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Introduction: To address the dilemma that the small sample size of hospital
energy consumption data makes it difficult to predict short-term electricity
consumption, a combination of the Firefly Optimization Algorithm (FOA) and
the Support Vector Regression (SVR) algorithm, i.e.,, FOA-SVR, was proposed
in this work.

Methods: By combining standardized sample data with the FOA to optimize
the hyperparameters of the SVR model, the proposed approach enhances the
model’s ability to capture the variation characteristics of hospital electricity
consumption.

Results: The FOA-SVR hybrid strategy achieves an optimal balance between
prediction accuracy and computational efficiency when the number of fireflies
was 30. The prediction accuracy indicator (Coefficient of Determination, R?)
was 0.855, respectively. Under these conditions, the hybrid strategy has the
dual advantage of running faster than the existing Sparrow search algorithm,
and the traditional seagull optimization algorithm, with run times reduced by
21.192 s and 14.612 s, respectively. When the length of electricity consumption
data was greater than or equal to 36, R? of the FOA-SVR hybrid strategy was
higher than 0.849.

Discussion: The FOA-SVR hybrid strategy realizes a kind of efficient prediction of
power consumption in medical office buildings with a small sample data volume,
which provides theoretical and data support for the reasonable optimization of
hospital energy use structure and has practical significance for the intelligence
of hospital energy management.

KEYWORDS

firefly optimization algorithm, support vector regression, small sample size, electricity
consumption projections, hospital outpatient building

1 Introduction

In modern society, hospitals, as important public service facilities, were concerned
about their energy consumption (Mazzeo et al., 2023; Roletto et al., 2024; Patil and
Kini, 2024; Ghoreishinejad et al., 2023). Especially in outpatient clinic buildings, power
consumption was usually high and unstable due to high patient turnover, irregular
equipment working hours and extensive use of energy-consuming equipment such
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as air conditioners. In addition, the seasonal character of electricity
consumption in outpatient buildings was brought about by climatic
variations in different seasons (Liu et al., 2022). Effective prediction
of power consumption in hospital outpatient buildings not only
helps to improve energy efficiency and reduce operating costs, but
also helps hospital managers to optimize the power plan and ensure
the stability and security of energy supply (Seckiner and Kog, 2022;
Soyler and Izgi, 2022; Cyganska and Kludacz-Alessandri, 2021).

The complexity of time series was an important theme in
the available reports (Ponce-Flores et al, 2020). Time series
data were affected by a combination of environmental factors
and were often characterized by non-linearity (Wang et al,
2023; Satapathy et al, 2024). The complexity of time series
features was brought about by nonlinear features (Wu et al,
2024). Econometric, statistical and mathematical methods as
traditional forecasting methods have low forecasting accuracy in
terms of their inability to better identify non-linear features in
electricity consumption data (Khan et al., 2020). Machine learning
algorithms could effectively solve complex nonlinear problems
and predict better than traditional prediction methods (Weron,
2014; Yu et al, 2015; Marquez-Chamorro et al., 2015). As an
important branch in the field of machine learning, the task
of time series prediction was explored in depth. Due to the
availability of large amounts of historical data and the need
for accurate prediction of future data, more and more machine
learning strategies were being developed and used for time series
prediction tasks (Wang et al., 2022).

For instance, Abbasimehr et al., (2020) used Long Short-Term
Memory networks (LSTM) neural network algorithm to identify
highly fluctuating features in time series and effectively improve
the business competitiveness of enterprises (Abbasimehr et al,
2020). Li et al,, (2021) analyzed the differences in building energy
consumption in different climate zones and realized short-term
energy consumption prediction (Li et al., 2021). Ghimire et al,
(2024) extracted features of actual electricity demand data through
a machine learning algorithm to realize an accurate prediction of
electricity demand for energy industry operations, which provides
an auxiliary decision-making tool for the development of the
energy industry (Ghimire et al., 2024).

Building energy usage data could be used for building
energy consumption time series prediction tasks to optimize
energy management (Abrishambaf et al., 2018; Kim and Cho,
2019; Zhuang et al., 2023). Hospital outpatient building power
consumption data was collected infrequently, often on a monthly
basis. With the rapid socio-economic development, the total
energy consumption of various industries was increasing year
by year (Khalil et al,, 2024; Zhu et al, 2022). Electricity usage
data in hospital buildings was highly time-dependent (Gordillo-
Orquera et al,, 2018). The reference value of early data was extremely
low. As a result, valid data on electricity consumption in hospital
outpatient buildings mostly belong to small data volume samples.
Most of the machine learning based prediction task methods
were difficult to extract the data features in small data volume
samples, and the credibility of the prediction results was low
(Lin et al., 2023). Therefore, there was an urgent need for a short-
term time series forecasting algorithm that was stable, has high
forecasting accuracy and was suitable for small data volume samples
(Chang et al., 2016; Wu et al., 2019).
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Neural networks were good at recognizing nonlinear features
in time series, but there were risks of stochasticity and overfitting
with smaller amounts of data (Cheng et al., 2023; Zhang et al,
2022). Some more stable and structurally simple algorithms were
more suitable for the task of predicting electricity consumption in
outpatient buildings. Due to the introduction of insensitive spaces
&, Support Vector Regression (SVR) algorithms were gradually
becoming the method for time series forecasting tasks with
nonlinear characteristics (Wu et al., 2023; Liu and Dai, 2023). SVR
algorithm was suitable for identifying data features from small data
volume samples (Zhang et al., 2018). The high prediction accuracy
of the SVR algorithm in the electricity consumption prediction task
was also demonstrated (Taghavifar and Mardani, 2014; Che et al.,
2012; Hu et al, 2015; Taghavifar et al., 2015; Zapirain et al.,
2022). However, the SVR algorithm was mainly affected by three
hyperparameters, the penalty coefficient C, the kernel function
parameter y and the insensitive space e. Improper selection of
hyperparameter values could lead to overfitting or underfitting of
the algorithm. Therefore, the key to improve the prediction accuracy
of the SVR algorithm lies in obtaining the global optimal solutions
of the three hyperparameters (Peng et al., 2023). However, there was
still no generalized guideline on how to choose the globally optimal
solution for the three hyperparameters (Schélkopf et al., 1997). On
this basis, introducing an optimization algorithm to find the global
optimal solution of the hyperparameters was a feasible solution.

Hu etal. developed a Particle Swarm Optimization-Support
Vector Regression (PSO-SVR) model in their study on syrup
brix prediction, using Particle Swarm Optimization to optimize
the penalty coeflicient and kernel parameters of Support Vector
Regression, and demonstrated its excellent predictive performance
(Hu et al., 2023). Jaafari et al. introduced the Grey Wolf Optimizer-
Support Vector Regression (GWO-SVR) model in their study on
identifying high-growth areas for poplar cultivation. Compared
to the PSO-SVR model and the standalone SVR model, the
GWO-SVR model demonstrated superior predictive performance
(Jaafari, 2023). Javed etal. introduced the Firefly Optimization
Algorithm-Support Vector Regression (FOA-SVR) model in
their study on predicting the compressive strength of steel fiber-
reinforced concrete. Compared to the PSO-SVR and GWO-
SVR models, the FOA-SVR model demonstrated
predictive performance on a small-sample dataset of 304 instances,

superior

suggesting that it may offer certain advantages under limited data
conditions (Javed et al., 2024). However, in Javed’s study, only two
hyperparameters of the SVR model were optimized. Expanding the
number of optimized hyperparameters could potentially enable a
more precise search for the global optimum.

In this work, a novel FOA-SVR hybrid strategy was proposed
by integrating the Firefly Optimization Algorithm (FOA) with
the Support Vector Regression (SVR) model to optimize its three
key hyperparameters. This strategy leverages the global search
capability of FOA to enhance the predictive performance of SVR.
The effectiveness of the proposed hybrid model was validated using
real-world electricity consumption data from hospital outpatient
buildings under limited data conditions. The study compared
the effects of different optimization algorithms on the predictive
accuracy of SVR, examined the impact of data length on prediction
performance, and further demonstrated the adaptability of SVR
by comparing the optimized model against other commonly used
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FIGURE 1
Three years of electricity consumption data for hospital outpatient build

algorithms. These results collectively confirm the applicability and
effectiveness of the proposed FOA-SVR strategy in small-sample
scenarios.

The rest of the paper was organized as follows. In Section 2,
describes data sources and preprocessing, SVR algorithm, SVR
algorithm optimized by FOA. In Section 3, the effects of firefly
population sizes and data lengths on prediction accuracy were
compared. Meanwhile, the excellence of the FOA-SVR hybrid
strategy was verified by different optimization algorithms and
traditional algorithms. In Section 4, the conclusion was given.

2 Materials and methods

2.1 Data acquisition and data
pre-processing

In this work, a typical hospital in China was taken as an example.
By investigating the energy consumption data of the outpatient
building in hospital for a cumulative period of 3 years, the month-
by-month electricity consumption of the outpatient building in
hospital was obtained. Although the dataset used is relatively limited
in size, it reflects the common constraints in data availability
within hospital energy systems. The aim of this work is to develop
predictive modeling strategies that remain effective under such
limited data conditions, which are frequently encountered in real-
world medical settings. The major energy-consuming equipment
in the outpatient building includes ventilators, fully automated
biochemistry analyzers, modular biochemistry and immunoassay
systems, centrifuges, and water treatment units. The cumulative 3-
year electricity consumption of the outpatient building in hospital
was shown in Figure 1.

By analysis of data, the monthly power consumption of the
outpatient building of the hospital was more than 1 x 10* kWh.
The order of magnitude of electricity consumption was at 10%, and
the range of data characteristics varies widely. Differences in the
magnitude of the gradients of different features lead to inconsistent
convergence speeds of the algorithm, or even to local optimal
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solutions. The normalization of the data makes the values of each
feature in the same magnitude, and the optimization process was
more stable and converges faster. Through data normalization, it was
ensured that all features were within the same numerical range to
avoid the serious impact on the hybrid strategy prediction accuracy
caused by the large numerical range of some features. In this work,
the data normalization algorithm was selected to preprocess the
electricity consumption data. The normalized data range was [-1,
1]. Finally, the prediction results were inverse normalized to obtain
the predicted electricity consumption of the corresponding order
of magnitude. Data normalization and inverse normalization were
calculated by Equations 1, 2, respectively.

B x —min (x)
*nor = max (x) — min (x) M)
Xori = 0.5 X (%0, + 1) X (max (x) — min (x)) + min (x) (2)

where x was the electricity consumption of the hospital outpatient
building, x, .. was the normalized electricity consumption with the

value range of [-1, 1], and x

nor
ori Was the electricity consumption after
inverse normalization.

All experiments in this study were carried out on a laptop
with an AMD R-7945HX processor and an 8 GB RTX4060 GPU.
This hardware setup offers a good balance between computational
efficiency and practical feasibility, supporting potential integration

into real-world hospital operations.

2.2 Predictive principles of SVR algorithm

SVR was a regression method based on the principle of support
vector machine, which was widely used to deal with nonlinear
regression and prediction problems. By introducing the kernel
function parameter y (usually associated with kernel functions
such as Gaussian kernel, polynomial kernel, etc.), the data was
mapped by the SVR algorithm from a low-dimensional space to
a high-dimensional feature space. In higher dimensional spaces,
linear regression algorithms could be used to fit complex nonlinear
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relationships. The complexity of the SVR algorithm was controlled
by the penalty coeflicient C. By varying the range of C, the data fitting
ability was balanced with the generalization ability and overfitting of
the SVR algorithm was avoided. In addition, the SVR has the width
¢ of the error-insensitive region. By allowing a range of prediction
errors to be ignored, the robustness of the SVR algorithm to noise
was enhanced. The SVR algorithm has some advantages when
dealing with small data sets. However, the computational complexity
and computational cost of SVR increase significantly when the
dataset size was large. In addition, SVR was limited by support
vectors and was ineffective on large-scale datasets. SVR algorithm
prediction accuracy was affected by hyperparameter values. The
key hyperparameters of the SVR algorithm include the penalty
coefficient C, the insensitive region ¢, and the kernel function
parameter y. There were differences in the effects of different
hyperparameters on the prediction accuracy of the SVR algorithm.
There were interactions between different hyperparameters. The
prediction accuracy of SVR algorithms could be improved by
reasonable values of hyperparameters. The principle of the SVR
algorithm was described by Equation 3

y= z (2~ ;" )K(z;,x) + b = Z (@ —a;")exp (—Y"Zi - x”z) +b
i=1 i=1
(3)

where y was the predicted value, m was the number of support

vectors, a; and «;* were Lagrange multipliers, K(z;,x) was the

i
Gaussian kernel function, z; was the support vectors, b was the bias
term, and y was the kernel function parameter, which was used to

control the width of the Gaussian kernel.

2.3 Predictive principles of the FOA-SVR
hybrid strategy

The amount of data on electricity consumption in hospital
outpatient buildings was small, and the ability of the prediction
hybrid strategy to extract data features directly determines the
prediction accuracy. The key hyperparameters that affect the feature
extraction capability of the SVR algorithm were the penalty
coeflicient C, the kernel function parameter y and the insensitivity
zone ¢. In this work, a FOA-SVR hybrid strategy was proposed where
the hyperparameter values of the SVR algorithm were optimized
by the FOA to improve the prediction accuracy for small data
volume samples. The prediction accuracy of the established FOA-
SVR hybrid strategy was influenced by the number and type
of optimization hyperparameters on. The three hyperparameters
were co-optimized and the local optimal solution probability
was reduced.

FOA was an intelligent optimization algorithm based on the
luminous behavior of fireflies in nature. The optimal solution of
the FOA was obtained by modeling mutual attraction and random
motion search between fireflies. Fireflies were attractive to other
individuals and the attraction was proportional to the intensity
of their luminescence and inversely proportional to distance. The
brightness of a firefly was related to the value of its objective
function. A group of fireflies was randomly initialized, with each
firefly representing a possible solution, and the dimensions of the
initial solutions were the same as the number of hyperparameters
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to be optimized. The brightness of each firefly was calculated
(brightness was inversely proportional to the value of the objective
function). During the hyperparameter optimization, the difference
in brightness of each firefly from the other fireflies was calculated.
If a brighter firefly was present, the current firefly was attracted
and moves toward the new firefly. Each individual of FOA
represents a set of hyperparameter combinations. The position
of the firefly was continuously updated in FOA and the hybrid
strategy performance was incrementally improved. Eventually, the
hyperparameter combination corresponding to the brightest firefly
was selected as the optimal solution. The principle of the FOA-SVR
hybrid strategy for predicting electricity consumption in outpatient
buildings was shown in Figure 2.

In the FOA-SVR hybrid strategy, the penalty coefficient C, the
kernel function parameter y, and the insensitivity zone ¢ were co-
optimized. The optimization objective was set to minimize the root
mean square error of the SVR algorithm. These three hyperparameters
are set as the vector P; as shown Equation 4

Pi=[Cyype] (4)

The adaptational degree of the candidate solution P; was
calculated by Equation 5

RMSE, =

n
1 . .
=2 Gi(P)-7) 6]
j=1
The attractiveness of fireflies 8, was calculated using Equation 6

ﬁ;‘j =, exp (—9",?]-) (6)

where B, is the initial attraction, 6 was the attraction decay
coefficient, and r;; was the Euclidean distance between fireflies i and
j.

If the adaptation of firefly i was lower than that of firefly j, firefly
i was attracted and moves. The position of the firefly during its
movement is calculated by Equation 7

Py =P+p,+ (P, +P;) + 8(rand(1, dim) - 0.5) (7)

where P;* is the position of firefly i after updating, § was the dynamic
step factor, and (rand(1, dim) —0.5) was the random perturbation
term. When the adaptation was minimized, the values of the
three hyperparameters C, ¢, and y corresponding to P; were the
corresponding globally optimal solutions.

3 Results and discussions

3.1 Electricity consumption projection for
outpatient building

The number of individuals involved in the search in each
generation in FOA was determined by the number of individual
fireflies. The higher the number, the more random the initial position
of the fireflies, the search space was enlarged, which could better
avoid the local optimum. The computational and time complexity of
the FOA-SVR hybrid strategy increases accordingly. The predictive
performance indicator s of the FOA-SVR hybrid strategy for the
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FIGURE 2

Schematic diagram of FOA-SVR hybrid strategy for electricity consumption prediction.

electricity consumption of the outpatient building when the number
of fireflies was 0, 5, 15, 20, 25, 30, 35, and 40 were shown in Table 1.
It was worth noting that the process of optimization algorithm
for finding the globally optimal solution was stochastic in nature.
The idea of integrated learning was introduced in the FOA-SVR
hybrid strategy. For each firefly population algorithm, each was
predicted ten times and the results were averaged to reduce the
error of randomness on the performance of the FOA-SVR hybrid
strategy. A firefly count of 0 represents an unoptimized SVR
algorithm. To comprehensively evaluate model performance, a set
of complementary metrics was adopted. Root Mean Square Error
(RMSE), Mean Absolute Error (MAE), Mean Squared Error (MSE),
and Mean Absolute Percentage Error (MAPE) were used to assess
the magnitude of prediction errors from both absolute and relative
perspectives. In parallel, the Coefficient of Determination (R*) and
Pearson Correlation Coefficient (PCC) were employed to quantify
the correlation and trend similarity between the predicted and actual
values. Among them, R? was selected as the primary evaluation
metric in this study, as it emphasizes the agreement of temporal
variation patterns, which is particularly important in short-term
energy forecasting scenarios. Together, these metrics provide a
balanced assessment of both the accuracy of numerical predictions
and the consistency of variation patterns. The PCC values under the
eight conditions were all above 0.9, indicating that the FOA-SVR
hybrid strategy has a good ability to characterize the variation of
electricity consumption data in hospital outpatient buildings with
a small sample data size. The prediction accuracy of the FOA-
SVR hybrid strategy was much lower for firefly counts of 0 and
5 than for the other six cases. The number of fireflies was too
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small and the available optimization range of SVR hyperparameters
was insufficient. The hyperparameter optimization result deviates
from the global optimal solution by a large margin and negative
optimization occurs. In addition, the prediction accuracy gradually
increased with the increase in firefly population size. The R? is
highlighted as a representative measure of the alignment between
predicted and actual trends, given its interpretability in assessing
directional consistency. This emphasis is complementary to the
error-based indicators, which are used throughout the study to
provide a balanced evaluation of predictive accuracy. Taking R? as
an example, this indicator was 0.764 and 0.804 for firefly counts
of 10 and 15, respectively. The R* of the single SVR algorithm was
only 0.687, therefore, the prediction accuracy of the SVR algorithm
was significantly improved by the FOA. The R* was 0.818, 0.835,
and 0.855 for firefly counts of 20, 25, 30, and 35, respectively.
Within this range, the prediction accuracy of the FOA-SVR hybrid
strategy increased synchronously with the number of fireflies. The
FOA-SVR hybrid strategy has high accuracy in predicting electricity
consumption data for hospital outpatient buildings. The prediction
accuracy of the FOA-SVR hybrid strategy increased with the number
of fireflies and stabilized at a population size of 30 When the firefly
population was 35 and 40, the predictive accuracy indicator R*
of electricity consumption in the outpatient building was around
0.855. At this time, the effect of firefly population increments on
FOA-SVR hybrid strategy predictions was weak. The prediction time
of the FOA-SVR hybrid strategy increased dramatically as firefly
populations increased. Therefore, the FOA-SVR hybrid strategy has
the advantage of both prediction accuracy and computation time
for predicting the electricity consumption of hospital outpatient
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TABLE 1 Prediction accuracy of the FOA-SVR hybrid strategy under different firefly population sizes.

Population size MAPE RMSE ’ PCC ’ MAE MSE R?
0 Firefly 50.19433 0.226219 0.931515 0.197669 0.051175 0.694899
5 Firefly 58.39602 0.226384 0.874546 0.196776 0.052565 0.686614
10 Firefly 46.91373 0.195058 0.888519 0.171743 0.040541 0.758296
15 Firefly 432594 0.1798 0.919565 0.15916 0.032813 0.804371
20 Firefly 41.00853 0.173804 0.915341 0.153341 0.030594 0.817603
25 Firefly 37.63501 0.165552 0.921539 0.145855 0.027634 0.835247
30 Firefly 36.85142 0.155862 0.931139 0.142602 0.024354 0.854803
35 Firefly 35.17414 0.15579 0.935207 0.138282 0.024343 0.854872
40 Firefly 38.16317 0.161734 0.927174 0.144768 0.026225 0.84365

buildings with small data volume when the firefly population
size was 30.

The results, prediction accuracy indicators, and
hyperparameters of the ten predictions of the FOA-SVR hybrid
strategy at a firefly population size of 30 were shown in Table 2,
Tables 3, 4. In these tables, the FOA was more effective for
hyperparameter optimization of SVR algorithm. The prediction
accuracy of the optimized hybrid strategy was higher and the
prediction results were stable. However, the hyperparameters
obtained by the optimization algorithm were not always optimal
solutions. In the 9th iteration prediction, the penalty coefficient
C and kernel function parameter y obtained by FOA show
outliers, which were significantly different from the other 9
optimization results. Due to the anomalies in the penalty coefficient
C and the kernel function parameter y, the 9th prediction slips
significantly in value. This highlights the necessity of repeated
experiments, as single-run results may be skewed by the inherent
randomness of metaheuristic optimization. Performing multiple
independent runs allows for a more reliable evaluation of model
performance and helps mitigate the influence of outlier parameter
combinations. The predicted resultant consumptions of the FOA-
SVR hybrid strategy for the electricity consumption of the outpatient
building were 39,394.39 kWh, 38,840.88 kWh, 53,964.86 kWh, and
59,744.73 kWh, respectively. The predictive accuracy indicator s of
the FOA-SVR hybrid strategy also indicates the lack of accuracy of
the predictive results. In particular, the coefficient of determination
R? slipped to 0.82. This error reduces the prediction accuracy of
the FOA-SVR hybrid strategy when the number of fireflies was 30.
Therefore, it was reasonable and necessary to exclude the effect of
stochasticity in the FOA-SVR hybrid strategy through integrated
learning of multiple predictions. To verify the model’s robustness
under limited data conditions, ten independent runs were
conducted using randomized training/testing splits at a ratio of 8:1.
The prediction performance was assessed using MAE and RMSE,
and the results were reported as mean + standard deviation. The
model achieved MAE = 4516.05+489.44 and RMSE = 4936.01 +
260.84, indicating stable and consistent performance across different
data partitions.

Frontiers in Energy Research

Figure 3 demonstrates the difference between the predicted
results of the FOA-SVR hybrid strategy for the electricity
consumption of the hospital outpatient building and the predicted
results of the single SVR algorithm with respect to the true value
when the number of fireflies was 30 and the maximum number of
iterations was 20. The FOA-SVR hybrid strategy data trend change
fitting performance was good. Based on the SVR algorithm, the
prediction results of the FOA-SVR hybrid strategy were closer
to the real values, and the prediction accuracy was significantly
improved. In addition, it could be seen from the error bars of
the prediction results of the FOA-SVR hybrid strategy that the
prediction results of the FOA-SVR hybrid strategy were more stable
without large fluctuations and were generalizable. It was worth
noting that although the prediction accuracy of the FOA-SVR
hybrid strategy was higher than the prediction accuracy of the
single SVR algorithm, there were still some differences from the
true values in the numerical values of the prediction results. The
difficulty of extracting data features was increased by a smaller
sample size of data. The FOA-SVR hybrid strategy has strong data
feature extraction capability, but was still limited by too small a data
sample size.

3.2 Effect of optimization algorithms on
the SVR prediction accuracy

When the population size was 30, the prediction accuracy
indicators of three different algorithms, Sparrow Search Algorithm
(SSA), Optimization Algorithm (SOA) and FOA,
after optimizing the hyper-parameters of the SVR algorithm

Seagull

were shown in Table 5. All three optimization algorithms optimize
the penalty coefficient C, the kernel function parameter y, and
the insensitivity band ¢ of the SVR algorithm. The SVR algorithm
predicts results without randomness and does not require integrated
learning. To ensure the feasibility of a side-by-side comparison with
the FOA-SVR hybrid strategy, the SOA-SVR algorithm, and the
SSA-SVR hybrid strategy runtimes, the SVR algorithm runtimes
were scaled up by a factor of ten. The single SVR algorithm has a
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TABLE 2 Ten prediction results from the FOA-SVR hybrid strategy.

10.3389/fenrg.2025.1566664

Prediction round 33rd month 34th month 35th month 36th month

1st 44,108.4 38,182.65 57,336.46 66,482.95

2nd 43,264.15 38,535.58 57,769.56 66,912.61

3rd 43,206.03 39,136.52 58,607.93 67,202.95

4th 43,256.84 39,943.37 58,158.02 64,413.3

5th 41,030.6 37,297.49 56,370.96 66,757.9

6th 43,599.88 39,335.77 58,156.26 65,908.17

7th 43,882.84 39,512.61 57,297.28 63,374.49

8th 42,841.18 39,229.16 58,065.46 65,714.44

9th 39,271.84 38,870.93 58,554.57 67,407.22

10th 41,802.3 39,522.16 59,001.35 66,843.59

TABLE 3 Accuracy indicators of the ten predictions of the FOA-SVR hybrid strategy.
Prediction round ‘ MAPE ‘ RMSE PCC MAE MSE R2

1st 32.45844 0.150091 0.9345 0.132501 0.022527 0.865694
2nd 36.14044 0.153155 0.930072 0.141925 0.023457 0.860154
3rd 36.1347 0.153186 0.931845 0.142801 0.023466 0.860098
4th 31.51891 0.151294 0.943366 0.130299 0.02289 0.863533
5th 45.14185 0.167151 0.914684 0.159603 0.027939 0.833428
6th 32.8892 0.1501 0.938184 0.13461 0.02253 0.865677
7th 27.99432 0.151878 0.950844 0.120551 0.023067 0.862477
8th 35.26795 0.150886 0.935329 0.138945 0.022767 0.864267
9th 50.788 0.174305 0.906134 0.173796 0.030382 0.818865
10th 40.18041 0.156578 0.92643 0.150984 0.024517 0.853833

simple structure and has a much higher run rate than the superior
SSA-SVR, SOA-SVR, and the FOA-SVR hybrid strategy, with only
9.550 s required for ten runs. The SOA-SVR hybrid strategy has high
prediction accuracy with seven prediction accuracy indicator s of
36.851,0.156,0.931, 0.143, 0.024, and 0.855 for MAPE, RMSE, PCC,
MAE, MSE, and R?, respectively, but the runtime was longer with a
total of 50.577 s. The SOA-SVR hybrid strategy has a high prediction
accuracy of 36.851,0.156,0.931, 0.143, 0.024, and 0.855, respectively.
The prediction accuracy of the FOA-SVR hybrid strategy was
slightly improved from that of the SOA-SVR algorithm, with the
seven indicators being 36.851, 0.156, 0.931, 0.143, 0.024, and 0.855,
respectively. The total duration of the FOA-SVR hybrid strategy run
was reduced to 29.365 s. The FOA-SVR hybrid strategy has higher
accuracy as well as lower computational cost. It was worth noting
that the SSA-SVR hybrid strategy computes a total time of 43.997 s,
which was time-consuming, but the prediction accuracy was rather

Frontiers in Energy Research

inferior to that of the single SVR algorithm. Randomness and
updating strategies may have caused the SSA-SVR hybrid strategy
search direction to deviate from the globally optimal solution, and
errors were thus generated. Therefore, the FOA-SVR hybrid strategy
was more suitable for predicting electricity consumption in hospital
outpatient buildings with small data sample size.

The difficulty of the hybrid strategy in extracting features from
the data was determined by the length of the data. The more
data features the hybrid strategy extracts, the more accurate the
prediction results are. For the electricity consumption of hospital
outpatient buildings, their energy consumption data collection was
usually calculated on a monthly basis with a small sample size of
data. This work collects energy consumption data for 3 years totaling
36 months. The number of samples collected fluctuates up and
down within reasonable limits depending on demand. Therefore,
validating the generalizability of the FOA-SVR hybrid strategy over
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TABLE 4 Hyperparameters for ten predictions of the FOA-SVR
hybrid strategy.

c_|

B

Prediction round y
Ist 4241434 0.582067 0.107948
2nd 5.67813 0.556514 0.103036
3rd 5.524868 0.54574 0.096138
4th 3.858943 0.688794 0.087348
5th 8.06834 0.516039 0.114219
6th 4169121 0.621413 0.094561
7th 3.010256 0.744377 0.094248
8th 5758163 0.589669 0.095398
9th 11.25808 0.453056 0.095019
10th 7.747713 0514232 0.090986

~
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FIGURE 3
Prediction results comparison of the FOA-SVR hybrid strategy and SVR
algorithm.

different data lengths was a must. Fluctuations in building energy
consumption were characterized by seasonality. Seasonality was
assumed to be largely characterized over a 3-year data volume.
Random perturbations were added to the 36 raw data to generate
electricity consumption data for the outpatient building with the
same trend but different values. This was repeated twice to obtain
electricity consumption data for the outpatient building for a total of
9 years totaling 108 months. Data sets of different data lengths were
obtained using 18 months as the basic interval. In particular, 36 raw
data were also clipped to explore the effect of smaller data samples
on prediction accuracy. Again, the data were clipped at 18-month
intervals to obtain the first 18 data of the original data as a control
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group with a much smaller sample data size. The trend images for
data lengths of 18, 36, 54, 72, 90, and 108 were shown in Figure 4.

The difference between the predicted and true values for the
six data lengths was shown in Figure 5. To ensure the conditional
consistency of the comparison process, the ratio of the training
set to the test set remained 8:1. Figures 5a—f shows the difference
between the predicted and true values of the four algorithms
for data lengths of 18, 36, 54, 72, 90, and 108, respectively.
As shown in Figure 5, the prediction accuracy generally improved
with longer data sequences. Notably, the model trained on 36-
month data did not produce the best results, suggesting that no
overfitting occurred at this data length. These consistent trends
across different configurations provide supporting evidence for the
statistical reliability of the results. However, when the data length
was 18, the SVR algorithm fails to extract the data features at all
and the prediction accuracy indicator R? was —3.727. The FOA-
SVR, SOA-SVR and SSA-SVR algorithms lost a large number of
data features. The prediction accuracy indicators R? of the three
combined algorithms were 0.282, 0.282 and 0.270, respectively.
The FOA-SVR and SOA-SVR algorithms have higher prediction
accuracy when the data length was 36. The prediction accuracy
indicators R? of both combined algorithms exceeds 0.83. The SSA-
SVR and SVR algorithms had similar predictive effects but lower
predictive accuracy, with none of the predictive accuracy indicator
R? size exceeding 0.7. All three optimized SVR algorithms accurately
identified the data features when the data length was greater
than 72. The prediction accuracy indicator R? of the prediction
results of the three combined algorithms exceeded 0.96. It was
worth noting that in this work, the FOA-SVR hybrid strategy
generalizes better than the other two optimization algorithms, and
the prediction accuracy indicator, R2, was stable above 0.99. The
prediction accuracy indicator R? also improves to near 0.9 when
the training set data of the single SVR algorithm was greater than
72, which was a higher prediction accuracy, but not as good as the
optimized SVR algorithm. Therefore, the FOA-SVR hybrid strategy
was more suitable for the prediction of electricity consumption in
hospital outpatient buildings with small sample data size compared
to other combined algorithms and single SVR algorithm.

3.3 Effect of single algorithms on
electricity consumption forecasting results

The differences between the predicted results and the true values
of the FOA-SVR hybrid strategy and the five single prediction
algorithms were shown in Figure 6. The five single algorithms
were SVR, K-Nearest Neighbors (KNN), Autoregressive Integrated
Moving Average (ARIMA), Decision Tree (DT) and Random Forest
(RF). In this figure, the original data samples were small, and the
KNN, ARIMA and RF algorithms were difficult to recognize the
characteristics of data changes, and the prediction effect was poor.
The VR algorithm and the DT algorithm were better predictors and
fit the data of the test set better. However, these two algorithms were
still inferior to the FOA-SVR hybrid strategy.

The seven prediction accuracy evaluation indicators for the
FOA-SVR hybrid strategy and five single prediction algorithms
were shown in Table 6. The coefficient of determination R? of
both SVR algorithm and DT algorithm was around 0.7 with
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TABLE 5 Predictive performance of SVR algorithm under different optimization algorithms.

Algorithms MAPE RMSE ’ PCC MAE MSE ’ R? Time
FOA-SVR 36.851 0.156 0.931 0.143 0.024 0.855 29.365 s
SOA-SVR 34.004 0.157 0.939 0.137 0.025 0.851 50.557 s
SSA-SVR 63.796 0.237 0.853 0.216 0.056 0.665 43.997 s

SVR 50.194 0.226 0.932 0.198 0.051 0.695 0.955s
12
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FIGURE 4
Different lengths of generated data based on electricity consumption characteristics of outpatient buildings.

high prediction accuracy. The anomaly of negative coeflicient of
determination R* for the KNN algorithm and ARIMA algorithm
indicates that both prediction algorithms completely failed to
identify the intrinsic correlation of the electricity consumption data
of the hospital outpatient building. Under this condition, the KNN
algorithm and ARIMA algorithm were not as effective as the simple
mean algorithm in prediction. The RF algorithm has a coeflicient
of determination R? of 0.096, which was a weak explanation of the
variables. The difference between its predicted and actual values
of electricity consumption in the hospital outpatient building was
explained by the predictive accuracy evaluation indicator R* for

Frontiers in Energy Research

five single algorithms. In particular, PCC serves as an important
indicator of the linear correlation between predicted and actual
values. The PCC value of the ARIMA algorithm was 0.85 with
strong linear correlation, which was opposite to the results of the
remaining several indicators for evaluating the prediction accuracy
as well as the graphs of the predicted values. The sample data
volume of electricity consumption in hospital outpatient buildings
was small, but the characteristic relationship between the data was
not a single linear relationship. Therefore, a single PCC value does
not indicate the superiority of the predictive algorithm. The PCC
must be combined with several remaining indicators for evaluating
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FIGURE 5

Results of electricity consumption forecasts with different data lengths. (a) 18 months, (b) 36 months, (c) 54 months, (d) 72 months, (e) 90 months, and

(f) 108 months.
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FIGURE 6
Differences in prediction results between the FOA-SVR hybrid strategy
and five single algorithms.

prediction accuracy to make a comprehensive judgment. The SVR
algorithm has a prediction accuracy indicator PCC of 0.93, which
was greater than 0.89 of the DT algorithms, but the prediction of
SVR algorithm is, on the contrary, slightly less effective than the
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DT algorithm. Overall, the ability demand of the hybrid strategy
to extract data features was high in the prediction of electricity
consumption in hospital outpatient buildings with a small sample
size of data. In particular, prediction algorithms with stochastic
nature were difficult to apply to the prediction process with small
sample size of data. The SVR algorithm, with its strong data feature
extraction capability and high prediction accuracy, was suitable
for the process of predicting electricity consumption in hospital
outpatient buildings. The prediction accuracy of SVR algorithms
could be further improved by optimization algorithms.

The prediction accuracy indicators of several commonly used
neural network algorithms Radial Basis Function (RBF) neural
network, Backpropagation (BP) neural network, Elman (ELMAN)
neural network and LSTM neural network were shown in Table 7.
For neural network algorithms, it was common to have algorithms
characterized by high complexity and stochasticity. The higher
complexity of neural network algorithms and the presence of
randomness could lead to some important data features being ignored
when the hybrid strategy learns the data features, which could seriously
affect the prediction accuracy. The four algorithms, RBE BP, ELMAN
and LSTM algorithms, have a prediction accuracy evaluation indicator
R? of -3.278, —1.402, —0.055 and —0.387, respectively, which were all
less than zero. The results show that the four neural network algorithms
have a prediction result error even larger than the error between the
mean of the training set and the test set of the original data during the
prediction of energy consumption of healthcare buildings with a small
sample size of data. Therefore, it was necessary to choose a simple
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TABLE 6 Differences in predictive performance between the FOA-SVR hybrid strategy and five single algorithms.

Algorithms MAPE ’ RMSE ‘ PCC MAE MSE R?
FOA-SVR 36.85142 0.155862 0.931139 0.142602 0.024354 0.854803
SVR 50.19433 0226219 0.931515 0.197669 0.051175 0.694899
K-NN 117.2943 0537727 0.507633 0.380285 0.28915 -0.72389
ARIMA 111.0664 0.511842 0.847215 0.432404 0.261983 -0.56192
DT 58.65319 0.214588 0.886107 0.186706 0.046048 0.725467
RF 72.37495 0.389401 0.617675 0.283107 0.151633 0.095977

TABLE 7 Neural network predicts outpatient building electricity usage data.

Algorithms MAPE RMSE PCC MAE MSE R?
RBF

274.619 0.847 0.512 0.644 0.718 -3.278

BP 151.951 0.635 0.532 0.497 0.403 —-1.402
ELMAN 84.604 0.421 0.797 0.317 0.177 -0.055
LSTM 95.599 0.482 0.517 0.372 0.233 —-0.387

but strong data feature recognition capability such as SVR algorithm
in the prediction process of small sample dataset. In contrast, the
optimization algorithm does not increase the complexity of the SVR
algorithm and optimizes the selection of hyperparameters of the SVR
algorithm only based on the data characteristics. Optimization of SVR
algorithm using optimization algorithm was a feasible solution for
predicting electricity consumption in hospital outpatient buildings.

4 Conclusion

This work explores the effectiveness of an SVR prediction
algorithm optimized with hyperparameters by the FOA in terms
of predicting electricity consumption of outpatient buildings in
hospital. The search space was enlarged by increasing the number
of firefly populations to improve the possibility of finding a globally
optimal solution. At the same time, the effect of randomness of
the optimization algorithm was reduced by ensemble learning to
improve the prediction accuracy of the algorithm. The specific
conclusions were as follows.

1. The performance of the FOA-SVR hybrid strategy tends
to stabilize as the firefly population size increases, with a
slight increase in accuracy and a significant decrease in
computational performance when the population size exceeds
30. The optimal number of fireflies during the prediction of
electricity consumption in outpatient buildings with a small
sample size of data was 30. The incremental computational cost
does not provide a reasonable return on prediction accuracy
after the population size was greater than 30.

2. The FOA-SVR hybrid strategy with a firefly population size
of 30 achieves a balance between prediction accuracy and

Frontiers in Energy Research

computational efficiency, which was well suited for small-
sample data scenarios such as the prediction of electricity
consumption in hospital outpatient buildings. The FOA-
SVR hybrid strategy consistently outperforms the single
SVR algorithm and other optimization-based SVR algorithms
(SSA-SVR, SOA-SVR) in terms of prediction accuracy and
robustness under different data lengths. Data features were
difficult to be extracted by the hybrid strategy when the data
volume was lower than 36. The prediction accuracy of the
FOA-SVR hybrid strategy rises significantly when the sample
capacity was increased appropriately.

3. For the prediction process of electricity consumption in
hospital outpatient building with small sample data volume,
the complexity and stochasticity of the hybrid strategy increase
the difficulty of data feature extraction, and the prediction
accuracy decreases significantly. In a single algorithm, the SVR
algorithm data feature extraction capability was strong. The
FOA-SVR hybrid strategy optimized by the FOA improved
the seven accuracy indicators to 36.85142, 0.156, 0.931,
0.143, 0.024, and 0.855, respectively, with the best results.
When comparing different single prediction algorithms, it
was evident that simple algorithms such as SVR optimized
using FOA were more effective than complex neural network
algorithms (RBE, B, ELMAN, LSTM) in a small sample data
environment. Neural network algorithms have difficulty in
capturing the underlying data features, resulting in poorer
predictions.

In conclusion, the FOA-SVR hybrid strategy demonstrates
promising performance in predicting electricity consumption in
hospital outpatient buildings under limited data conditions, as
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evidenced by the empirical results presented in this study. The results
show that combining SVR with optimization algorithms such as
FOA was a feasible approach to improve the accuracy of the hybrid
strategy without introducing unnecessary complexity, making it a
practical choice for similar prediction tasks in small sample data
environments.
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Nomenclature

Variant

b The bias term

C; The penalty coefficient

K(z;,x) The Gaussian kernel function

P, The position of firefly

P The position of firefly i after updating

Ty The Euclidean distance between fireflies i and j

X normalized The normalized electricity consumption

Koriginal The electricity consumption after inverse normalization
y The projected electricity consumption

z; The support vectors

a; and ;" The Lagrange multipliers

By The initial attraction

B The updated attraction

Vi The kernel function parameter

& The insensitivity zone

0 The attraction decay coefficient

8 The dynamic step factor
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