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Proton-conducting ceramic electrochemical devices (PCCs) show promise for
sustainable energy conversion, yet key challenges remain. This perspective
highlights critical areas for advancing PCC research. The field requires
standardized protocols for fabrication, testing, and results reporting. Improved
electrolyte sintering techniques and minimized nickel-induced defects are
imperative for stable, high-performing cells. Addressing materials criticality
is essential for commercialization. A deeper understanding of electrolyte
grain boundary properties, positrode-electrolyte interface characteristics, and
distribution of relaxation times analysis has great potential to accelerate
progress. The promising application of PCCs in electrolysis mode remains
understudied and merits increased research attention.
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1 Introduction

Proton-conducting ceramic electrochemical devices (PCCs) are an emerging
technology for energy conversion. These efficient, fuel-flexible systems (Duan et al., 2018)
operate reversibly (Duan et al., 2019; Choi et al., 2019), enabling both power generation
from fuel and fuel production from electricity. This bidirectional capability positions PCCs
as key enablers of a sustainable economy.

Despite key advances in PCCs, challenges with fabrication, reproducibility, cross-lab
performance comparison, testing standardization, and mechanistic interpretation remain.
This article maps vital pathways toward PCC commercialization. We share our perspectives
on key areas of PCC development requiring improvement and/or further investigation,
including:

1. Benchmarking: Establishing standards across the field. This standardization
will facilitate meaningful inter-laboratory comparison of results and accelerate
research progress.

2. Electrolyte sintering: Developing facile sintering methods that do not depend
on liquid phase sintering. These methods will enable consistent, high-performing
electrolytes, enhancing PCC power density.
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3. Material criticality: Addressing criticality of PCC materials
and components. Reducing reliance on critical materials
enhances commercial feasibility.

4. Electrolyte grain boundary characteristics: Understanding
the impact of processing. Optimization of grain boundary
properties can significantly improve electrolyte conductivity.

5. Mechanical strength: Strengthening PCCs to increase
robustness. Enhanced mechanical properties enable rapid
thermal cycling and broader applications.

6. Positrode-electrolyte interface: Enhancing comprehension
of this important junction. Understanding and optimizing
this interface is important for reducing overall cell resistance.

7. Distribution of relaxation times (DRT) peak analysis:
Increased analysis on the mechanisms that underlie DRT
peaks at different conditions. DRT analysis enables
deconvolution of resistances from underlying
electrochemical phenomena, providing insights that can
augment the speed of research.

8. Electrolysis: Electrolysis operation of PCCs warrants
increased research attention. Green hydrogen production
represents a significant application of PCCs.

2 Discussion

2.1 Benchmarking

Progress in the PCC field is rapid, with new electrode and
electrolyte compositions being reported almost daily. With this
significant increase in research findings, the need for cross-
laboratory experimental reproducibility and objective performance
comparisons is becoming crucially important. The PCC field
presently follows a “champion” cell model, where one or a few
high performing cells utilizing a novel material/architecture are
compared to a baseline cell. This selective reporting coupled with
small reported sample sizes leads to poor reproducibility across
laboratories. Additionally, testing ceramic fuel cells at 400–800°C
presents significant challenges, with high performance variability
stemming from complex cell fabrication (Meisel et al., 2024a) and
diverse testing setups and procedures. Thus, there is a need for
standardized testing protocols.

A critical yet often overlooked aspect requiring standardization
is cell “wiring,” which is how the cell is electronically connected
to the test stand. While current collection can significantly impact
ohmic resistance, thorough description is rarely provided. Further,
the interconnection between the ceramic-based electrodes and the
metallic wiring can be very technique oriented, lacking consistency
across developers. Wiring methods range from contact paste with
wires (Choi et al., 2018; Bian et al., 2022; Meisel et al., 2024b;
Meisel et al., 2024a) or meshes (Duan et al., 2015; Park et al., 2022),
compressed metal foams (An et al., 2018), compressed contact paste
(Le et al., 2022; Herradon et al., 2022; Duan et al., 2019; Liang et al.,
2022; Okuyama et al., 2023), contact to a metal mesh (Han et al.,
2018), and spring-loaded metal foils (Huang et al., 2023a). Materials
used include platinum, gold, silver, and nickel. The field would
greatly benefit from establishment of consistent, straightforward
protocols for optimal wiring methods to minimize ohmic contact
resistance.

The negatrode reduction process similarly demands
standardization as it can impact performance (Li et al., 2010;
Haanappel et al., 2006), but often goes unreported. Depending
on the reduction protocol, remarkably different Ni-metal
microsctrutures can be achieved (e.g., highly porous and spongy
vs. smooth and dense). Essential parameters include reduction
temperature, fuel gas flow rates, gas composition, and heating rates.
These parameters impact negatrode morphology, which impacts
performance. Likewise, negatrode thickness can significantly
influence cell performance, especially at higher current densities
where mass-transport effects become important.

Testing protocols, particularly for electrochemical impedance
spectroscopy (EIS) and polarization curves, also require consistent
approaches. Figure 1A demonstrates how current scan rates can
impact measured performance with a 3% difference in peak power
density between fast (393 mW/cm2) and slow (382 mW/cm2) scan
rates. This is due to incomplete cell equilibration, as Figure 1B
illustrates higher voltages at all current densities for faster scan rates.
The ideal scan rate should balance cell equilibration speed with
practical time constraints and be reported alongside the IV data.

Gas flow rates prove critically important to performance.
Figure 1C shows that increasing air flow from 50 to 200 SCCM
performance increased by 23%. The air utilization was 10, 6, and 3%
for the 50, 100, and 200 SCCM conditions, respectively. Figure 1D
demonstrates that doubling both the air and hydrogen flow can
yield an 18% performance increase. The fuel utilization was
3% and 2% for the 50 SCCM and 100 SCCM fuel flow rate
conditions, respectively. The large performance changes at low
gas utilization conditions warrants the reporting of gas utilization
with performance data. Furthermore, results acquired using pure
O2 gas should not be directly compared against results acquired
using air without explicit disclosure. Excessive flows can also
cool cells and skew temperature-dependent data, so the standard
optimal flow rates should balance gas utilization with temperature
considerations.

Benchmarking considerations should include aminimum active
cell area requirement for literature reporting. Smaller areas can
inflate performance due to disproportionate effects of active area
measurement errors. For example, a ±500 μm measurement error
on a 0.5 cm radius electrode will result in a ± 20% error in the
cell active area. Additionally, the positrode area should closely
match the negatrode area–although we note this is difficult
to achieve with the common negatrode-supported button cell
design. Finally, cell sealing optimization and standardization would
greatly benefit the field. Various methods exist (e.g., Aremco’s
Ceramabond, DAD-87 silver contact paste, glass sealing, high-
temperature gaskets), and efforts should be made to standardize
sealing.

To advance the field, we recommend establishing a third-party
lab for performance validation, similar to photovoltaic certification
(Reese et al., 2017). Additionally we recommend standard cell
dimensions. This approach should be coupled with thorough
reporting of key technical parameters and cell characteristics that
impact performance, such as the electrolyte thickness to grain size
ratio (Meisel et al., 2024a). Fortunately, benchmarking efforts are
already underway in the solid-oxide fuel cell field (Auer et al., 2015;
Bulfin et al., 2023; European Commission. Joint Research Centre,
2023), and can be used as a guide.
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FIGURE 1
Fuel cell polarization curves taken at different conditions. (A) Full polarization curves with corresponding power curves at three different scan rates. (B)
Magnified view of the IV-curve section. (C) Performance with different synthetic air (21% O2 in Ar) flow rates to the positrode. The Peak power densities
(PPDs) are 165, 193, and 208 mW/cm2 for 50, 100, and 200 SCCM, respectively. (D) Performance with varied flow rates to both electrodes. The PPDs
are 214 mW/cm2 at baseline flow and 256 mW/cm2 at double flow rates.

PCC development would greatly benefit from demonstration
of repeatable results, rather than the champion-cell model. For
example, we found a 67% peak power density variation (± one
standard deviation of 93 mW/cm2) from a batch of 7 nominally
identical cells tested in a single test station in our laboratory.
This observation suggests that the apparent performance increases
caused by new electrodematerials or new cell fabrication procedures
could in some cases be due simply to statistical cell-to-cell variability.
Addressing these standardization and reproducibility needs and
moving beyond the champion cell model will therefore greatly
augment research precision and accelerate the commercialization
potential of PCCs.

2.2 Electrolyte sintering

Forming thin, dense electrolytes with large grains is important
for high-performing (Meisel et al., 2024a) and stable (Meisel et al.,
2024b) PCC devices.The primary challenge lies in producing phase-
pure, well-sintered electrolytes using low-cost precursor powders at
reduced sintering temperatures while avoiding solid-state reactive
sintering (SSRS) and minimizing reactions between the electrolyte
and a predominantly nickel negatrode substrate.

The electrolyte, typically acceptor-doped (M)
BaCe0.8−xZrxM0.2O3−δ (0.8 ≥ x ≥ 0, M = Y and/or Yb) (BCZM),
is inherently refractory (Kreuer, 2003; Duan et al., 2020; Zhang et al.,
2022). The material becomes increasingly refractory with higher
zirconium content (Kreuer, 2003; Han et al., 2021a; Lagaeva et al.,
2015; Medvedev et al., 2011; Zvonareva et al., 2021). Conventional
sintering requires temperatures above 1500°C (Tong et al.,
2010a; Babilo and Haile, 2005; Snijkers et al., 2004), promoting
thermal reduction of cerium (Wang et al., 2024a) and barium
loss (Choi et al., 2021; Snijkers et al., 2004; Babilo et al., 2007;
Magrez and Schober, 2004). These effects cause acceptor dopant
migration and impede phase formation (Shima and Haile, 1997;
Braun et al., 2009; Azad et al., 2008), ultimately reducing conductivity
(Yamazaki et al., 2010; Guo et al., 2011).

SSRS enables dense, phase-pure BCZM formation from
precursor oxides at lower temperatures through transition metal
sintering aids (typically Ni) in a single combined phase-formation
and sintering step (Tong et al., 2010a; Tong et al., 2010b; Tong et al.,
2010c; Nikodemski et al., 2013). The process involves forming a
transient liquid phase, BaM2NiO5 (BMN), at ∼1000°C (Tong et al.,
2010c). High-performing cells have been fabricated using SSRS
to create the negatrode-electrolyte bi-layer from compacted
precursor powders in one sintering step (Duan et al., 2015;
Duan et al., 2018; Duan et al., 2019).
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However, SSRS can impair performance through barium loss to
the BMN phase in the negatrode (Huang et al., 2021a; Huang et al.,
2023a; Deibert et al., 2022), electrolyte inhomogeneities from BMN
phase breakdown (Deibert et al., 2022; Fang et al., 2015; Han et al.,
2021b; Han et al., 2016), and incomplete BMN decomposition
(Tong et al., 2010c; Han et al., 2020). All of these processes
lower electrolyte conductivity. Additionally SSRS can lead to Ni
segregation to grain boundaries (Huang et al., 2021a; Han et al.,
2014). The Ni can form nanoparticles in the grain boundaries
(Pan et al., 2016) that can crack the electrolyte upon re-oxidation.
Furthermore, BMN formation itself has also been linked to
electrolyte cracking (Kuroha et al., 2021).

Another key performance limiter in PCC electrolytes is the
saturation of Ni from the negatrode during co-sintering. Higher Ni
content in the lattice has been shown to decrease proton uptake
(Huang et al., 2023a; Huang et al., 2021a; Han et al., 2021b)
and bulk proton conductivity (Huang et al., 2023a; Han et al.,
2018; Polfus et al., 2016; Han et al., 2014; Han et al., 2021b;
Li et al., 2020; Nasani et al., 2017), while increasing the electronic
conductivity of the electrolyte (Han et al., 2018; Han et al.,
2021b; Kuroha et al., 2021; Kuroha et al., 2020). Ni can occupy
interstitial sites (Han et al., 2014; Polfus et al., 2016; Dayaghi et al.,
2023) or, less commonly, B-sites (Dayaghi et al., 2023). This
can create barium vacancies and/or reduce the effective acceptor
dopant concentration (Huang et al., 2021a; Huang et al., 2020;
Dayaghi et al., 2023; Han et al., 2021b). Lower effective acceptor
dopant concentration reduces proton uptake, leading to decreased
proton conductivity. Additionally, barium vacancies lower proton
mobility (Yamazaki et al., 2010), acting as proton traps (Polfus et al.,
2016) and increasing the concentration of non-hydrated oxygen
vacancies. More oxygen vacancies can distort the lattice and
negatively impact proton mobility.

Thus, fabrication techniques need to be developed to produce
phase-pure, well-sintered electrolytes using low-cost precursor
powders.Thesemethods should ideally occur at lower temperatures,
avoid SSRS, and minimize reactions between the electrolyte and a
predominantly nickel-oxide negatrode substrate.

SSRS can be suppressed using acceptor dopants with atomic
radii ≤Thulium (Tm) (0.880 Å) at concentrations ≤ 20% (Luo et al.,
2022; Kuroha et al., 2021; Bu et al., 2014; Li et al., 2023). Screening
the periodic table for potential dopants requires elements with
atomic radii ≤ 0.880 Å and stable 3+ charge. Low electronegativity
is also essential, as it creates weaker M-O bonds enabling better
material hydration and conductivity (Løken et al., 2015). This
analysis yields Sc, Tm, Yb, and Lu as viable candidates. However
the high cost of these materials, with the least expensive Yb2O3
being five-times more expensive than Y2O3 [using lab scale
quantities (MilliporeSigma, 2024)], limits their commercial viability.

Decreasing the concentration of the common acceptor dopant
Y to 12% or below can suppress BYN formation and SSRS (Li et al.,
2023; Han et al., 2021b; Ueno et al., 2019). However, this reduction
in acceptor dopant concentration lowers proton uptake andmobility
in the electrolyte. Co-doping with Y below 12% and one of the
3+ elements smaller than Tm is a viable strategy, as employed in
BaCe0.8−xZrxY0.1Yb0.1O3−δ (BCZYYb) (Li et al., 2023), but it still
requires critical and expensive dopants.

Addressing BMN formation and SSRS does not resolve the
negative effects of Ni saturation in the electrolyte. In order to reduce

Ni saturation of the electrolyte, lower temperature or rapid sintering
techniques must be developed. These techniques must form a
dense, large-grained electrolyte that is crack and defect free. Cold
sintering (Kindelmann et al., 2023; Guo et al., 2016), microwave
sintering (Rybakov et al., 2013; Hagy et al., 2024), flash sintering
(Cologna et al., 2010; Guillon et al., 2023; Rheinheimer et al., 2019),
blacklight sintering (Porz et al., 2022a; Porz et al., 2022b), and
carbothermal shock (Yao et al., 2018; Wang et al., 2020; Fan et al.,
2022) could enable the formation of co-sintered materials with
minimal Ni diffusion into the electrolyte.

In summary, co-sintering the negatrode and electrolyte requires
careful materials selection and an appropriate sintering method
to prevent transient BMN phase formation and mitigate Ni
diffusion into the electrolyte. Conventional sintering methods
necessitate reducing Y concentration below 12 mol% and co-
doping with expensive alternatives. However, promising rapid
sintering techniques may enable co-sintering at lower temperatures,
potentially mitigating both Ni diffusion and BMN formation.

2.3 Material criticality

Critical materials are those valuable to society yet vulnerable
to supply disruptions (IEA, 2024, Bleicher et al., 2020; Ku et al.,
2024). Factors influencing criticality include future supply
and technological demand, geopolitical risks of suppliers and
refiners, geological and geographical distribution, vulnerability
to disruptions, Environmental, Social, and Governance (ESG)
considerations, and climate risks.

For PCCs, criticality considerations are consequential due to
their reliance on rare earth elements in the electrolyte and transition
metals in the electrodes. As shown in Table 1, Ba, Zr, and Fe
consistently show low criticality. Rare earth elements (Ce, Y, Yb)
and transition metals (Ni, Co) are generally classified as critical
materials. Therefore, Ba, Zr, and Fe should be prioritized for use in
PCC devices.

The criticality of rare earth elements Ce, Y, and Yb varies
across studies. When grouped together (denoted by “∗”), all rare
earths are deemed critical. However, studies that assess individual
elements often show Ce as less critical than Y or Yb, likely due
to its higher relative abundance in earth’s crust (McLennan, 2001;
Haynes, 2016), and its relatively higher abundance in many rare-
earth ores. Both Ni and Co should be minimized in PCCs, though
someNi usemay be unavoidable. As discussed in Section 2, the ideal
acceptor dopants are rare earth elements,making someuse of critical
materials inevitable in PCC devices. Strategies should be developed
to minimize rare earth usage without compromising performance.

2.3.1 Strategies to mitigate PCC criticality
The negatrode presents significant opportunities for reducing

critical materials. While traditionally hundreds of microns thick
(Dubois et al., 2017), the electrochemically active zone is likely only
5 to 50 μm (Zhu and Kee, 2008; Cai et al., 2011; Zheng et al.,
2014). Using a bi-layer approach with a 25 μm thick NiO-electrolyte
cermet with steel-based supports could reduce nickel content while
improving mechanical properties (Krishnan, 2017). Though metal
supports enable faster start-up (Nielsen et al., 2018), challenges
include difficulty in adhering the metal support to cermet PCC
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TABLE 1 Criticality assessments of elements used in PCC devices from various sources.

Element IEA (2024) Schrijvers et al. (2020) Gilbert et al. (2020) IRENA (2022) Joint Research Centre 
(European Commission) et al.

(2023)

Ba Not critical Low criticality Sometimes critical Not critical Not critical

Ce Critical∗ Medium criticality N/A Critical∗ Strategic

Zr Not critical Low criticality Not critical Not critical Not critical

Y Critical∗ High criticality Often critical Critical∗ Critical

Yb Critical∗ High criticality N/A Critical∗ Critical

Ni Critical Low criticality Sometimes critical Critical Strategic

Co Critical High criticality Critical Critical Strategic

Fe Not critical Low criticality Not critical Not critical Not critical

“∗” denotes Ce, Y, and Yb considered collectively as rare earth elements. Schrijvers et al. (2020) and Gilbert et al. (2020) data is based on the most frequently reported values from multiple studies.
IEA 2024 is a study conducted by the International Energy Agency (IEA) on global critical materials. IRENA 2022 is a study on the world energy transition by the International Renewable Energy
Agency (IRENA). EU 2023 is a study on the supply chain analysis and material demand for strategic technologies conducted by the joint research center commissioned by the European Union (EU).

materials, incompatibility with co-firing of ceramic PCC precursors,
and susceptibility to microstructural coarsening (Krishnan, 2017;
Vafaeenezhad et al., 2019). Fortunately, A number of groups have
successfully advancedmetal-supported solid-oxide devices based on
oxygen ion conductors (Leah et al., 2019; Dogdibegovic et al., 2019).

Iron oxide, being much less critical than nickel oxide, could be
a potential substitute. While Fe hinders sintering of BCZY-based
materials when doped into the electrolyte at 4–5 mol% (Babilo and
Haile, 2005; Nikodemski et al., 2013), it shows beneficial effects at ≤
2 mol% (Liu et al., 2020; Wang et al., 2024b). Future studies could
investigate the maximum amount of Ni that could be substituted for
Fe without detrimental effects. Additionally, a bi-layered approach
could be applied to the negatrode: the 10–50 μm closest to the
electrolyte could use NiO, while the remaining thickness could use
iron oxide as the transition metal oxide.

One additional strategy is to use less critical materials in the
negatrode bulk. Based on Table 1, BZY10 is a better option than
BCZYYb. A bi-layered negatrode design could incorporate a 10–50
μm NiO-BCZYYb cermet layer followed by a 400 μm NiO-BZY10
electrode-support layer, significantly reducing rare earth content.

Despite their name, rare earth elements are not scarce (Kim
and Jariwala, 2023), with Ce being more abundant than Cu in the
earth’s crust (McLennan, 2001; Haynes, 2016). Isolation of specific
rare earth remains challenging due to dispersed deposits and similar
chemical properties (Fray, 2000). Using concentrated, unseparated
mixtures of 3+ rare earth elements in electrolytes could reduce cost
and BMN formation while maintaining performance.

The positrode, though a small fraction of cell mass,
significantly impacts criticality through cobalt usage. Cobalt
enhances oxygen reduction reaction kinetics due to near-
optimal transition metal and reaction intermediate electron
orbital alignment and due to relatively weak M-O bonds that
facilitate oxygen ion mobility (Lee and Manthiram, 2005). It also
enables electronic conductivity through its facile oxidation state
changes (Papac et al., 2021). However, cobalt can also reduce

material stability, lower hydration ability (Zohourian et al., 2018),
and undesirably increase the material’s coefficient of thermal
expansion (Papac et al., 2021). Promising cobalt-free alternatives
include Ba0.95La0.05Fe0.8Zn0.2O3−δ (BLFZ) (Zohourian et al.,
2018), Ba0.875Fe0.875Zr0.125O3−δ (BFZO) (Wang et al., 2022),
BaCe0.16Y0.04Fe0.8O3−δ (BCYF) (Zou et al., 2022). Future Co-
free positrodes should ideally substitute Co with Fe and/or Mn.
Discovering stable, consistent, and high-performing Co-free
positrodes could alleviate the financial and social burden of cobalt
use in protonic ceramics.

2.4 Electrolyte grain boundary
characteristics

Grain boundaries in the electrolyte significantly impair
performance through space charge defects and disorder that reduce
conductivity (Kreuer, 2003; Kjølseth et al., 2010; Shirpour et al.,
2012) and increase the activation energy for proton hopping
(Iguchi et al., 2007; Babilo and Haile, 2005; Ricote et al.,
2014Ricote et al., 2014). Ideal electrolytes would have a bamboo
structure with grain sizes exceeding electrolyte thickness. This
structure minimizes the number of resistive grain boundaries
that protons must cross. Larger grains diminish the strength
of ceramics (Rahaman, 2003), though grain size becomes less critical
in the electrolyte of negatrode-supported PCCs where the negatrode
provides the primary mechanical support.

The fabrication of thin, bamboo-structured electrolytes without
defects remains a significant challenge (Meisel et al., 2024b). This
is particularly evident when working with high-zirconium BCZM
compositions. Understanding how different processing techniques
and material sets affect grain boundary characteristics is key for
engineering less-resistive grain boundaries.

While grain boundary resistivity can be studied via high-
frequency polarization resistance at low temperatures ( < 400°C)
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(Ricote et al., 2014; Iguchi et al., 2007; Babilo and Haile, 2005;
Huang et al., 2023a; Kjølseth et al., 2010; Kim et al., 2018), direct
structural studies are challenging. The PCC grain boundary space-
charge region is generally extremely small ( <30 nm (Kim et al.,
2018)) and chemically complex. SEM-EDS and time-of-flight
secondary ion mass spectroscopy (TOF-SIMS) (Wang et al.,
2024) can provide a general understanding of grain boundary
elemental compositions over larger cell areas. However, precise
information requires expensive, time-consuming, low-throughput
techniques like transmission electron microscopy (TEM) and atom
probe tomography (APT) (Clark et al., 2016; Kim et al., 2018;
Huang et al., 2021a; Harkins et al., 2008).

A comprehensive, data-driven study (Meisel et al., 2025;
Meisel et al., 2024a; Zhai et al., 2022), could determine how
processing conditions and BCZM compositions affect grain
boundary chemistry and electrostatic potential. This would
potentially enable optimization of grain boundary characteristics for
maximum cell performance. Current limitations include high costs
and low throughput of advanced characterization techniques such
as APT and TEM, along with uncertainty about required sampling
sizes for accurate grain boundary property assessment across cells.

Electrolyte grain boundaries will likely plague PCCperformance
for the foreseeable future. Thus, understanding how to engineer
more favorable grain boundaries is vital for improving future
performance and repeatability.

2.5 Mechanical strength

BCZY-based materials, which are essential for PCCs, exhibit
poor mechanical properties (Pirou et al., 2022), particularly after
hydrogen exposure (Mercadelli et al., 2022). Enhanced mechanical
strength enables the rapid thermal cycling of cells which greatly
expands the potential applications of PCCs. Since the NiO-
BCZY negatrode serves as the cell’s primary mechanical support,
strengthening this layer is crucial for overall cell integrity. Further,
PCCs are multi-layered systems, so coefficient of thermal expansion
matching between layers is crucial for thermal cycle-ability.

Metal supports offer a promising solution for the negatrode,
as discussed in Section 3. Metals provide superior toughness and
resistance to brittle failure compared to ceramics. These properties
significantly enhance the cell’s durability and thermal cycling
capabilities (Matus et al., 2005). Additionally, reduction of the
negatrode immediately after fabrication (NiO ceramic to Ni metal)
has been shown to increase fracture toughness (Pirou et al., 2022).

Additionally, methods could be undertaken to increase the
strength of the ceramic phase in the negatrode. Combining
BCZY with Gd0.15Ce0.85O2−δ (GDC15) increases fracture toughness
(Zhou et al., 2022) while maintaining phase purity (Zhou et al.,
2022; Mortalò et al., 2019; Mortalò et al., 2020). The BCZY
phase itself can be optimized by reducing acceptor dopant
concentration, which increases the Young’s modulus of BZY
(Kang et al., 2024; Iguchi and Hinata, 2021), and by increasing the
Zr to Ce ratio, which enhances material strength and toughness
(Hinata et al., 2020; Shen et al., 2017).

Modifying cell architecture and morphology offers another
approach to enhance mechanical robustness. Tubular geometries
provide superiormechanical strength and thermal cycling capability

compared to planar cells (Bujalski et al., 2007). While tubular yttria-
stabilized zirconia solid-oxide cells have demonstrated exceptional
thermal cycling stability (Bujalski et al., 2007; Kendall et al., 1994;
Kendall et al., 2007; Huang et al., 2017; Huang et al., 2019), this has
not yet been achieved in PCCs. Additionally, reducing grain size can
enhancemechanical properties, as ceramics with finer grains exhibit
greater strength (Rahaman, 2003). Thus, fabricating negatrodes
with smaller grains and post-sintered particle sizes particles could
improve overall cell robustness.

2.6 Positrode-electrolyte interface

The positrode-electrolyte interface is likely a significant source
of cell resistance, as it is a critical junction for proton transfer.
Various studies have shown that tailoring this interface can greatly
enhance cell performance. Effective strategies include both additive
approaches, such as incorporating positrode functional layers
(Choi et al., 2021; Akimoto et al., 2022; Choi et al., 2024; Tang et al.,
2021; Shimada et al., 2019; Shimada et al., 2021a; Shimada et al.,
2021b), and reductive methods like acid etching the electrolyte
prior to positrode application (Bian et al., 2022). Understanding
and tailoring the properties of this nano-scale juncture is pivotal for
developing future high-performing PCCs.

The resistive impact of this interface can be approximated by
plotting the dependence of cell ohmic resistance on electrolyte
thickness. Ideally, this relationship is linear, with no resistance
found when extrapolating to zero electrolyte thickness. However,
this extrapolation yields a non-zero resistance in practice, generally
attributable to the positrode-electrolyte interface (although ohmic
resistance from the electrodes can also contribute). Akimoto
et al. demonstrated that adding a positrode functional layer (PFL)
reduced the y-intercept of the electrolyte thickness vs ohmic
resistance from 0.2 Ω ⋅ cm2 to 0.11 Ω ⋅ cm2 at 550°C (Akimoto et al.,
2022). While the non-zero ohmic offset resistance has multiple
sources, including cell wiring and test stand connections as well
as electrode-specific contributions, Akimoto’s result demonstrates
that a significant portion originates from the positrode-electrolyte
interface.

Choi et al. (2018) and Bian et al. (2022) point out that the
electrolyte conductivity of negatrode-supported PCCs reported
in literature is generally much lower than the intrinsic electrolyte
conductivity. While Ni saturation in the electrolyte likely
contributes, some of this reduction again likely stems from
positrode-electrolyte interface resistance.

Similar to grain boundaries, the nanoscale disorder at the
positrode-electrolyte interface likely impedes proton motion
(Bian et al., 2022). The disorder, shown in Figures 2A, B, is evident
in the highly non-uniform interfacial zone contrast. This disorder
likely leads to space-charge layers and distorted proton transport.

Elemental segregation at the interface may also contribute
to the space charge layer characteristics. This elemental
segregation, shown in Figure 2C for elements Zr, Fe, and Co, likely
impairs performance. The extent and nature of segregation are
probably influenced by the initial electrolyte surface composition,
positrode composition, and positrode sintering parameters.

Investigating the impact of processing parameters and material
sets on the positrode-electrolyte interface would be valuable.
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FIGURE 2
Transmission electron microscopy (TEM) images of the positrode-electrolyte interface. (A) High-angle annular dark field (HAADF) image. (B)
Bright-field image taken at a different spot on the cell at a different magnification. The electrolyte (bottom) is BaCe0.4Zr0.4Y0.1Yb0.1O3−δ (BCZYYb4411).
The positrode (top) is BaCo0.4Fe0.4Zr0.1Y0.1O3−δ (BCFZY). (C) Energy dispersive x-ray spectroscopy (EDS) elemental map of the positrode-electrolyte
interface. These images are from the highest performing cell reported in Meisel et al. (2024a).

Quantifying interface disorder thickness and space charge
characteristics could provide measurable metrics to study. A
machine learning approach, as found in (Meisel et al., 2025), could
analyze these metrics across numerous cells, revealing how various
material sets and processing parameters influence the interface.
Unfortunately, much like for grain boundaries, the characterization
techniques (APT/TEM) needed to quantify the space charge
and disorder thickness of the positrode-electrolyte interface are
expensive and low-throughput.

2.7 Distribution of relaxation times peak
analysis

Presently, there is little agreement or clarity regarding the
kinetic mechanism(s) and/or likely rate-determining steps (RDS)

associated with the oxygen reduction and evolution reactions in
PCCs. Recent advancements in impedance spectroscopy analysis,
and specifically the rise of the distribution of relaxation times
(DRT) analysis technique, may provide opportunities to clarify
PCC electrochemical behavior. Furthermore, analyzingDRT spectra
from diverse material sets can help to identify the most resistive
processes, guiding targeted improvements in PCC design.

The DRT is a powerful tool for analyzing electrochemical
signals, enabling enhanced process deconvolution without an a
priori model (Huang et al., 2021b; Ivers-Tiffée and Weber, 2017;
Huang et al., 2023b). DRT-based techniques excel at separating
and quantifying losses from specific electrochemical processes in
cells. However, amajor challenge in the proton-conducting ceramics
(PCC) field is identifying which DRT peak corresponds to which
cell-level phenomenon. This task is complicated by peak overlap
and shifts due to varying operating conditions (temperature, applied
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bias, pressure, and gas environment). Despite some attempts to
characterize DRT response (Huang et al., 2024; Meisel et al., 2024b;
Sumi et al., 2021; Herradon et al., 2022; Akimoto et al., 2022;
Shimada et al., 2024; Hong et al., 2020; Osinkin, 2022), extensive
systematic studies on PCC devices encompassing various material
sets and operating conditions are needed to clarify the underlying
processes distinguished by DRT.

To associate a specific DRT peak with a specific electrochemical
process, several key parameters must be examined. The area under
the curve of a DRT peak represents the resistance. The location
of a DRT peak, determined by the center of the peak, gives
the characteristic time constant (τ) associated with that process.
Analyzing the influence of operating conditions on both the
resistance and time-constant of specificDRTpeaks can assist in tying
those peaks to physical processes.

Ideally, DRT peak changes should be analyzed across various
PCC-based electrochemical pressurization operating conditions,
including temperature, pressure, pH2, pH2O, and bias. Applying
DRTanalysis to PCCswith different knownmaterial sets can provide
additional insights. For example, triple-conducting oxides (TCOs)
andmixed-ionic and electronic conductors (MIECs) exhibit distinct
phenomena that can potentially be used to isolate the behavior of
specific DRT peaks.

DRT inversion is an ill-posed problem, with multiple probable
solutions for fitting any given EIS data set (Huang et al., 2021b; Ivers-
Tiffée and Weber, 2017). Sourcing multiple related spectra increases
the accuracy of the generated DRT spectra. This enhanced
accuracy enables better deconvolution of overlapping signals. As
a result, calculations of DRT peak resistances and time constants
become more precise and reliable. Thus, to better understand
and distinguish between multiple underlying electrochemical
mechanisms, numerous DRT spectra need to be collected across a
wide range of conditions and fit as one dataset.

These time-intensive experiments can be accelerated through a
hybrid DRT approach as described in Huang et al. (2024). Hybrid-
DRT accelerates data acquisition by 1–2 orders of magnitude,
making extensive DRT peak analysis feasible. The hybrid-DRT
package, developed by Huang et al. (2024), also includes tools for
acquiring and plotting the DRT response as a function of applied
bias, resulting in a 2-dimensional relaxation surface known as a
“polarization map.” These polarization maps, taken under different
operating conditions or with diverse cell material sets, enable
multi-dimensional analysis of the DRT response, and hence cell
electrochemistry.

Understanding the correlation between DRT peaks and
electrochemical phenomena under specific operating conditions is
vital for optimizing PCC technology. Analyzing DRT spectra from
diverse material sets and operating conditions can identify the most
resistive processes, guiding targeted improvements in PCC design.

2.8 Electrolysis

Hydrogen demand, driven by grid-scale storage systems,
industrial decarbonization, and chemical feedstocks, is projected
to increase from 95 Mt in 2022 to over 150 Mt by 2030
(Author Anonymous, 2023; Pivovar et al., 2018). Currently, most
hydrogen comes from steam-methane reforming (“gray hydrogen,”

0.8–2 $/kg), with less than 1% from low-emission methods
(Author Anonymous, 2023; Longden et al., 2022). The transition to
“green hydrogen” via renewable-powered electrolysis (2.5–8 $/kg)
requires technological advancement to become economically viable
(Longden et al., 2022; Ajanovic et al., 2022).

The direction of chemical species transport in PCCs during
electrolysis cell operation offers two key benefits. First, H2O is split
at the positrode, leading to increased oxygen formation, which can
have beneficial thermodynamic and kinetic impacts on the positrode
(O’Hayre et al., 2009). Secondly, pure, dry hydrogen is produced
at the negatrode, which mitigates costly chemical separations.
Additionally, the pure, dry hydrogen can be electrochemically
pressurized by the PCC (Malerød-Fjeld et al., 2017). Electrochemical
compression can be more efficient than mechanical compression,
(Staffell et al., 2019). Compressing hydrogen into a liquid is
necessary for hydrogen transport due to its low volumetric energy
density at ambient pressure and temperature (Mazloomi and
Gomes, 2012; Sharma et al., 2024; Author Anonymous, 2023; Demir
and Dincer, 2018). Finally, hydrides, which offer high volumetric
energy density for hydrogen storage, typically require pressure
for hydrogen adsorption and desorption (Abdalla et al., 2018;
Barthelemy et al., 2017; Hassan et al., 2021), and thus could be
coupled with PCC-based. For these reasons, PCC devices are poised
to be a major contributor to green hydrogen production.

Mirroring recent governmental initiatives on electrolysis R&D,
there is a need for increased focus on protonic-ceramic electrolysis.
While many papers in the PCC field report fuel cell peak power
densities, fewer report electrolysis cell performance. Additionally,
most EIS data is presented atOCV.While valuable, EIS at bias during
electrolysis operation would provide a clearer picture of cell losses
under real-world conditions. However, EIS under electrolysis bias
generally results in low-frequency inductance loops (particularly at
higher current densities) (Meisel et al., 2024b), which complicates
the analysis of electrolysis-mode EIS data.

Water splitting via electrolysis inherently requires energy,
costing at a minimum 32–33 kWh/kg of hydrogen produced
(based on the lower-heating value) (Badgett et al., 2022).
For low-temperature polymer electrolyte membrane (PEM)
electrolyzers, electricity costs are the greatest contributor to water
electrolysis expenses (Badgett et al., 2022). High-temperature
systems like solid-oxide electrolysis cells (SOECs) and PCCs
can produce hydrogen more efficiently than low-temperature
systems. This increased efficiency is attributed to the higher
operating temperature, and lower overpotentials of PCCs and
SOECs compared to PEMs (Duan et al., 2019) and thus represents
a compelling advantage should cost and durability challenges
be overcome.

Hydrogen will serve as a key component of a sustainable future
through chemical feedstocks, industrial decarbonization, and grid-
scale energy storage. PCCs can fulfill a niche role in a sustainable
economy due to their ability to continuously and efficiently generate
pure, dry, electrochemically pressurizable hydrogen.

3 Conclusion

Standardizing aspects of cell fabrication, testing protocols, and
results reporting will enable reproducibility and cross-laboratory
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comparisons. Novel electrolyte compositions and rapid sintering
methods are needed to achieve phase-pure, stable, and highly
conductive electrolytes. Fabricating PCCs with less rare earth
elements, nickel, and cobalt is key for commercialization potential.
Understanding how to form more conductive electrolyte grain
boundaries and positrode-electrolyte interfaces can greatly enhance
performance. Correlating distribution of relaxation times peaks
with electrochemical mechanisms across operating conditions will
augment research progress. PCCs show great promise for generating
green hydrogen.
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