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Introduction: To address the dilemma that the small sample size of hospital 
energy consumption data makes it difficult to predict short-term electricity 
consumption, a combination of the Firefly Optimization Algorithm (FOA) and 
the Support Vector Regression (SVR) algorithm, i.e., FOA-SVR, was proposed 
in this work.
Methods: By combining standardized sample data with the FOA to optimize 
the hyperparameters of the SVR model, the proposed approach enhances the 
model’s ability to capture the variation characteristics of hospital electricity 
consumption. 
Results: The FOA-SVR hybrid strategy achieves an optimal balance between 
prediction accuracy and computational efficiency when the number of fireflies 
was 30. The prediction accuracy indicator (Coefficient of Determination, R2) 
was 0.855, respectively. Under these conditions, the hybrid strategy has the 
dual advantage of running faster than the existing Sparrow search algorithm, 
and the traditional seagull optimization algorithm, with run times reduced by 
21.192 s and 14.612 s, respectively. When the length of electricity consumption 
data was greater than or equal to 36, R2 of the FOA-SVR hybrid strategy was 
higher than 0.849.
Discussion: The FOA-SVR hybrid strategy realizes a kind of efficient prediction of 
power consumption in medical office buildings with a small sample data volume, 
which provides theoretical and data support for the reasonable optimization of 
hospital energy use structure and has practical significance for the intelligence 
of hospital energy management.

KEYWORDS

firefly optimization algorithm, support vector regression, small sample size, electricity 
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 1 Introduction

In modern society, hospitals, as important public service facilities, were concerned 
about their energy consumption (Mazzeo et al., 2023; Roletto et al., 2024; Patil and 
Kini, 2024; Ghoreishinejad et al., 2023). Especially in outpatient clinic buildings, power 
consumption was usually high and unstable due to high patient turnover, irregular 
equipment working hours and extensive use of energy-consuming equipment such
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as air conditioners. In addition, the seasonal character of electricity 
consumption in outpatient buildings was brought about by climatic 
variations in different seasons (Liu et al., 2022). Effective prediction 
of power consumption in hospital outpatient buildings not only 
helps to improve energy efficiency and reduce operating costs, but 
also helps hospital managers to optimize the power plan and ensure 
the stability and security of energy supply (Seçkiner and Koç, 2022; 
Soyler and Izgi, 2022; Cygańska and Kludacz-Alessandri, 2021).

The complexity of time series was an important theme in 
the available reports (Ponce-Flores et al., 2020). Time series 
data were affected by a combination of environmental factors 
and were often characterized by non-linearity (Wang et al., 
2023; Satapathy et al., 2024). The complexity of time series 
features was brought about by nonlinear features (Wu et al., 
2024). Econometric, statistical and mathematical methods as 
traditional forecasting methods have low forecasting accuracy in 
terms of their inability to better identify non-linear features in 
electricity consumption data (Khan et al., 2020). Machine learning 
algorithms could effectively solve complex nonlinear problems 
and predict better than traditional prediction methods (Weron, 
2014; Yu et al., 2015; Márquez-Chamorro et al., 2015). As an 
important branch in the field of machine learning, the task 
of time series prediction was explored in depth. Due to the 
availability of large amounts of historical data and the need 
for accurate prediction of future data, more and more machine 
learning strategies were being developed and used for time series 
prediction tasks (Wang et al., 2022).

For instance, Abbasimehr et al., (2020) used Long Short-Term 
Memory networks (LSTM) neural network algorithm to identify 
highly fluctuating features in time series and effectively improve 
the business competitiveness of enterprises (Abbasimehr et al., 
2020). Li et al., (2021) analyzed the differences in building energy 
consumption in different climate zones and realized short-term 
energy consumption prediction (Li et al., 2021). Ghimire et al., 
(2024) extracted features of actual electricity demand data through 
a machine learning algorithm to realize an accurate prediction of 
electricity demand for energy industry operations, which provides 
an auxiliary decision-making tool for the development of the 
energy industry (Ghimire et al., 2024).

Building energy usage data could be used for building 
energy consumption time series prediction tasks to optimize 
energy management (Abrishambaf et al., 2018; Kim and Cho, 
2019; Zhuang et al., 2023). Hospital outpatient building power 
consumption data was collected infrequently, often on a monthly 
basis. With the rapid socio-economic development, the total 
energy consumption of various industries was increasing year 
by year (Khalil et al., 2024; Zhu et al., 2022). Electricity usage 
data in hospital buildings was highly time-dependent (Gordillo-
Orquera et al., 2018). The reference value of early data was extremely 
low. As a result, valid data on electricity consumption in hospital 
outpatient buildings mostly belong to small data volume samples. 
Most of the machine learning based prediction task methods 
were difficult to extract the data features in small data volume 
samples, and the credibility of the prediction results was low 
(Lin et al., 2023). Therefore, there was an urgent need for a short-
term time series forecasting algorithm that was stable, has high 
forecasting accuracy and was suitable for small data volume samples 
(Chang et al., 2016; Wu et al., 2019).

Neural networks were good at recognizing nonlinear features 
in time series, but there were risks of stochasticity and overfitting 
with smaller amounts of data (Cheng et al., 2023; Zhang et al., 
2022). Some more stable and structurally simple algorithms were 
more suitable for the task of predicting electricity consumption in 
outpatient buildings. Due to the introduction of insensitive spaces 
ε, Support Vector Regression (SVR) algorithms were gradually 
becoming the method for time series forecasting tasks with 
nonlinear characteristics (Wu et al., 2023; Liu and Dai, 2023). SVR 
algorithm was suitable for identifying data features from small data 
volume samples (Zhang et al., 2018). The high prediction accuracy 
of the SVR algorithm in the electricity consumption prediction task 
was also demonstrated (Taghavifar and Mardani, 2014; Che et al., 
2012; Hu et al., 2015; Taghavifar et al., 2015; Zapirain et al., 
2022). However, the SVR algorithm was mainly affected by three 
hyperparameters, the penalty coefficient C, the kernel function 
parameter γ and the insensitive space ε. Improper selection of 
hyperparameter values could lead to overfitting or underfitting of 
the algorithm. Therefore, the key to improve the prediction accuracy 
of the SVR algorithm lies in obtaining the global optimal solutions 
of the three hyperparameters (Peng et al., 2023). However, there was 
still no generalized guideline on how to choose the globally optimal 
solution for the three hyperparameters (Schölkopf et al., 1997). On 
this basis, introducing an optimization algorithm to find the global 
optimal solution of the hyperparameters was a feasible solution.

Hu et al. developed a Particle Swarm Optimization-Support 
Vector Regression (PSO-SVR) model in their study on syrup 
brix prediction, using Particle Swarm Optimization to optimize 
the penalty coefficient and kernel parameters of Support Vector 
Regression, and demonstrated its excellent predictive performance 
(Hu et al., 2023). Jaafari et al. introduced the Grey Wolf Optimizer-
Support Vector Regression (GWO-SVR) model in their study on 
identifying high-growth areas for poplar cultivation. Compared 
to the PSO-SVR model and the standalone SVR model, the 
GWO-SVR model demonstrated superior predictive performance 
(Jaafari, 2023). Javed et al. introduced the Firefly Optimization 
Algorithm–Support Vector Regression (FOA-SVR) model in 
their study on predicting the compressive strength of steel fiber-
reinforced concrete. Compared to the PSO-SVR and GWO-
SVR models, the FOA-SVR model demonstrated superior 
predictive performance on a small-sample dataset of 304 instances, 
suggesting that it may offer certain advantages under limited data 
conditions (Javed et al., 2024). However, in Javed’s study, only two 
hyperparameters of the SVR model were optimized. Expanding the 
number of optimized hyperparameters could potentially enable a 
more precise search for the global optimum.

In this work, a novel FOA-SVR hybrid strategy was proposed 
by integrating the Firefly Optimization Algorithm (FOA) with 
the Support Vector Regression (SVR) model to optimize its three 
key hyperparameters. This strategy leverages the global search 
capability of FOA to enhance the predictive performance of SVR. 
The effectiveness of the proposed hybrid model was validated using 
real-world electricity consumption data from hospital outpatient 
buildings under limited data conditions. The study compared 
the effects of different optimization algorithms on the predictive 
accuracy of SVR, examined the impact of data length on prediction 
performance, and further demonstrated the adaptability of SVR 
by comparing the optimized model against other commonly used 
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FIGURE 1
Three years of electricity consumption data for hospital outpatient building.

algorithms. These results collectively confirm the applicability and 
effectiveness of the proposed FOA-SVR strategy in small-sample 
scenarios.

The rest of the paper was organized as follows. In Section 2, 
describes data sources and preprocessing, SVR algorithm, SVR 
algorithm optimized by FOA. In Section 3, the effects of firefly 
population sizes and data lengths on prediction accuracy were 
compared. Meanwhile, the excellence of the FOA-SVR hybrid 
strategy was verified by different optimization algorithms and 
traditional algorithms. In Section 4, the conclusion was given. 

2 Materials and methods

2.1 Data acquisition and data 
pre-processing

In this work, a typical hospital in China was taken as an example. 
By investigating the energy consumption data of the outpatient 
building in hospital for a cumulative period of 3 years, the month-
by-month electricity consumption of the outpatient building in 
hospital was obtained. Although the dataset used is relatively limited 
in size, it reflects the common constraints in data availability 
within hospital energy systems. The aim of this work is to develop 
predictive modeling strategies that remain effective under such 
limited data conditions, which are frequently encountered in real-
world medical settings. The major energy-consuming equipment 
in the outpatient building includes ventilators, fully automated 
biochemistry analyzers, modular biochemistry and immunoassay 
systems, centrifuges, and water treatment units. The cumulative 3-
year electricity consumption of the outpatient building in hospital 
was shown in Figure 1.

By analysis of data, the monthly power consumption of the 
outpatient building of the hospital was more than 1 × 104 kWh. 
The order of magnitude of electricity consumption was at 104, and 
the range of data characteristics varies widely. Differences in the 
magnitude of the gradients of different features lead to inconsistent 
convergence speeds of the algorithm, or even to local optimal 

solutions. The normalization of the data makes the values of each 
feature in the same magnitude, and the optimization process was 
more stable and converges faster. Through data normalization, it was 
ensured that all features were within the same numerical range to 
avoid the serious impact on the hybrid strategy prediction accuracy 
caused by the large numerical range of some features. In this work, 
the data normalization algorithm was selected to preprocess the 
electricity consumption data. The normalized data range was [-1, 
1]. Finally, the prediction results were inverse normalized to obtain 
the predicted electricity consumption of the corresponding order 
of magnitude. Data normalization and inverse normalization were 
calculated by Equations 1, 2, respectively.

xnor = 2×
x−min (x)

max (x) −min (x)
(1)

xori = 0.5× (xnor + 1) × (max (x) −min (x)) +min (x) (2)

where x was the electricity consumption of the hospital outpatient 
building, xnor was the normalized electricity consumption with the 
value range of [-1, 1], and xori was the electricity consumption after 
inverse normalization.

All experiments in this study were carried out on a laptop 
with an AMD R-7945HX processor and an 8 GB RTX4060 GPU. 
This hardware setup offers a good balance between computational 
efficiency and practical feasibility, supporting potential integration 
into real-world hospital operations. 

2.2 Predictive principles of SVR algorithm

SVR was a regression method based on the principle of support 
vector machine, which was widely used to deal with nonlinear 
regression and prediction problems. By introducing the kernel 
function parameter γ (usually associated with kernel functions 
such as Gaussian kernel, polynomial kernel, etc.), the data was 
mapped by the SVR algorithm from a low-dimensional space to 
a high-dimensional feature space. In higher dimensional spaces, 
linear regression algorithms could be used to fit complex nonlinear 
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relationships. The complexity of the SVR algorithm was controlled 
by the penalty coefficient C. By varying the range of C, the data fitting 
ability was balanced with the generalization ability and overfitting of 
the SVR algorithm was avoided. In addition, the SVR has the width 
ε of the error-insensitive region. By allowing a range of prediction 
errors to be ignored, the robustness of the SVR algorithm to noise 
was enhanced. The SVR algorithm has some advantages when 
dealing with small data sets. However, the computational complexity 
and computational cost of SVR increase significantly when the 
dataset size was large. In addition, SVR was limited by support 
vectors and was ineffective on large-scale datasets. SVR algorithm 
prediction accuracy was affected by hyperparameter values. The 
key hyperparameters of the SVR algorithm include the penalty 
coefficient C, the insensitive region ε, and the kernel function 
parameter γ. There were differences in the effects of different 
hyperparameters on the prediction accuracy of the SVR algorithm. 
There were interactions between different hyperparameters. The 
prediction accuracy of SVR algorithms could be improved by 
reasonable values of hyperparameters. The principle of the SVR 
algorithm was described by Equation 3

̂y =
m

∑
i=1
(αi − αi

∗)K(zi,x) + b =
m

∑
i=1
(αi − αi

∗)exp(−γ‖zi − x‖2) + b

(3)

where ̂y was the predicted value, m was the number of support 
vectors, αi and αi

∗ were Lagrange multipliers, K(zi,x) was the 
Gaussian kernel function, zi was the support vectors, b was the bias 
term, and γ was the kernel function parameter, which was used to 
control the width of the Gaussian kernel. 

2.3 Predictive principles of the FOA-SVR 
hybrid strategy

The amount of data on electricity consumption in hospital 
outpatient buildings was small, and the ability of the prediction 
hybrid strategy to extract data features directly determines the 
prediction accuracy. The key hyperparameters that affect the feature 
extraction capability of the SVR algorithm were the penalty 
coefficient C, the kernel function parameter γ and the insensitivity 
zone ε. In this work, a FOA-SVR hybrid strategy was proposed where 
the hyperparameter values of the SVR algorithm were optimized 
by the FOA to improve the prediction accuracy for small data 
volume samples. The prediction accuracy of the established FOA-
SVR hybrid strategy was influenced by the number and type 
of optimization hyperparameters on. The three hyperparameters 
were co-optimized and the local optimal solution probability 
was reduced.

FOA was an intelligent optimization algorithm based on the 
luminous behavior of fireflies in nature. The optimal solution of 
the FOA was obtained by modeling mutual attraction and random 
motion search between fireflies. Fireflies were attractive to other 
individuals and the attraction was proportional to the intensity 
of their luminescence and inversely proportional to distance. The 
brightness of a firefly was related to the value of its objective 
function. A group of fireflies was randomly initialized, with each 
firefly representing a possible solution, and the dimensions of the 
initial solutions were the same as the number of hyperparameters 

to be optimized. The brightness of each firefly was calculated 
(brightness was inversely proportional to the value of the objective 
function). During the hyperparameter optimization, the difference 
in brightness of each firefly from the other fireflies was calculated. 
If a brighter firefly was present, the current firefly was attracted 
and moves toward the new firefly. Each individual of FOA 
represents a set of hyperparameter combinations. The position 
of the firefly was continuously updated in FOA and the hybrid 
strategy performance was incrementally improved. Eventually, the 
hyperparameter combination corresponding to the brightest firefly 
was selected as the optimal solution. The principle of the FOA-SVR 
hybrid strategy for predicting electricity consumption in outpatient 
buildings was shown in Figure 2.

In the FOA-SVR hybrid strategy, the penalty coefficient C, the 
kernel function parameter γ, and the insensitivity zone ε were co-
optimized. The optimization objective was set to minimize the root 
mean square error of the SVR algorithm. These three hyperparameters 
are set as the vector Pi  as shown Equation 4

Pi = [Ci,γi,εi] (4)

The adaptational degree of the candidate solution Pi was 
calculated by Equation 5

RMSEi = √
1
n

n

∑
j=1
( ̂yi(Pi) − ̂yi) (5)

The attractiveness of fireflies βij was calculated using Equation 6

βij = β0 exp(−θr2
ij) (6)

where β0 is the initial attraction, θ was the attraction decay 
coefficient, and rij was the Euclidean distance between fireflies i and 
j.

If the adaptation of firefly i was lower than that of firefly j, firefly 
i was attracted and moves. The position of the firefly during its 
movement is calculated by Equation 7

P∗i = Pi + βij + (Pi + Pj) + δ(rand(1, dim) − 0.5) (7)

where Pi
∗ is the position of firefly i after updating, δ was the dynamic 

step factor, and (rand(1, dim) − 0.5) was the random perturbation 
term. When the adaptation was minimized, the values of the 
three hyperparameters C, ε, and γ corresponding to Pi were the 
corresponding globally optimal solutions. 

3 Results and discussions

3.1 Electricity consumption projection for 
outpatient building

The number of individuals involved in the search in each 
generation in FOA was determined by the number of individual 
fireflies. The higher the number, the more random the initial position 
of the fireflies, the search space was enlarged, which could better 
avoid the local optimum. The computational and time complexity of 
the FOA-SVR hybrid strategy increases accordingly. The predictive 
performance indicator s of the FOA-SVR hybrid strategy for the 
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FIGURE 2
Schematic diagram of FOA-SVR hybrid strategy for electricity consumption prediction.

electricity consumption of the outpatient building when the number 
of fireflies was 0, 5, 15, 20, 25, 30, 35, and 40 were shown in Table 1. 
It was worth noting that the process of optimization algorithm 
for finding the globally optimal solution was stochastic in nature. 
The idea of integrated learning was introduced in the FOA-SVR 
hybrid strategy. For each firefly population algorithm, each was 
predicted ten times and the results were averaged to reduce the 
error of randomness on the performance of the FOA-SVR hybrid 
strategy. A firefly count of 0 represents an unoptimized SVR 
algorithm. To comprehensively evaluate model performance, a set 
of complementary metrics was adopted. Root Mean Square Error 
(RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE), 
and Mean Absolute Percentage Error (MAPE) were used to assess 
the magnitude of prediction errors from both absolute and relative 
perspectives. In parallel, the Coefficient of Determination (R2) and 
Pearson Correlation Coefficient (PCC) were employed to quantify 
the correlation and trend similarity between the predicted and actual 
values. Among them, R2 was selected as the primary evaluation 
metric in this study, as it emphasizes the agreement of temporal 
variation patterns, which is particularly important in short-term 
energy forecasting scenarios. Together, these metrics provide a 
balanced assessment of both the accuracy of numerical predictions 
and the consistency of variation patterns. The PCC values under the 
eight conditions were all above 0.9, indicating that the FOA-SVR 
hybrid strategy has a good ability to characterize the variation of 
electricity consumption data in hospital outpatient buildings with 
a small sample data size. The prediction accuracy of the FOA-
SVR hybrid strategy was much lower for firefly counts of 0 and 
5 than for the other six cases. The number of fireflies was too 

small and the available optimization range of SVR hyperparameters 
was insufficient. The hyperparameter optimization result deviates 
from the global optimal solution by a large margin and negative 
optimization occurs. In addition, the prediction accuracy gradually 
increased with the increase in firefly population size. The R2 is 
highlighted as a representative measure of the alignment between 
predicted and actual trends, given its interpretability in assessing 
directional consistency. This emphasis is complementary to the 
error-based indicators, which are used throughout the study to 
provide a balanced evaluation of predictive accuracy. Taking R2 as 
an example, this indicator was 0.764 and 0.804 for firefly counts 
of 10 and 15, respectively. The R2 of the single SVR algorithm was 
only 0.687, therefore, the prediction accuracy of the SVR algorithm 
was significantly improved by the FOA. The R2 was 0.818, 0.835, 
and 0.855 for firefly counts of 20, 25, 30, and 35, respectively. 
Within this range, the prediction accuracy of the FOA-SVR hybrid 
strategy increased synchronously with the number of fireflies. The 
FOA-SVR hybrid strategy has high accuracy in predicting electricity 
consumption data for hospital outpatient buildings. The prediction 
accuracy of the FOA-SVR hybrid strategy increased with the number 
of fireflies and stabilized at a population size of 30 When the firefly 
population was 35 and 40, the predictive accuracy indicator R2

of electricity consumption in the outpatient building was around 
0.855. At this time, the effect of firefly population increments on 
FOA-SVR hybrid strategy predictions was weak. The prediction time 
of the FOA-SVR hybrid strategy increased dramatically as firefly 
populations increased. Therefore, the FOA-SVR hybrid strategy has 
the advantage of both prediction accuracy and computation time 
for predicting the electricity consumption of hospital outpatient 
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TABLE 1  Prediction accuracy of the FOA-SVR hybrid strategy under different firefly population sizes.

Population size MAPE RMSE PCC MAE MSE R2

0 Firefly 50.19433 0.226219 0.931515 0.197669 0.051175 0.694899

5 Firefly 58.39602 0.226384 0.874546 0.196776 0.052565 0.686614

10 Firefly 46.91373 0.195058 0.888519 0.171743 0.040541 0.758296

15 Firefly 43.2594 0.1798 0.919565 0.15916 0.032813 0.804371

20 Firefly 41.00853 0.173804 0.915341 0.153341 0.030594 0.817603

25 Firefly 37.63501 0.165552 0.921539 0.145855 0.027634 0.835247

30 Firefly 36.85142 0.155862 0.931139 0.142602 0.024354 0.854803

35 Firefly 35.17414 0.15579 0.935207 0.138282 0.024343 0.854872

40 Firefly 38.16317 0.161734 0.927174 0.144768 0.026225 0.84365

buildings with small data volume when the firefly population 
size was 30.

The results, prediction accuracy indicators, and 
hyperparameters of the ten predictions of the FOA-SVR hybrid 
strategy at a firefly population size of 30 were shown in Table 2, 
Tables 3, 4. In these tables, the FOA was more effective for 
hyperparameter optimization of SVR algorithm. The prediction 
accuracy of the optimized hybrid strategy was higher and the 
prediction results were stable. However, the hyperparameters 
obtained by the optimization algorithm were not always optimal 
solutions. In the 9th iteration prediction, the penalty coefficient 
C and kernel function parameter γ obtained by FOA show 
outliers, which were significantly different from the other 9 
optimization results. Due to the anomalies in the penalty coefficient 
C and the kernel function parameter γ, the 9th prediction slips 
significantly in value. This highlights the necessity of repeated 
experiments, as single-run results may be skewed by the inherent 
randomness of metaheuristic optimization. Performing multiple 
independent runs allows for a more reliable evaluation of model 
performance and helps mitigate the influence of outlier parameter 
combinations. The predicted resultant consumptions of the FOA-
SVR hybrid strategy for the electricity consumption of the outpatient 
building were 39,394.39 kWh, 38,840.88 kWh, 53,964.86 kWh, and 
59,744.73 kWh, respectively. The predictive accuracy indicator s of 
the FOA-SVR hybrid strategy also indicates the lack of accuracy of 
the predictive results. In particular, the coefficient of determination 
R2 slipped to 0.82. This error reduces the prediction accuracy of 
the FOA-SVR hybrid strategy when the number of fireflies was 30. 
Therefore, it was reasonable and necessary to exclude the effect of 
stochasticity in the FOA-SVR hybrid strategy through integrated 
learning of multiple predictions. To verify the model’s robustness 
under limited data conditions, ten independent runs were 
conducted using randomized training/testing splits at a ratio of 8:1. 
The prediction performance was assessed using MAE and RMSE, 
and the results were reported as mean ± standard deviation. The 
model achieved MAE = 4516.05± 489.44 and RMSE = 4936.01±
260.84, indicating stable and consistent performance across different
data partitions.

Figure 3 demonstrates the difference between the predicted 
results of the FOA-SVR hybrid strategy for the electricity 
consumption of the hospital outpatient building and the predicted 
results of the single SVR algorithm with respect to the true value 
when the number of fireflies was 30 and the maximum number of 
iterations was 20. The FOA-SVR hybrid strategy data trend change 
fitting performance was good. Based on the SVR algorithm, the 
prediction results of the FOA-SVR hybrid strategy were closer 
to the real values, and the prediction accuracy was significantly 
improved. In addition, it could be seen from the error bars of 
the prediction results of the FOA-SVR hybrid strategy that the 
prediction results of the FOA-SVR hybrid strategy were more stable 
without large fluctuations and were generalizable. It was worth 
noting that although the prediction accuracy of the FOA-SVR 
hybrid strategy was higher than the prediction accuracy of the 
single SVR algorithm, there were still some differences from the 
true values in the numerical values of the prediction results. The 
difficulty of extracting data features was increased by a smaller 
sample size of data. The FOA-SVR hybrid strategy has strong data 
feature extraction capability, but was still limited by too small a data 
sample size.

3.2 Effect of optimization algorithms on 
the SVR prediction accuracy

When the population size was 30, the prediction accuracy 
indicators of three different algorithms, Sparrow Search Algorithm 
(SSA), Seagull Optimization Algorithm (SOA) and FOA, 
after optimizing the hyper-parameters of the SVR algorithm 
were shown in Table 5. All three optimization algorithms optimize 
the penalty coefficient C, the kernel function parameter γ, and 
the insensitivity band ε of the SVR algorithm. The SVR algorithm 
predicts results without randomness and does not require integrated 
learning. To ensure the feasibility of a side-by-side comparison with 
the FOA-SVR hybrid strategy, the SOA-SVR algorithm, and the 
SSA-SVR hybrid strategy runtimes, the SVR algorithm runtimes 
were scaled up by a factor of ten. The single SVR algorithm has a 
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TABLE 2  Ten prediction results from the FOA-SVR hybrid strategy.

Prediction round 33rd month 34th month 35th month 36th month

1st 44,108.4 38,182.65 57,336.46 66,482.95

2nd 43,264.15 38,535.58 57,769.56 66,912.61

3rd 43,206.03 39,136.52 58,607.93 67,202.95

4th 43,256.84 39,943.37 58,158.02 64,413.3

5th 41,030.6 37,297.49 56,370.96 66,757.9

6th 43,599.88 39,335.77 58,156.26 65,908.17

7th 43,882.84 39,512.61 57,297.28 63,374.49

8th 42,841.18 39,229.16 58,065.46 65,714.44

9th 39,271.84 38,870.93 58,554.57 67,407.22

10th 41,802.3 39,522.16 59,001.35 66,843.59

TABLE 3  Accuracy indicators of the ten predictions of the FOA-SVR hybrid strategy.

Prediction round MAPE RMSE PCC MAE MSE R2

1st 32.45844 0.150091 0.9345 0.132501 0.022527 0.865694

2nd 36.14044 0.153155 0.930072 0.141925 0.023457 0.860154

3rd 36.1347 0.153186 0.931845 0.142801 0.023466 0.860098

4th 31.51891 0.151294 0.943366 0.130299 0.02289 0.863533

5th 45.14185 0.167151 0.914684 0.159603 0.027939 0.833428

6th 32.8892 0.1501 0.938184 0.13461 0.02253 0.865677

7th 27.99432 0.151878 0.950844 0.120551 0.023067 0.862477

8th 35.26795 0.150886 0.935329 0.138945 0.022767 0.864267

9th 50.788 0.174305 0.906134 0.173796 0.030382 0.818865

10th 40.18041 0.156578 0.92643 0.150984 0.024517 0.853833

simple structure and has a much higher run rate than the superior 
SSA-SVR, SOA-SVR, and the FOA-SVR hybrid strategy, with only 
9.550 s required for ten runs. The SOA-SVR hybrid strategy has high 
prediction accuracy with seven prediction accuracy indicator s of 
36.851, 0.156, 0.931, 0.143, 0.024, and 0.855 for MAPE, RMSE, PCC, 
MAE, MSE, and R2, respectively, but the runtime was longer with a 
total of 50.577 s. The SOA-SVR hybrid strategy has a high prediction 
accuracy of 36.851, 0.156, 0.931, 0.143, 0.024, and 0.855, respectively. 
The prediction accuracy of the FOA-SVR hybrid strategy was 
slightly improved from that of the SOA-SVR algorithm, with the 
seven indicators being 36.851, 0.156, 0.931, 0.143, 0.024, and 0.855, 
respectively. The total duration of the FOA-SVR hybrid strategy run 
was reduced to 29.365 s. The FOA-SVR hybrid strategy has higher 
accuracy as well as lower computational cost. It was worth noting 
that the SSA-SVR hybrid strategy computes a total time of 43.997 s, 
which was time-consuming, but the prediction accuracy was rather 

inferior to that of the single SVR algorithm. Randomness and 
updating strategies may have caused the SSA-SVR hybrid strategy 
search direction to deviate from the globally optimal solution, and 
errors were thus generated. Therefore, the FOA-SVR hybrid strategy 
was more suitable for predicting electricity consumption in hospital 
outpatient buildings with small data sample size.

The difficulty of the hybrid strategy in extracting features from 
the data was determined by the length of the data. The more 
data features the hybrid strategy extracts, the more accurate the 
prediction results are. For the electricity consumption of hospital 
outpatient buildings, their energy consumption data collection was 
usually calculated on a monthly basis with a small sample size of 
data. This work collects energy consumption data for 3 years totaling 
36 months. The number of samples collected fluctuates up and 
down within reasonable limits depending on demand. Therefore, 
validating the generalizability of the FOA-SVR hybrid strategy over 
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TABLE 4  Hyperparameters for ten predictions of the FOA-SVR 
hybrid strategy.

Prediction round C γ ε

1st 4.241434 0.582067 0.107948

2nd 5.67813 0.556514 0.103036

3rd 5.524868 0.54574 0.096138

4th 3.858943 0.688794 0.087348

5th 8.06834 0.516039 0.114219

6th 4.169121 0.621413 0.094561

7th 3.010256 0.744377 0.094248

8th 5.758163 0.589669 0.095398

9th 11.25808 0.453056 0.095019

10th 7.747713 0.514232 0.090986

FIGURE 3
Prediction results comparison of the FOA-SVR hybrid strategy and SVR 
algorithm.

different data lengths was a must. Fluctuations in building energy 
consumption were characterized by seasonality. Seasonality was 
assumed to be largely characterized over a 3-year data volume. 
Random perturbations were added to the 36 raw data to generate 
electricity consumption data for the outpatient building with the 
same trend but different values. This was repeated twice to obtain 
electricity consumption data for the outpatient building for a total of 
9 years totaling 108 months. Data sets of different data lengths were 
obtained using 18 months as the basic interval. In particular, 36 raw 
data were also clipped to explore the effect of smaller data samples 
on prediction accuracy. Again, the data were clipped at 18-month 
intervals to obtain the first 18 data of the original data as a control 

group with a much smaller sample data size. The trend images for 
data lengths of 18, 36, 54, 72, 90, and 108 were shown in Figure 4.

The difference between the predicted and true values for the 
six data lengths was shown in Figure 5. To ensure the conditional 
consistency of the comparison process, the ratio of the training 
set to the test set remained 8:1. Figures 5a–f shows the difference 
between the predicted and true values of the four algorithms 
for data lengths of 18, 36, 54, 72, 90, and 108, respectively. 
As shown in Figure 5, the prediction accuracy generally improved 
with longer data sequences. Notably, the model trained on 36-
month data did not produce the best results, suggesting that no 
overfitting occurred at this data length. These consistent trends 
across different configurations provide supporting evidence for the 
statistical reliability of the results. However, when the data length 
was 18, the SVR algorithm fails to extract the data features at all 
and the prediction accuracy indicator R2 was −3.727. The FOA-
SVR, SOA-SVR and SSA-SVR algorithms lost a large number of 
data features. The prediction accuracy indicators R2 of the three 
combined algorithms were 0.282, 0.282 and 0.270, respectively. 
The FOA-SVR and SOA-SVR algorithms have higher prediction 
accuracy when the data length was 36. The prediction accuracy 
indicators R2 of both combined algorithms exceeds 0.83. The SSA-
SVR and SVR algorithms had similar predictive effects but lower 
predictive accuracy, with none of the predictive accuracy indicator 
R2 size exceeding 0.7. All three optimized SVR algorithms accurately 
identified the data features when the data length was greater 
than 72. The prediction accuracy indicator R2 of the prediction 
results of the three combined algorithms exceeded 0.96. It was 
worth noting that in this work, the FOA-SVR hybrid strategy 
generalizes better than the other two optimization algorithms, and 
the prediction accuracy indicator, R2, was stable above 0.99. The 
prediction accuracy indicator R2 also improves to near 0.9 when 
the training set data of the single SVR algorithm was greater than 
72, which was a higher prediction accuracy, but not as good as the 
optimized SVR algorithm. Therefore, the FOA-SVR hybrid strategy 
was more suitable for the prediction of electricity consumption in 
hospital outpatient buildings with small sample data size compared 
to other combined algorithms and single SVR algorithm.

3.3 Effect of single algorithms on 
electricity consumption forecasting results

The differences between the predicted results and the true values 
of the FOA-SVR hybrid strategy and the five single prediction 
algorithms were shown in Figure 6. The five single algorithms 
were SVR, K-Nearest Neighbors (KNN), Autoregressive Integrated 
Moving Average (ARIMA), Decision Tree (DT) and Random Forest 
(RF). In this figure, the original data samples were small, and the 
KNN, ARIMA and RF algorithms were difficult to recognize the 
characteristics of data changes, and the prediction effect was poor. 
The VR algorithm and the DT algorithm were better predictors and 
fit the data of the test set better. However, these two algorithms were 
still inferior to the FOA-SVR hybrid strategy.

The seven prediction accuracy evaluation indicators for the 
FOA-SVR hybrid strategy and five single prediction algorithms 
were shown in Table 6. The coefficient of determination R2 of 
both SVR algorithm and DT algorithm was around 0.7 with 
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TABLE 5  Predictive performance of SVR algorithm under different optimization algorithms.

Algorithms MAPE RMSE PCC MAE MSE R2 Time

FOA-SVR 36.851 0.156 0.931 0.143 0.024 0.855 29.365 s

SOA-SVR 34.004 0.157 0.939 0.137 0.025 0.851 50.557 s

SSA-SVR 63.796 0.237 0.853 0.216 0.056 0.665 43.997 s

SVR 50.194 0.226 0.932 0.198 0.051 0.695 0.955 s

FIGURE 4
Different lengths of generated data based on electricity consumption characteristics of outpatient buildings.

high prediction accuracy. The anomaly of negative coefficient of 
determination R2 for the KNN algorithm and ARIMA algorithm 
indicates that both prediction algorithms completely failed to 
identify the intrinsic correlation of the electricity consumption data 
of the hospital outpatient building. Under this condition, the KNN 
algorithm and ARIMA algorithm were not as effective as the simple 
mean algorithm in prediction. The RF algorithm has a coefficient 
of determination R2 of 0.096, which was a weak explanation of the 
variables. The difference between its predicted and actual values 
of electricity consumption in the hospital outpatient building was 
explained by the predictive accuracy evaluation indicator R2 for 

five single algorithms. In particular, PCC serves as an important 
indicator of the linear correlation between predicted and actual 
values. The PCC value of the ARIMA algorithm was 0.85 with 
strong linear correlation, which was opposite to the results of the 
remaining several indicators for evaluating the prediction accuracy 
as well as the graphs of the predicted values. The sample data 
volume of electricity consumption in hospital outpatient buildings 
was small, but the characteristic relationship between the data was 
not a single linear relationship. Therefore, a single PCC value does 
not indicate the superiority of the predictive algorithm. The PCC 
must be combined with several remaining indicators for evaluating 
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FIGURE 5
Results of electricity consumption forecasts with different data lengths. (a) 18 months, (b) 36 months, (c) 54 months, (d) 72 months, (e) 90 months, and
(f) 108 months.

FIGURE 6
Differences in prediction results between the FOA-SVR hybrid strategy 
and five single algorithms.

prediction accuracy to make a comprehensive judgment. The SVR 
algorithm has a prediction accuracy indicator PCC of 0.93, which 
was greater than 0.89 of the DT algorithms, but the prediction of 
SVR algorithm is, on the contrary, slightly less effective than the 

DT algorithm. Overall, the ability demand of the hybrid strategy 
to extract data features was high in the prediction of electricity 
consumption in hospital outpatient buildings with a small sample 
size of data. In particular, prediction algorithms with stochastic 
nature were difficult to apply to the prediction process with small 
sample size of data. The SVR algorithm, with its strong data feature 
extraction capability and high prediction accuracy, was suitable 
for the process of predicting electricity consumption in hospital 
outpatient buildings. The prediction accuracy of SVR algorithms 
could be further improved by optimization algorithms.

The prediction accuracy indicators of several commonly used 
neural network algorithms Radial Basis Function (RBF) neural 
network, Backpropagation (BP) neural network, Elman (ELMAN) 
neural network and LSTM neural network were shown in Table 7. 
For neural network algorithms, it was common to have algorithms 
characterized by high complexity and stochasticity. The higher 
complexity of neural network algorithms and the presence of 
randomness could lead to some important data features being ignored 
when the hybrid strategy learns the data features, which could seriously 
affect the prediction accuracy. The four algorithms, RBF, BP, ELMAN 
and LSTM algorithms, have a prediction accuracy evaluation indicator 
R2 of −3.278, −1.402, −0.055 and −0.387, respectively, which were all 
less than zero. The results show that the four neural network algorithms 
have a prediction result error even larger than the error between the 
mean of the training set and the test set of the original data during the 
prediction of energy consumption of healthcare buildings with a small 
sample size of data. Therefore, it was necessary to choose a simple 
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TABLE 6  Differences in predictive performance between the FOA-SVR hybrid strategy and five single algorithms.

Algorithms MAPE RMSE PCC MAE MSE R2

FOA-SVR 36.85142 0.155862 0.931139 0.142602 0.024354 0.854803

SVR 50.19433 0.226219 0.931515 0.197669 0.051175 0.694899

K-NN 117.2943 0.537727 0.507633 0.380285 0.28915 −0.72389

ARIMA 111.0664 0.511842 0.847215 0.432404 0.261983 −0.56192

DT 58.65319 0.214588 0.886107 0.186706 0.046048 0.725467

RF 72.37495 0.389401 0.617675 0.283107 0.151633 0.095977

TABLE 7  Neural network predicts outpatient building electricity usage data.

Algorithms MAPE RMSE PCC MAE MSE R2

RBF 274.619 0.847 0.512 0.644 0.718 −3.278

BP 151.951 0.635 0.532 0.497 0.403 −1.402

ELMAN 84.604 0.421 0.797 0.317 0.177 −0.055

LSTM 95.599 0.482 0.517 0.372 0.233 −0.387

but strong data feature recognition capability such as SVR algorithm 
in the prediction process of small sample dataset. In contrast, the 
optimization algorithm does not increase the complexity of the SVR 
algorithm and optimizes the selection of hyperparameters of the SVR 
algorithm only based on the data characteristics. Optimization of SVR 
algorithm using optimization algorithm was a feasible solution for 
predicting electricity consumption in hospital outpatient buildings. 

4 Conclusion

This work explores the effectiveness of an SVR prediction 
algorithm optimized with hyperparameters by the FOA in terms 
of predicting electricity consumption of outpatient buildings in 
hospital. The search space was enlarged by increasing the number 
of firefly populations to improve the possibility of finding a globally 
optimal solution. At the same time, the effect of randomness of 
the optimization algorithm was reduced by ensemble learning to 
improve the prediction accuracy of the algorithm. The specific 
conclusions were as follows. 

1. The performance of the FOA-SVR hybrid strategy tends 
to stabilize as the firefly population size increases, with a 
slight increase in accuracy and a significant decrease in 
computational performance when the population size exceeds 
30. The optimal number of fireflies during the prediction of 
electricity consumption in outpatient buildings with a small 
sample size of data was 30. The incremental computational cost 
does not provide a reasonable return on prediction accuracy 
after the population size was greater than 30.

2. The FOA-SVR hybrid strategy with a firefly population size 
of 30 achieves a balance between prediction accuracy and 

computational efficiency, which was well suited for small-
sample data scenarios such as the prediction of electricity 
consumption in hospital outpatient buildings. The FOA-
SVR hybrid strategy consistently outperforms the single 
SVR algorithm and other optimization-based SVR algorithms 
(SSA-SVR, SOA-SVR) in terms of prediction accuracy and 
robustness under different data lengths. Data features were 
difficult to be extracted by the hybrid strategy when the data 
volume was lower than 36. The prediction accuracy of the 
FOA-SVR hybrid strategy rises significantly when the sample 
capacity was increased appropriately.

3. For the prediction process of electricity consumption in 
hospital outpatient building with small sample data volume, 
the complexity and stochasticity of the hybrid strategy increase 
the difficulty of data feature extraction, and the prediction 
accuracy decreases significantly. In a single algorithm, the SVR 
algorithm data feature extraction capability was strong. The 
FOA-SVR hybrid strategy optimized by the FOA improved 
the seven accuracy indicators to 36.85142, 0.156, 0.931, 
0.143, 0.024, and 0.855, respectively, with the best results. 
When comparing different single prediction algorithms, it 
was evident that simple algorithms such as SVR optimized 
using FOA were more effective than complex neural network 
algorithms (RBF, BP, ELMAN, LSTM) in a small sample data 
environment. Neural network algorithms have difficulty in 
capturing the underlying data features, resulting in poorer 
predictions.

In conclusion, the FOA-SVR hybrid strategy demonstrates 
promising performance in predicting electricity consumption in 
hospital outpatient buildings under limited data conditions, as

Frontiers in Energy Research 11 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1566664
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Liu et al. 10.3389/fenrg.2025.1566664

evidenced by the empirical results presented in this study. The results 
show that combining SVR with optimization algorithms such as 
FOA was a feasible approach to improve the accuracy of the hybrid 
strategy without introducing unnecessary complexity, making it a 
practical choice for similar prediction tasks in small sample data 
environments.
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Nomenclature

Variant

b The bias term

Ci The penalty coefficient

K(z i,x) The Gaussian kernel function

Pi The position of firefly

Pi
∗ The position of firefly i after updating

rij The Euclidean distance between fireflies i and j

xnormalized The normalized electricity consumption

xoriginal The electricity consumption after inverse normalization

ŷ The projected electricity consumption

z i The support vectors

αi and αi
∗ The Lagrange multipliers

β0 The initial attraction

βij The updated attraction

γi, The kernel function parameter

εi The insensitivity zone

θ The attraction decay coefficient

δ The dynamic step factor
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