymatic system in the thermophiles involve hemicellulases
and/or cellulases, where they do not exist naturally in S. cerevisiae
(Chang and Yao, 2011; den Haan et al., 2021). Although genetic
engineering has made it possible to produce such enzymes in
S. cerevisiae (Li et al., 2022), trial-and-error approach is still
necessary because the successful production of such enzymes
is still unpredictable according to den Haan et al. (2021). Other
advantages of using thermophilic organism’s enzymes are that they
can tolerate severe industrial conditions, such as high temperatures,
excessive pH, the presence of organic solvents, lengthy processing
times, and a prolonged half-life at a particular elevated temperature.
Despite numerous attempts, the expense of the enzymes frequently
limits their use today. However, it is anticipated that the cost will
drop as the market for the enzymes grows and bigger volumes
of production result. Furthermore, it is anticipated that the need
for microbial catalysts will rise in tandem with the industry’s
paradigm shift away from fossil fuels and toward the use of
renewable resources. Additionally, the requirement for thermostable
selective biocatalysts will undoubtedly continue to grow in the
future since genetic engineering is growing for the thermophiles
(Zuliani et al., 2021).

Using a whole cell is another approach that could be
applied. Thermophiles such as Thermoanaerobacter sp., can
utilize a wide range of sugar types such as pentoses, hexoses,
disaccharides, and polysaccharide depending on the strain,
makes them well-suited for agricultural residue valorization
and ethanol production (Patelski et al., 2024). This genus has
been investigated extensively due to the fact that its species
display the highest ethanol yields exhibited by a thermophile,
can function at elevated temperatures up to 85°C, which reduces
contamination risks in non-sterile conditions while allowing
for a cost-effective process. However, the wild strains are not
very attractive for commercial ethanol production compared
with S. cerevisiae because 62%–90% of theoretical maximum
can be produced, while 90%–93% in S. cerevisiae (Ahmad et al.,
2024; Kazemi Shariat Panahi et al., 2022; Ruchala et al., 2020;
Zuliani et al., 2021) due to metabolic pathways, leading to
mixed-products fermentation such as acetate, lactate, and
hydrogen instead of only ethanol (Chang and Yao, 2011).
Genetic engineering tools are available for a wide range of
thermophiles and ethanol yield was reported to reach up to
92%–94% in Thermoanaerobacterium sp. and Thermoanaerobacter
mathranii, respectively. Yet, more studies and validation is
required and the literature lacks the relevant research in
large scales (Kazemi Shariat Panahi et al., 2022).

Unlike thermophiles, wild Kluyveromyces marxianus, a
thermotolerant species, exhibits superior fermentation performance
at higher temperatures, reaching up to 52°C, compared to S.
cerevisiae (Park et al., 2015). K. marxianus grows more quickly
at elevated temperatures at growth rate of 0.80 h−1 compared
with 0.37 h−1 in S. cerevisiae (Mo et al., 2019) and other studies
have also revealed that K. marxianus exhibits superior behavior in
producing ethanol under inhibitory existence (furans) in contrast

to a commercial strain of S. cerevisiae (Amaya-Delgado et al.,
2018). However, because of its weak ethanol tolerance, which is
only 6% (v/v) (Ha-Tran et al., 2020), K. marxianus is presently
unsuitable for commercial usage despite the fact that it was scaled
to a pilot level since the commercial S. cerevisiae can tolerate up to
18% (v/v) (Sahana et al., 2024). Still, Bilal et al., (2022) indicated
that K. marxianus can be restructured to have a better tolerance
to ethanol than S. cerevisiae, making it a more resilient host that
produces ethanol.

Similarly, Pichia stipitis or known as Scheffersomyces stipitis- a
mesophilic species, has the maximum native xylose fermentation
capacity among knownmicroorganisms and scaled into a pilot level;
yet, glucose non-competitively limits xylose transport. Furthermore,
S. stipitis is less resistant to ethanol than S. cerevisiae and
the requirement to preserve microaerophilic conditions make it
difficult to apply on a commercial scale (Ishizaki and Hasumi,
2013). Therefore, it is suggested to apply S. stipitis sequentially
or co-cultivation with other microbes since 88% of ethanol
efficiency was produced via sequential fermentation with Z.
mobilis and valorize (>95%) of the added sugars (Singh et al.,
2014a), while ethanol titer can be improved by 1.56%–4.59% and
46.12%–102.14% of Z. mobilis and P. stipitis, respectively, compared
with monocultures (Sun et al., 2021).

Co-fermentation method is widely used for optimal results
from lignocellulosic biomass toward circular economy and waste
valorization as well as boost ethanol yield. Co-culture or mixed
cultures are reported to be suitable for industrial applications
(Goers et al., 2014). This method separates enzymatic breakdown
and microbial conversion steps, minimizing inhibitory effects
and enabling high sugar process yields. For instance, microbial
hydrolysis of sugar beet pulp with Trichoderma viride, which is more
affordable than commercial enzymes followed by co-fermentation
using S. cerevisiae and P. stipitis achieved 5.38 kg of ethanol per
100 kg of substrate, highlighting its efficiency (Patelski et al., 2024).
S. stipitis co-cultivation with S. cerevisiae, improved ethanol yield
to reach 87.54% compared with only S. cerevisiae 84.20% when
co-cultivated using Prosopis juliflora (Naseeruddin et al., 2021).
Importantly, S. stipitis did not show a significant competition
with S. cerevisiae since it became a predominant strain after the
glucose consumption (Wu et al., 2023). Likewise, the co-culture
of wild and engineered Thermoanaerobacter strains with other
strains such asCaldicellulosiruptor sp. andClostridium thermocellum
improved the ethanol concentrations compared with monocultures
by 2–8.2-fold and 194%–440%, respectively, and showed a good
potential for consolidated bioprocessing (Svetlitchnyi et al., 2013;
He et al., 2011). Furthermore, Hawaz et al. (2024) reported that
S. cerevisiae and Pachysolen tannophilus achieved a maximum of
77% ethanol yield under optimum conditions of a 46°C reaction
temperature. While Mondal et al. (2024) reported that sugarcane
molasses fermentation by S. cerevisiae and Wickerhamomyces
anomalus increased ethanol yields by 29% and 53%, respectively,
compared to single-species yields, demonstrating the benefits of
microbial synergy.

Integrated methods or biorefinery approach another promising
strategy. As stated earlier,Thermoanaerobacter sp. is able to produce
multiple chemicals at the same time, making it suitable for
biorefinery and reducing the overall production cost (Wu et al.,
2021). C. thermocellum can produce bioethanol and biohydrogen
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FIGURE 1
The process of non-conventional bioethanol production.

from sugarcane bagasse in non-sterile conditions simultaneously.
This process lowers costs while delivering substantial yields
(Ahmad et al., 2024). Crucially, C. thermocellum can be applied for
hydrogen production industrially (Gallo et al., 2024). K. marxianus
seems to be attractive for a biorefinery due to the possibility
of producing heterologous proteins, enzymes, fatty acids, and
lactic acid. Furthermore, genetic engineering tools are available to
manipulate this strain (Reina-Posso and Gonzales-Zubiate, 2025).
K. marxianus and Bacillus coagulans co-cultivation could improve
lactic acid and ethanol by 90% using pomegranate peels, reaching
92% and 98% of the theoretical maximum ethanol and lactic acid,
respectively (Demiray et al., 2024). Yet, competition from known
microbiological platforms such as S. cerevisiae and E. coli is one of
the main challenges. The switch to production systems based on
various strains such as K. marxianus is a logistical and financial
challenge because the current industrial infrastructure is primarily
optimized for these microorganisms. Metabolism engineering
techniques that increase substrate conversion efficiency and product
optimizationmust be used in conjunctionwith efforts to incorporate
lignocellulosic hydrolysates and agro-industrial wastes in order
to employ K. marxianus on biorefinery applications (Reina-
Posso and Gonzales-Zubiate, 2025). Importantly, the literature
lacks these studies and the major research is being concentrated
on a single product optimization, particularly ethanol, along
with slow advancement in genetic engineering (Baptista and
Domingues, 2022). The non-conventional ethanol production
process is summarized in Figure 1 below.

3 Key scaling parameters, challenges
and innovations in commercialization
of bioethanol focusing on our main
topic

3.1 Technical barriers for upscaling

3.1.1 Feedstock availability
One of the main challenges of ethanol production is the

feedstock availability and variability. Therefore, it is necessary
to categorize the available feedstock, particularly bio-waste such
as agricultural residue, forestry, and food waste, to recognize
waste generation and to predict the availability of this waste
in the future.

Agricultural residue was expected to have a theoretical potential
of 291–367 million tons of dry matter (Mt DM) per year in the
EU and 253–483 Mt in Europe prior to 2021 (Scarlat et al., 2019),
and the actual amount of agricultural residue was estimated to
be 439.76 million tons by 2021 in Europe (European Commission,
2021). Over 212 Mt DM is thought to have the technical capacity
to be utilized in Europe (Scarlat et al., 2019). However, the
technological, financial, and future risks that are anticipated by
components of climate change hinder residue utilization for biofuel
production. By 2030, only 83.3 Mt of agricultural residues from
wheat, soybeans, sunflower, rye, olives, barley, rice, oats, triticale,
rapeseed, and corn could be processed into various biofuels
including bioethanol (O’Malley and Baldino, 2024).
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TABLE 1 Potential feedstock for non-conventional bioethanol production across Europe.

Potential feedstock Producing country Crop Production amount (Mt) References

Corn stover

Ukraine 31 Statista (2024a)

France 14.3 Statista (2022)

Romania 8.5 Romania Insider (2024)

Wheat straw

France 25.7 Argus (2024a)

Ukraine 22.5 USDA (2023)

Germany 22.1 Lyddon (2022)

UK 14 Department of Environment (2024)

Poland 12.6 USDA (2024)

Barley straw

France 11.3

World Population Review (2024)
Germany 11.2

UK 7.4

Spain 7

Oat straw
Poland 1.6 Kobuszynska (2021)

Finland 1.1 Business Finland (2023)

Olive oil waste

Spain 5.9

Alkhalidi et al. (2023)Italy 2.1

Greece 1.2

Soybean waste Italy 1 Businesscoot (2022)

Forestry residues Finland, Austria Sweden 3.5–16 Di Gruttola and Borello (2021)

Vegetable waste Europe 80.7 Statista (2024b)

Fruit waste EU Around 35.9 Eurostat (2024b)

Seaweed Europe 0.2 European Parliament (2023)

France, Germany, and Romania are the major key players in
agricultural residue production in the EU as they produced 59.78,
39.07, and 30.89 million tons in 2020, compared to 19.44 million
tons in the UK (Carraro et al., 2021). Nonetheless, the production
rate of certain agricultural residues in European countries is variable
depending on the total amount of crops produced in each country.
The summary of the produced crops is given in Table 1.

Cereals make up 50% of the EU’s economic production and 74%
of its residual output (European Commission, 2021). Between now
and 2035, the amount of agricultural and forest land in the EU is
expected to stay constant. Despite climate change and limitations
on the accessibility and affordability of certain agricultural inputs
(such as plant protection products), cereal and oilseed yields are
expected to stay steady due to short-term beneficial developments
like precision farming, increased crop rotation, and better soil
health. However, the EUwill produce less sugar beet as a result of the
gradual drop in sugar consumption (European Commission, 2023).

Furthermore, the Representative Concentration Pathway (RCP) 8.5
scenario predicts that by 2050 the EU’s corn production will decline
by 1%–22%, while southern Europe’s wheat yields may drop by as
much as 49%, underscoring the Mediterranean regions’ extreme
vulnerability due to reduced water supplies, continuously rising
temperatures, and an increase in the frequency of heat waves and
droughts (Hristov et al., 2020). Noteworthy, the complexity of
agricultural systems and the variety of influencing factors naturally
constrain the precision of estimates of agricultural residue, despite
the fact that these estimates are essential for assessing the availability
of resources (such as bioenergy) (European Commission, 2021).
In contrast to the agricultural residues through 2050, the biomass
resource for forestry residues is expected to remain stable at
11.2 Mt. However, alternative uses for these residues are still lacking,
particularly for the byproducts of roundwood production (O’Malley
and Baldino, 2024). Nevertheless, recent studies indicated that
these residues have a high potential to be utilized as feedstock for
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bioethanol production in the form of beech wood chips (see case
studies section below).

The potential for food waste in Europe is being lost, much
like forestry waste. Although it was acknowledged that, from an
economic and environmental perspective, food waste might be
utilized to create biofuels such as bioethanol (Fagundes et al., 2024a;
2024b). Furthermore, the most readily available, reasonably priced,
and plentiful feedstock for bioethanol production is food waste. The
increasing rate of food waste generation and the depletion of energy
supplies are real concerns, even though application technology is still
in its infancy. One effective strategy is the bioconversion of waste at
different stages of the food value chain (Bibra et al., 2023).

Over two-thirds of the 118–138 million tons of bio-waste
produced yearly in the EU originate from municipal sources,
with the remaining portion coming from the food and beverage
sector (Ecostar, 2024). Depending on the Member State, bio-
waste can range from 18% to 60% of municipal solid waste
(Stylianou et al., 2020), and only 40% of this waste is effectively
recycled in the EU (European Compost Network, 2022). In 2022,
around 75% of food waste in Europe was either incinerated or
deposited in landfills, and only 26% (around 5 million tons) of food
waste was captured (Coombe, 2024). Certain European countries,
namely, Romania, Cyprus, and Malta are struggling with waste
recycling (European Environment Agency, 2023). Surprisingly,
Romania lacks a working recycling infrastructure, clear legislation,
and—above all—traceability and control systems. Organic waste is
frequently intermingled, and there is little chance of composting
or creating biofuel utilizing this waste (Ecostar, 2024). Nevertheless,
beginning on 1 January 2024, bio-waste collectionwill bemandatory
for EU Member States in accordance with the Waste Framework
Directive (WFD) (Favoino and Giavini, 2024). Food waste would
rank fifth in the EU for greenhouse gas emissions if they were a
member state (Eufic, 2024).The total amount of foodwaste recorded
at the EU level in 2022 was just over 59million tons of freshmass. 32
million tons of fresh mass, or 54% of the total (accounting for 72 kg
per inhabitant), were made up of household food waste (Eurostat,
2024a; 2024b). Sweden, Croatia, and Slovenia had the lowest waste
output per person, whereas Cyprus had the largest quantity of food
waste per capita, at over 400 kg. Belgium, Denmark, Greece, and
Portugal are likewise at the top of the scale (Fleck, 2024). In terms of
mass, fruit accounted for 27%of all foodwaste in the EU, followed by
vegetables (20%) and grains (13%) (Eufic, 2024). Notably, more than
half of the production of fruits and vegetables comes from Spain,
Italy, France, Poland, the Netherlands, and Germany. According
to recent data, Spain produced 13.87 million tons of fresh fruit
and vegetables in 2022, making it the EU’s highest producer. With a
2022 output of 12.35million tons, Italy comes in second, followed by
France (5.9 million tons), Poland (5.3 million tons), the Netherlands
(4.8 million tons), and Germany (3.7 million tons) (Europe Data,
2024). In Spain, fresh fruits and vegetables account for 80% of food
waste (Foodrus, 2020), over 260 million kilograms of wasted fruits
and vegetables were discarded only between spring and summer in
2019 (Fresh Plaza, 2024). The possibility for instant conversion of
fruit waste into bioethanol without any sort of pretreatment makes
fruit wastes quite intriguing feedstocks. Still, the process requires a
lot of effort to optimize ethanol production and to compare it with
the conventional pathways (Basaglia et al., 2021).

The seaweed (algae) industry has been gaining significant
attention recently in obtaining bioethanol because the agar-based
algae industry generates 60%–75% of solid waste biomass which is
easier to hydrolyze than some other plants (Muryanto et al., 2024).
Moreover, the algae industry is expected to expand in the coming
years, potentially resulting in a substantial increase in biomass
availability (Al-Hammadi and Güngörmüşler, 2024). In Europe,
Norway is the leading country in algae production (Cai, 2021), and
is remarkably expanding its algae industry. In 2018, it cultivated
169 tons, and by 2050, it will have the capacity to produce more
than 20millionmetric tons ofmacro andmicroalgae annually (Bazil
and Krogstie, 2020). Therefore, this feedstock should be considered
and investigated to produce bioethanol and to analyze various types
of algal biomass since the studies are limited regarding bioethanol
production.

Syngas is an excellent raw material for generating bioethanol
due to its adaptability and accessibility (Gungormusler et al.,
2022) which consists of a mixture of CO, H2, N2, CH4, and
CO2 (Sertkaya et al., 2021), and this type of feedstock is already
being utilized by LanzaTech in Belgium for bioethanol production
commercially (LanzaTech, 2023). However, there is a lack of
publicly available statistics, making it difficult to pinpoint the
precise yearly production volume of syngas in the world including
the EU. On the other hand, relevant marketplaces and studies
can provide insights. For instance, Europe shows a high capacity
for producing syngas since it generated 22 billion cubic tons
in 2023 (European Biogas Association, 2024), and renewable gas
generation is projected to increase in the coming years which
could be implemented in non-conventional ethanol production (Al-
Hammadi and Güngörmüşler, 2025).

3.1.2 Policies and regulatory
The Renewable Energy Directive was amended by the European

Union (EU) in 2023 and is known as “RED III.” As a result, the
overall goal for the use of renewable energy in all sectors of the
European Union was raised to at least 42.5% by 2030. Although the
advanced biofuel has only a share of 4.5%, it is increased by 1.2 times
comparedwith RED II in 2018 (3.5%), encouraging the utilization of
the biowaste (The European Parliament, 2023). Notably, waste and
residue utilization are double-counted toward the renewable energy
goal, which significantly encourages the utilization of the biowaste
as well. As for 2024, France, Finland, and the Netherlands are the
most countries that produce advanced biofuel in the EU, accounting
for 16.6, 4, and 2.9% cal of the total advanced biofuel production
for each country, respectively. Importantly, the advanced bioethanol
production in France represents 1.2% cal and is expected to be
3.8% cal by 2028. In the meantime, EU countries are lowering the
cap (with an upper limit of 7%) of ethanol production from food
and feed resources. Additionally, France and the Netherlands have
already banned or started to ban some conventional feedstock for
biofuel production such as soybean oil which encourages the non-
conventional feedstock for ethanol production (Lieberz and Rudolf,
2024). Likewise, Germany’s environment ministry is intending to
submit a draft law to prohibit the usage of crop and feed-based
biofuels “as soon as possible” (Argus, 2023).

Although RED and the CommonAgricultural Policy (CAP) aim
to encourage the use of bioenergy, neither the RED Reform (RED
III) nor the National Strategic Plans in the CAP contain a precise
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set of “binding” regulations to facilitate this shift towards the use of
agricultural waste. Future studies should look more closely at how
these frameworks might be used in concert to address the problem
of indirect land-use change (ILUC) and enhance the utilization
of agricultural waste streams in the direction of a more circular
energy economy (Alessandrini et al., 2023).

EU biofuels policy is unstable, primarily due to sustainability
issues and the fact that the majority of member states had failed
to meet the 2020 targets. Over time, the types of biofuels that are
prioritized have changed. Unpredictability in policy may make the
sector less appealing to private investors and raise risks. Long-term
investments may be at risk due to ambiguities surrounding the
classification of advanced biofuels. Moreover, these policies lack a
definite policy direction after 2030. There is currently no specific
aim for road transport, but there is a 2030 target for the use of
renewable energy in all transport sectors combined (RES-T). While
the growth of crop-based andmature biofuels in road transportation
is being restricted, a significant portion of this increase may be
absorbed by the aviation and maritime industries. This does not
allow for the increased use of biofuels in transportation by road.
Furthermore, the European Commission has not implemented a
comprehensive biomass policy according to the recent data in 2023,
despite its stated need for resource efficiency and fair competition.
The main tools to limit biomass overexploitation for biofuels are
target caps and sustainability criteria. Despite the Commission’s
studies, there has been no EU biomass strategy since the 2005
biomass action plan and no assessment of biomass availability and
its potential in relation to renewable targets. Member states have
left biomass availability assessment to their national energy and
climate plans, and a study by the Commission found that only a
small majority of member states refer to their domestic biomass
production potential (European Court of Auditors, 2023). Crucially,
certain advanced ethanol plants/companies in Europe such as St1
in Finland were enforced to terminate their service due to many
reasons including feedstock availability (St1 Nordic Oy, 2023).

For advanced biofuel production in the EU, credits and
certification such as ISCC, RSB, and greenhouse gas (GHG) savings
are essential for guaranteeing sustainability, adherence to legal
requirements, andmarket access, further to guarantee that imported
biofuels in the EU do not originate from deforested or high-
carbon stock areas. Lower certification prices or higher credits along
with policy improvements are anticipated to increase demand for
waste-based ethanol with greater GHG savings in 2025. Ethanol
consumption in 2024 was impacted by the drop in GHG ticket costs,
especially in Germany, which reduced the price gap between high
and low GHG savings ethanol. Physical blending and premiums
for high-GHG savings ethanol are expected to rise, and certain
countries such as Germany have increased the GHG quota in 2025
and the use of carried-forward GHG certificates is proposed to
be suspended, aiming to lessen dependency on previous credits,
promotemoremixing of low-carbon fuels suchwaste-based ethanol,
and boost immediate compliance pressure. On the other hand, other
countries such as the Netherlands have a minor decrease in the
carry-forward allowed for tickets (Argus, 2024a; 2024b).

Recently, the certification scheme was criticized and flagged to
be “inadequate” to combat the fraudulent (Moskowitz et al., 2023),
and European biofuel producers have strongly criticized the delay
in putting in place a mechanism to safeguard the EU market from

fraudulent biofuel imports, which could lead to a significant climate
damage and deforestation in non-EU producers in addition to the
biofuel market since the fraudulent biofuel is cheaper which lead
to unfair competition among the prices (Advanced Biofuel USA,
2023), and this unfair competition has already contributed to the
shut down of advanced ethanol plants/companies such as Clariant
in Romania (Clariant, 2023), and currently, France and Germany
are calling on the EU to improve the policies to prevent the
importation of fraudulent biofuel (AgWeb, 2024). The European
Commission announced that it is creating a database to track the
supply chains of feedstock for the renewable fuels used in the EU, as
for January 2024, the EU announced that the database has become
open for registration, and it will fully operate in 2026. The complete
implementation is anticipated to hasten commercialization by
fostering an environment for advanced ethanol production that is
more transparent and conducive to investment (GoodFuels, 2024).

3.1.3 Pretreatment methodologies
The high cost of bioethanol production stems from biomass

resistance and expensive pretreatment, which consumes the most
energy and accounts for up to 40% of total costs (Zhang et al.,
2024; Singh et al., 2014b; Bender et al., 2022; Awoyale and
Lokhat, 2021). Pretreatment methods, classified as conventional
or non-conventional (Saad and Gonçalves, 2024), present
challenges—conventional methods are unsustainable due to harsh
conditions and low productivity, while non-conventional methods
have application limitations.

Physical pretreatment increases the surface area of the
biomass and enhances hydrolysis yields. In many cases, physical
pretreatment is necessary before or after other pretreatment
processes (Kassim et al., 2022). Among the green-physical processes,
milling is the most used technique according to Arce and Kratky
(2022) and Bender et al. (2022), and this technology does not
generate inhibitors. However, milling was generally considered
non-feasible economically due to high energy consumption
(Beluhan et al., 2023). Alternatively, extrusion has become one
of the most attractive technologies because it can combine
thermal, mechanical, and chemical pretreatments (Shukla et al.,
2023) with various feedstock (Duque et al., 2017), and it has
a low cost (Zheng and Rehmann, 2014). There is currently
little information available about the expansion of extrusion for
lignocellulosic biomass pretreatment, despite the fact that it is
currently used on pilot scales (Vandenbossche et al., 2016), and
can be easily modified for commercial use (Kuster Moro et al.,
2017). Recently, plasma, microwave, and ultrasonic-assisted
pretreatments have gained noticeable attention. However, high
energy consumption and equipment cost are the main obstacles
that hinder their implementation on the industrial level besides the
high demand for advanced engineering and process optimization
(Abolore et al., 2024). Simonetti et al. (2022) indicated that
microwave pretreatment could be a feasible technique if electricity
was provided via renewable sources.

The most used technique on a commercial scale is chemical
pretreatment, particularly acid and alkali due to their high efficiency
and low cost on an industrial basis (Verma and Shastri, 2020;
Wang et al., 2022; Fagundes et al., 2024a). However, they are
associated with inhibitor formation, corrosion, or slow reaction
time (if they are diluted), respectively (Kumar and Sharma, 2017;
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Johannes and Xuan, 2024). More importantly, none of these
methods is eco-friendly. The strong bases and acids utilized in
these procedures are corrosive and toxic, and after pretreatment,
neutralizing the acids or bases produces chemical waste that
could contaminate soil and water (Jönsson and Martín, 2016;
Wang et al., 2019; Hongbo et al., 2020). The most efficient
and environmentally friendly chemical techniques are organic
solvents (organosolv) and deep eutectic solvents (DESs). In the
biomass, both solvents can dissolve lignin and hemicellulose
leaving cellulose intact (Abolore et al., 2024). However, the organic
solvents have an inhibition impact on the enzymatic hydrolysis and
their removal is necessary (Maurya et al., 2015). Unfortunately,
the low recovery rate of organic solvents makes this process
exceedingly expensive, making it unsuitable for large-scale and
commercialization (Mielenz, 2020), and currently, there are only
four operational pilot plants that operate with organic solvents
according to Tofani et al., (2023). Unlike organic solvents, DESs
were reported to be more advantageous in terms of cost because
they are easy to recycle (Mielenz, 2020). Still, DESs are relevantly a
new technology and are still more likely to be used at the laboratory
scale. In order to be sustainable, DES-based biorefineries must be
technically scalable at the industrial level (Satlewal et al., 2018).
Additionally, even though DESs were widely claimed to have low
toxicity and are biodegradable, they are not always environmentally
benign and their residue might inhibit enzymatic saccharification
(Jose et al., 2024; Yao et al., 2024). Similar to DESs, ionic liquids
(ILs) were acknowledged to be one of the most “green” and efficient
solvents for lignocellulosic biomass since they dissolve lignin at
room temperature (Xu et al., 2017; Zhao et al., 2022). However, it
was demonstrated that some ILs are toxic to the microorganisms
depending on the solvent’s type and concentration, and since ethanol
has a low energy density of combusting, the procedures must be
performed consecutively in the same reaction pot to make ILs
application commercially viable (Kuroda, 2024). Barcelos et al.
(2021) used cholinium lysinate in a single-pot pretreatment,
demonstrating its effectiveness, biocompatibility, and efficiency in
a pilot-scale system. However, improvements in the total yield
and solid and enzymatic loading are needed (Barcelos et al.,
2021). Another strategy to overcome the ILs toxicity is using
non-conventional microorganisms with higher ILs tolerance such
as Kazachstania telluris and Wickerhamomyces anomalus. Yet, the
studies have not focused on this strategy (Kuroda, 2024).

Since its development in 1925, steam explosion has emerged
as one of the most popular techniques for pretreating biomass
and food residue; in fact, it has been effectively used as the
primary pretreatment technique in commercial projects in the USA
and China to produce bioethanol from lignocellulosic biomass
(Chung and Washburn, 2016; Yang et al., 2023) and already scaled
to industrial level (Oliveira et al., 2013; Chen, 2015) because
it is effective, environmentally friendly, typically chemical-free,
and industrially scalable (Guigou et al., 2023). This technology
has a low cost and minimal energy requirements (Dziekońska-
Kubczak et al., 2018), and is less expensive than biological,
physical, and non-conventional chemicals pretreatments (Chen,
2015; Baral and Shah, 2017). Although this technology is the
most successful and promising to be applied industrially, it still
requires improvements to overcome the main challenges such
as incomplete removal or disruption of lignin and inhibition

generation (Behera et al., 2014). The latter can be minimized
via steam explosion modification through the replacement of
atmospheric air with CO2, in a pretreatment method known as
supercritical CO2 explosion (Ravindran and Jaiswal, 2016). This
modification allows for a better pretreatment of high lignin content
(Alam et al., 2024). CO2 itself has a low cost and works in mild
conditions unlike the steam explosion, however, it requires high
pressure and high capital cost for carbon capture and storage,
making it a moderate costing technology (Gu et al., 2013).

Another technique to overcome the limitation of the steam
explosion is the ammonia expansion/explosion (AFEX), also
referred to as the ammonia-catalyzed steam explosion. This
technique is nearly identical to steam explosion technology
excluding the harsh operational conditions that are applied in the
steam explosion and the applied liquid anhydrous ammonia instead
of atmospheric air to serve as a catalyst (Bundhoo et al., 2015;
Meraj et al., 2023; Yang et al., 2023). Even though the AFEX
offers industrial advantages such as negligible inhibitor impact, and
water washing elimination, and is already scaled on a pilot basis
(Shukla et al., 2023), it is costly due to the expense of ammonia and
its recovery, and ammonia necessitates extra safety precautions and
equipment. As a result, its higher efficiency might not be enough to
balance these costs (Menon and Rao, 2012).

The liquid hot water method is comparable to a steam
explosion, except the water is kept liquid by applying pressure
(Keskin et al., 2019). LHW merely employs water as a reagent
and requires less amount of energy compared with the steam
explosion (on small scales) for its heating and cooling processes
since lower pressure is required and more advantageous over
the steam explosion in terms of inhibitors formation which is
mild (Serna-Loaiza et al., 2022). Nevertheless, this process is not
feasible on the industrial scale compared with the steam explosion
because it requires a massive amount of water (Pachapur et al.,
2020) with the possibility of generating wastewater which adds
additional cost (Mujtaba et al., 2023).

Biological pretreatment is environmentally friendly, uses less
energy, does not require chemicals, and does not generate inhibitors
inmost cases (Wu et al., 2022). It consists ofmicrobial and enzymatic
methods, with white, brown, and soft rot fungi being the most
commonly investigated microbes (Maurya et al., 2015; Singh et al.,
2022). However, microbial pretreatment requires a long time due to
a slow conversion rate, eventually lowering the overall productivity
(Mishra et al., 2018; Zhang et al., 2023). Moreover, this process
requires massive bioreactors with sterile conditions and continuous
monitoring that add additional cost which reaches 4-15 times
greater than conventional methods besides the sugar consumption
by the microbes which might lower the sugar availability for
the fermentation, limiting the scaling up to an industrial scale
(Ummalyma et al., 2019; Vasco-Correa and Shah, 2019), and Vasco-
Correa and Shah, (2019) indicated that fungal pretreatment in a
biorefinery scale might be not feasible economically in contrast to
enzymatic pretreatment which is preferred for scaling up. However,
enzymatic pretreatment has a low efficiency (Porninta et al., 2023),
and enzyme costs can account for up to 48% of the final product’s
total cost (Ramos et al., 2024). According to recent studies, on-
site enzyme synthesis may drastically lower enzyme prices, and
reducing enzyme loading is another strategy for bringing down
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the price. Yet, these studies are still awaiting industrial data
validation (Liu et al., 2016).

Combining physical, chemical, physiochemical, and biological
techniques is a new approach to overcoming the mentioned
challenges (Ummalyma et al., 2019). The combined techniques
could improve sugar yield, effectively handle different kinds of
biomass, increase versatility and scalability, and reduce the inhibitors
(Shukla et al., 2023), Moreover, numerous research suggested that
the combination of pretreatment techniques could lower expenses
and energy usage (Jiradechakorn et al., 2023). However, further
research is necessary because the combined methods have higher
operational costs and require optimization according to various
feedstock and combined methods, which makes scalability more
difficult and complex, requiring additional equipment that might
raise the initial cost investment (Dimos et al., 2019).

3.1.4 Inhibitors
As already indicated in Table 2, certain chemicals that are widely

applied for bioethanol production may inhibit the production,
additionally, inhibitor formation such as furan derivatives,
carboxylic acids (Al-Hammadi and Güngörmüşler, 2025), phenolic
compounds (Wang et al., 2017), or glycolaldehyde is challenging
during biomass pretreatment since they could disrupt glycolytic
pathway and ethanol fermentation (Jayakody et al., 2011). These
inhibitors could be avoided via an appropriate biomass pretreatment
as previously discussed. Chemical residue, feedstock variability,
and ethanol itself are other major inhibitors as well (see Figure 2).
The feedstock that contains heavy metals was recommended to be
processed before bioethanol production if it contains heavy metals.
Noteworthy, many agricultural regions are prone if not already
contaminated with heavy metals due to industrial waste, fertilizer,
pesticides, and herbicides leaching into water and soil (Zohri et al.,
2022). The amount of sugar loading for the fermentation process
is very crucial since osmotic pressure-induced stressors on yeast
cells reduce the efficiency of ethanol synthesis (Thatiyamanee et al.,
2024). Similarly, high ethanol concentrations that are yielded
through fermentation can inhibit the process because it reduces
water activity nearby yeast cells, thereby removing hydrate layers
from the medium (Nguyen et al., 2015). Furthermore, it affects the
enzymes that are involved in the glycolysis process and reduces the
ability of the plasma membrane to function as a semipermeable
barrier, leading to cofactors and coenzymes leakage through the
membrane (Osman and Ingram, 1985). In the case of utilizing
syngas for ethanol production, syngas impurities such as furans,
hydrogen sulfide (H2S), hydrocarbon and tar, particulate matter,
metals, catalyst residues, and nitrogen oxide (NOx) should be
removed or decreased (Al-Hammadi and Güngörmüşler, 2025),
and CO and CO2 concentrations should be controlled so that
fermenting microbes can tolerate them, otherwise, they can impact
microbial growth (Gungormusler and Keskin Gundogdu, 2020).

3.2 Innovations in commercialization via
immobilization

Cell immobilization confines viable microbes in a matrix,
preserving their activity while enhancing protection, localization,
and reusability, which improves the sustainability (Lapponi et al.,

2022; Hassan et al., 2019). Various immobilization strategies such
as cross-linking, aggregation and biofilm-mediated immobilization,
covalent bonding, encapsulation or entrapment, and adsorption
are well-defined in the literature (Sagir and Alipour, 2021;
Mohidem et al., 2023) besides the potential of the developed
immobilized reactors Willaert, (2011) and Wouters et al.
(2021). These technologies have shown significant promise in
enhancing bioethanol production, offering several advantages
over traditional free-cell fermentation methods. They are being
applied to immobilize at both research and commercial scales, with
varying degrees of implementation (Karagoz et al., 2019; Erkan-
Ünsal et al., 2023).

One of the most notable advantages of the cell immobilization
procedure is the increased tolerance of cells to various lignocellulosic
inhibitors. Chacón-Navarrete et al. (2021) and Rakin et al. (2009)
indicate that cells immobilized in various supports, such as calcium
alginate, are capable of maintaining their viability even in the
presence of phenols, furans, and high ethanol concentration.
Immobilized cells show greater physiological stability associated
with the production of protective compounds such as trehalose
or glycogen. These compounds favor an increase in cell viability
with respect to fermentations with free cells by limiting the
toxicity of ethanol and other lignocellulosic inhibitors (Chacón-
Navarrete et al., 2021).

Furthermore, immobilized cells in alginate have demonstrated
efficient fermentative activity for at least two fermentation cycles
before the degradation of the support material (Rakin et al., 2009).
Nevertheless, in this study, alginate support demonstrated some
limitations in its mechanical stability under high cell density and
CO2 release conditions. On the other hand, polyvinyl-alcohol (PVA)
showed major mechanical resistance, although it exhibited less
fermentation efficiency. This, along with other studies showing the
potential for reusing immobilized cells and their suitability for
use, highlights numerous industrial benefits. These include reduced
downtime between cycles, and enhanced suitability for large-scale
bioethanol production plants. Additionally, these systems offer
economic advantages, such as notable reductions in operational
costs. Immobilization systems also improve molecular transport
between immobilized cells and the medium due to the adjustable
porosity of materials like alginate and biochar systems. This allows
substrates to penetrate toward the cells while metabolic products are
subsequently released into the medium (Chacón-Navarrete et al.,
2021). Another significant advantage of cell immobilization is the
optimization of space, as the supports can accommodate a higher
number of cells in a reduced volume. This increases cell density,
volumetric productivity, and consequently fermentation efficiency
(Chacón-Navarrete et al., 2021; Rakin et al., 2009).

The exploration of cell immobilization technologies for
bioethanol production is opening new avenues, particularly
with the use of non-conventional microorganisms. Although
S. cerevisiae—in both its engineered and wild forms—remains
the dominant organism for bioethanol production across all
generations, these emerging technologies are still primarily in the
research and development phase (Jansen et al., 2017; Soleimani
et al., 2017; Moremi et al., 2020). Encouragingly, initial strides
toward commercial implementation are nowbeing observed. Table 2
provides an overview of various non-conventional microorganisms,
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TABLE 2 Pretreatment technologies for bioethanol production from agricultural residue and food waste. The cost is determined based on the
industrial scale.

Method category Pretreatment
method

Process type Scale Cost Inhibitor
formation

Green

Physical

Milling Conventional Pilot High No Yes

Extrusion Non-conventional Pilot Low No Yes

Microwave Non-conventional Pilot High Mild Yes

Ultrasound Non-conventional Pilot (limited) High Mild Yes

Plasma Non-conventional Laboratory High No Yes

Chemical

Acid Conventional Commercial Low Yes No

Alkali Conventional Commercial Low No No

Deep eutectic solvents
(DESs)

Non-conventional Laboratory Low Yes Conditionally

Organic solvents Non-conventional Pilot (limited) High Yes Yes

Ionic liquids (ILs) Non-conventional Pilot (limited) High Yes Conditionally

Physio-chemical

Steam Explosion Conventional Commercial and limited
industrially

Low Yes Yes

CO2 explosion Non-conventional Laboratory Moderate No Yes

Liquid Hot Water Non-conventional Pilot Moderate Mild Yes

Ammonia-based Non-conventional Pilot High Negligible No

Biological

Enzymatic Non-conventional Pilot High No Yes

Microbial Non-conventional Laboratory High Mild Yes

including extremophiles, that have been immobilized within cell
carriers to optimize bioethanol production.

Table 3 highlights various non-conventional microorganisms
employed for bioethanol production using diverse feedstocks,
emphasizing extremophiles and experiments approaching the
performance of the conventional microorganism S. cerevisiae.
This species achieves productivities of 3–4 g/Lh with ∼75%
fermentation yield for first-generation bioethanol and 1–2 g/Lh
with ∼65% yield for second-generation production (Macrelli et al.,
2014; Narisetty et al., 2022; Devi et al., 2023; Hans et al.,
2023). Extremophilic microorganisms such as Z. mobilis under
repeated batch fermentation with mesoporous silica and glucose
achieved a productivity of 0.39 g/Lh and a fermentation
efficiency of 56.70% (Niu et al., 2013). Although these values
fall below those of S. cerevisiae, they highlight the potential of
extremophiles when fermentation conditions are further optimized.

Kamelian et al. (2022) demonstrated a sequential fermentation
strategy combining Z. mobilis (strain ATCC 10,988) with S. stipitis
(ATCC 58,376), achieving a productivity of 0.29 g/Lh and a
fermentation yield of 78.43%. This study illustrates the advantages
of using extremophilic and non-conventional microorganisms in
tandem to enhance bioethanol production efficiency, especially when
targeting specific substrates or conditions. While the productivities
remain lower than the benchmarks of S. cerevisiae, such approaches
show promise in advancing non-conventional systems for sustainable
bioethanol production. In addition, Stepanov and Efremenko (2017)
achieved a significant milestone by attaining a productivity of
0.64 g/Lh using Pachysolen tannophilus Y-475, a yeast known for
its capacity to ferment pentose sugars. This was accomplished
through the use of an innovative bioreactor system with immobilized
cells, nearly doubling the productivity reported in many other
non-conventional setups.
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FIGURE 2
Bioethanol inhibitors that are resulted before, during, or after fermentation process.

Other extremophiles such as Candida shehatae, known for its
ability to metabolize and ferment pentose sugars and to survive
in environments with high concentrations of inhibitors typically
present in hydrolysates, achieved notable substrate utilization
efficiencies. In a batch fermentation process using rice straw
autohydrolysate, it delivered a fermentation efficiency of 92.16%, but
its productivity was relatively low at 0.20 g/Lh (Abbi et al., 1996).
Another experiment featuring a co-culture of S. cerevisiae and S.
stipitis using wheat straw hydrolysate achieved 0.1 g/Lh productivity
and a 68.10% fermentation efficiency (Karagöz and Özkan, 2014).
Although the productivities fall short of conventional values, the
efficiency levels approach or exceed S. cerevisiae in certain cases,
showcasing potential in specialized conditions.

Notably, some systems utilizing immobilized cells enhanced
productivity under industrially challenging feedstocks. For example,
81.11% fermentation efficiency was reached with pretreated wheat
straw, though productivity remained at 0.06 g/Lh (Brethauer
and Studer, 2014). These results highlight the innovative cell
immobilization techniques applied to improve performance, even
though further optimization is required to meet the standards of
conventional production systems.

4 Pilot case studies on
extremophiles/non-conventional
microbes/methods on ethanol
production

Globally, non-conventional bioethanol production faces several
challenges limiting their readiness for scale-up as previously
indicated in this article. This limitation involves the developed
countries as well. The European market shows Surprisingly, only a
few companies in European countries have scaled the production to
a pilot or commercial scale (see Table 4). Nevertheless, recent studies
in the last decade conducted abroad investigation regarding non-
conventional bioethanol production using various feedstocks and
microorganisms. The feedstocks included lignocellulosic biomass
(Limayem and Ricke, 2012), industrial waste (Alfonsín et al., 2019),
and urban and municipal waste (Meng et al., 2021), whereas
microbial strains included primarily yeast (Nandal et al., 2020) and
secondly bacteria (Tang et al., 2021).

For non-conventional feedstocks and microbes processes,
Lin et al. (2012) demonstrated that employing S. stipitis for xylose
fermentation from rice straw has a potential for commercial ethanol
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production. Importantly, the ethanol yield was affected directly via
biomass pretreatment directly. Unlike rice straw hydrolysates which
were conditioned via ammonia that yielded 0.39 g/g of ethanol, the
highest ethanol yield and productivity were 0.44 g/g and 0.22 g/Lh,
respectively, when rice straw hydrolysates were obtained via the
overliming-detoxification process. The authors stated that there
is a strong relationship between the initial cell density and the
concentration furfural on one hand, and the pretreatment process on
the other hand. Hence, all these considerations may further improve
ethanol yield depending on the applied pretreatment process and
conditioning (Lin et al., 2012).

In a different strategy to utilize the rice straw, hydrolyzed
rice straw was added to bamboo, plywood, and bagasse xylose
fermentation by P. stipites. Similar to the previous study, overliming
and ammonia were selected as the detoxification procedure
to remove inhibitory compounds present in hemicellulosic
hydrolysates and for neutralizing, respectively. Factually, this
strategy increased S. stipitis cell mass, leading to higher ethanol
yield by 20%–51% compared to the method when hydrolyzed
rice straw was not added into the xylose, and the overall
ethanol yield and productivity were 0.45 g/g and 0.25 g/Lh when
ammonia pretreatment was conducted, and 0.43 g/g and 0.27 g/Lh,
respectively. The yield and productivity were slightly better than rice
straw-based xylose when it was solely utilized for the fermentation,
indicating the high potential of rice straw to be the main source
of xylose (Lin et al., 2016).

The potential of utilizing beech wood chips as a source
of xylose and Spathaspora passalidarum capacity for bioethanol
production was investigated by de Vrije et al. (2024). The authors
employed organosolv fractionation method based on acetone for
the pretreatment process.Themedium also contained organic acids,
furans, and phenolics. The ethanol yield of S. passalidarum was
0.38 g/g, which was less than that of S. stipitis (de Vrije et al.,
2024). In contrast to P. stipites, which had ethanol productivity
of 0.22 and 0.25 g/Lh (Lin et al., 2012; 2016), S. passalidarum
had superior ethanol productivity of 0.78 g/Lh. However, YP +
salt medium was added along with the extracted sugars for the
fermentation process. Interestingly, the up-scaled reactor exhibited
a higher ethanol yield compared with the flask scale which was
0.34 g/g which encourages conducting further pilot-scale analysis
regarding xylose fermentation via S. passalidarum. In the same study,
glucose was extracted from beech wood chips along with xylose.The
extract was added to the YP + salt medium and was fermented by S.
cerevisiae. Ethanol yield and productivity were 0.48 g/g and 3.9 g/Lh,
respectively (de Vrije et al., 2024), showing the high capacity ofwood
chips to be applied with the ordinary medium since the yield is near
the theoretical value of 0.51 g ethanol/g sugars (Krishnan et al., 1999).
Sugarcane bagasse utilization by Kluveromyces marxianus showed
less potential for ethanol production. Lin et al., (2013) conducted
alkaline pretreatment followed by a fermentation process using a
rotary drum reactor which is rarely reported. The authors achieved
the highest ethanol concentration and productivity of 24.6 g/L
and 0.342 g/Lh, respectively. Importantly, the results showed an
effective scaling up since the obtained outcomes were similar to the
laboratory scale. However, significant improvements are required to
achieve better productivity.

Industrial waste, namely, avocado seeds, oat hulls, empty fruit
bunches from palm oil, sugarcane bagasse, the potato processing
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TABLE 4 Non-conventional bioethanol producing companies across Europe.

Company Country Company type Feedstock Production
capacity (ton/
year)

References

Versalis Italy Chemical Lignocellulosic 25,000 Eni (2022)

Celtic Renewables Scotland Acetone-Butanol-Ethanol
(ABE)

Whisky byproducts 1000 including chemicals Celtic Renewables (2021)

Vertex Bioenergy Spain, France Bioethanol, feed,
electricity, wine alcohohl

Cereals, sugar beet,
agricultural residues

Around 615,420 Acciona (2021),
Vertex Bioenergy (2022)

NordFuel Oy Finland Biorefinery Sawdust, forest residue 70,000 NordFuel (2022),
Bioenergy Insights (2024)

LanzaTech, ArcelorMittal Belgium Steel production,
bioethanol

syngas 63,120 LanzaTech (2023)

AustroCel Hallein
GmbH

Austria Pulp industry, bioethanol Wood-based residual 30,000 Austrocel (2024)

industry, and the seaweed industry was investigated using S.
cerevisiae (see Table 5 below). Among these non-conventional
feedstocks, potato waste and avocado seeds exhibited the highest
ethanol concentration and the most promising feedstocks for
ethanol production. Various potato wastes were investigated
separately to figure out the highest ethanol-producing feedstock,
although the pretreatment methods were not identical. Potato
peels were pretreated with alkaline while the potato tubers and
slices were pretreated hydrothermally since these pretreatment
methods were favored for each group. All groups were fermented
using conventional yeast. The maximum ethanol concentration
obtained from potato tubers and slices was 64 g/L, followed by
potato peels which was 9 g/L, and these results were similar to
those of a laboratory scale. Further, the authors utilized potato
starch waste and chips directly via simultaneous saccharification
and fermentation without any additional pretreatment process.
Both of them exhibited high ethanol concentrations of 50 g/L and
57.5 g/L for the starch and chips, respectively. However, the ethanol
productivity of the starch (0.69 g/Lh) was low compared with the
chips (2.13 g/Lh) (Felekis et al., 2023). Similarly, avocado seeds-
derived starch showed a very competitive ethanol concentration and
productivity of 50.94 g/L and 2.11 g/Lh to potato starch and chips,
respectively, after dilute acid pretreatment and conventional yeast
fermentation. Further, the authors stated that the byproducts that
could inhibit the fermentation process were very low (Caballero-
Sanchez et al., 2023).

Lastly, food waste was investigated using S. cerevisiae and mixed
strains as well. In the single-strain case study, food waste was
pretreated physically and biologically using milling and enzymatic,
respectively. Following that, S. cerevisiae was employed for the
fermentation in laboratory, pilot, and semi-pilot scales to compare
the outcomes. Interestingly, the pilot scale resulted in the highest
ethanol yield, concentration, and productivity of 0.48 g/g, 96.46 g/L,
and 1.79 g/Lh, respectively, with the lowest fermentation time.
The authors stated that food waste utilization can be economic.
However, important factors such as nitrogen source and substrate

loading must be considered since high loading of food-based
sugar might inhibit or impact the fermentation process, and the
absence of nitrogen in the food-based waste might require nitrogen
supplementation and sugar reducing technique, respectively, prior
to the fermentation process (Yan et al., 2013). In the case of mixed
cultures, S. cerevisiae, Schwanniomyces occidentalis, and p. stipites
were applied for food waste, particularly, solid mixtures of fruits
and vegetables residues. A mild thermal pretreatment was followed
initially and then fermented by the mixed cultures. However, the
ethanol yield of 0.19 g/g was lower than the laboratory scale of
0.22 g/g, and lower than in the previous studies of food waste
utilization. Notably, a reasonable pilot scale yield of more than
0.40 g/g indicates that the method may be scalable to a commercial
scale, particularly if other parameters such as cost-effectiveness and
productivity are positive (Macrelli et al., 2012).

5 Roadmap for commercialization of
bioethanol with
extremophiles/non-conventional
microbes

Oneof the commercialization roadmap for bioethanol production
using extremophiles and non-conventional microorganisms focuses
on leveraging cell immobilization technologies to enhance
productivity and fermentation efficiency under industrially
challenging conditions. Extremophilic microorganisms, such as Z.
mobilis, S. stipitis, and P. tannophilus, demonstrate unique capabilities
in tolerating harsh environments, efficiently fermenting diverse
substrates, and metabolizing pentose sugars. Innovative approaches
like sequential fermentation and co-culture systems have achieved
fermentation efficiencies comparable to or exceeding conventional
systems, though productivities remain below the benchmarks of
S. cerevisiae (Karagöz and Özkan, 2014; Kamelian et al., 2022;
Song et al., 2022). Techniques such as immobilized cell have
shown promise in optimizing non-conventional setups, with notable
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advances like a productivity of 0.64 g/Lh achieved with immobilized
P. tannophilus and efficiencies exceeding 90% in specific setups
(Kesava et al., 1995; Abbi et al., 1996; Brethauer and Studer, 2014;
Stepanov and Efremenko, 2017; Malik et al., 2020). To accelerate the
commercialization of bioethanol production with extremophiles and
non-conventional microbes, a potential roadmap must incorporate
multi-disciplinary collaboration among academia, industry, and
policymakers. Developing robust pilot-scale demonstrations to
validate laboratory findings is crucial for ensuring industrial
scalability. Additionally, establishing regulatory frameworks and
incentivizing investments in advanced biotechnologies can help
overcomefinancialbarriers.Movingforward, theroadmapemphasizes
further optimization of fermentation conditions, integration of
extremophiles tailored for specific feedstocks, and industrial-scale
adaptation of immobilization technologies to bridge the gap
between non-conventional and conventional bioethanol production
benchmarks. These efforts must be supported by comprehensive
life cycle assessments to evaluate the environmental and economic
benefits of non-conventional bioethanol production systems.
By aligning technological innovation with policy support, the
pathway to widespread adoption of these advanced methods can
be effectively realized.

6 Conclusion

The recent concerns regarding food security and environmental
impact are urging for using non-food feedstock for biofuel production
and supported by policy update. However, using non-conventional
feedstock is challenging since thewell-recognizedmicrobial strains are
unable to ferment these types of sugars. As a result, non-conventional
thermophiles are suggested as a sustainable alternative since their
enzymes have a potential to valorize these types of sugars such
as pentose in elevated temperature, potentially to be cost-effective
where sterilization is eliminated. Importantly, certain engineered
strains such as Thermoanaerobacter mathranii could have ethanol
yield of 94%. However, the literature lacks scaling up and validation
studies. Similarly, other non-conventional strains, particularly, P.
stipitis, andK.marxianus showed thebest xylose fermentation and fast
growth compared with S. cerevisiae, respectively, along with ethanol
production. However, they are less resistant to ethanol, making them
less attractive. Therefore, new techniques such as genetic engineering
which its tools are available formany strains such asK. marxianus, co-
culture, immobilization,andpretreatmentselectioncouldovercomeor
improve the tolerance alongwith ethanol yield improvement.Notably,
co-culture could improve ethanol yield by 440% with some strains.
Yet, more research should be conducted on large scales. Additionally,
the literature lacks very important data that are related to a single
strain, co-culture, or immobilized cells in biorefinery. For instance,K.
marxianus is well-known for its potential to producemultiple valuable
products and its co-culture with Bacillus coagulans could improve
lactic acid and ethanol by 90%.

Feedstock availability and its pretreatment which accounts for
up to 40%of ethanol production are other challenges. Unfortunately,
feedstock availability is not reported properly including in the
developed countries, while the novel eco-friendly pretreatment
techniques are not scaled and/or formulate inhibitors, making
the commercialization of the advanced ethanol very challenging
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and less viable. This paper provides a comprehensive review of
the current advancements, challenges, and future directions for
leveraging extremophiles and non-conventional microorganisms
in bioethanol production. It serves as a valuable resource for
researchers, industry stakeholders, and policymakers to drive
innovation and collaboration, ultimately accelerating the transition
to sustainable energy solutions.
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