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Mining is among the most energy-intensive industrial sectors, with
processes such as drilling, crushing,and ore processing driving substantial
operational costs and environmental impacts. Effective energymanagement
is critical to addressing these challenges, particularly in the context of
decarbonizationtargets and the complexities of remote site operations. Machine
Learning (ML) offers domain-specificopportunities for optimizing energy usage
through predictive maintenance, demand forecasting, and realtime process
control. This study presents a Scoping Systematic Literature Review (SSLR) of
over 75recent publications focused on ML applications within mining energy
systems. Techniques such as RandomForests, Neural Networks, and Long Short-
Term Memory (LSTM) models demonstrate significant potential in enhancing
operational efficiency, minimizing unplanned downtime, and reducing energy
consumption. Advanced frameworks—including Reinforcement Learning and
Digital Twins—further address mining-specific requirements such as fluctuating
ore loads, harsh environmental conditions, and limited communication
infrastructure. Despite increasing adoption, key challenges persist, including
high implementation costs, limited interpretability, and the complexity of
deploying ML in off-grid environments. The review identifies practical strategies
to overcome these barriers, such as model compression for edge computing,
federated learning for secure multi-site collaboration, and explainable AI for
decision traceability. These findings provide targeted guidance for developing
scalable, resilient, and energy-aware machine learning (ML) systems tailored to
the unique operational demands of the mining sector and aligned with global
sustainability goals.

KEYWORDS

energy management, machine learning, mining industry, sustainability, predictive
maintenance, energy demand forecasting, process optimization, deep learning

1 Introduction

The mining industry is one of the most energy-intensive sectors, responsible for over
10% of global industrial energy consumption. Crushing and grinding processes alone can
account for nearly 50% of a mine’s total energy use (Bhatia et al., 2023). This high demand,
combined with rising sustainability targets and decarbonization mandates, underscores the
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need for data-driven approaches to improve energy efficiency.
Machine Learning (ML) has emerged as a transformative tool in
this context, enabling predictive, adaptive, and real-time control of
complex mining operations.

Machine learning models such as Artificial Neural Networks
(ANNs), Reinforcement Learning (RL), and hybrid models can
identify consumption patterns, forecast operational anomalies, and
streamline the utilization of resources across the mining value
chain. For instance, predictive maintenance using ML has already
been shown to reduce equipment downtime and associated energy
losses (Verma et al., 2024). Similarly, deep reinforcement learning
models have enabled dynamic energy allocation in microgrids,
enabling low-emission mining operations in remote areas (Mitra
and Gupta, 2024). These examples demonstrate the extent to
which ML transcends conventional industrial deployment to tackle
domain-related challenges inmining, such as variable ore processing
burdens, severe site environments, and equipment variability.

Nevertheless, mining presents unique barriers to ML
deployment not typically seen in other industrial settings. These
include sensor sparsity, unreliable connectivity in off-grid locations,
and the continued reliance on legacy control systems. For example,
iron ore grinding operations frequently encounter energy peaks that
can increase costs by asmuch as 25% (Martínez-Álvarez et al., 2020).
In such cases, general-purpose industrial solutions (e.g., HVAC-
based energymanagement) lack the contextual adaptability required
for harsh and distributed mining environments. Scalable ML
applications, supported by edge computing and real-time feedback,
are increasingly essential for addressing these inefficiencies.

This reviewfocuses specificallyon theapplicationofMLforenergy
optimization in mining while selectively referencing other industrial
domains—such as manufacturing or building systems—only when
the methods involved (e.g., anomaly detection, load forecasting) are
directly transferable to mining use cases. This boundary ensures
relevance without ignoring valuable cross-sector insights. In contrast
to prior reviews that emphasize narrow ML model categories or
isolatedcase studies, thisworksynthesizesfindings fromover65recent
papers to highlight broader themes, such as scalability, infrastructure
constraints, and model interpretability.

By addressing these gaps, this review offers targeted, actionable
guidance for developingML-powered energy systems that alignwith
sector-specific challenges and broader global objectives, such as the
United Nations Sustainable Development Goal 7 (affordable and
clean energy) (Gao and Xu, 2024). The following sections examine
key challenges in energy management, evaluate the capabilities of
machine learning (ML) across various use cases, and outline future
directions that incorporate IoT, digital twins, federated learning, and
energy-aware AI deployment frameworks.

1.1 Challenges in mining energy
management

The mining industry faces significant energy management
issues, ranging from operational inefficiencies to system aging
limitations. Variability in energy demand across mining phases
complicates optimization efforts, with grinding operations in iron
ore mines being prone to energy peaks that increase spending by up
to 25% (Martínez-Álvarez et al., 2020). Remote mining locations are

often served by aging grid infrastructure or diesel generators, which
further perpetuates inefficiencies (Gao and Xu, 2024).

Integration concerns are also prominent. The majority of
mining activities lack data acquisition infrastructure in line with
modern energy management architectures, and retrofitting existing
equipment is typically extremely expensive. Furthermore, limited
computational capabilities and few experienced human resources
complicate the implementation of advanced ML solutions (Liu and
Sun, 2024). Surmounting these challenges requires scalable and
adaptable energy management systems capable of leveraging real-
time data to optimize energy usage and minimize costs.

1.2 The role of machine learning in energy
optimization

Machine Learning (ML) has revolutionary potential in solving
the energy challenges facing themining industry. Supervised learning
algorithms are widely used for predictive maintenance, allowing early
detection of equipment failure and reducing downtime (Verma et al.,
2024). Reinforcement Learning algorithms such as Q-learning have
achieved up to 20% energy savings when applied to optimize
ventilation systems in underground mines (Kumar and Tripathi,
2024). Besides, hybrid ML models combining neural networks and
ensemble learning algorithms provide enhanced energy demand
prediction accuracy (Mitra and Gupta, 2024).

Despite its benefits, implementing ML for energy optimization
comes with challenges. The high computational demands and the
need for extensive, high-quality datasets are significant hurdles,
particularly where remote mining locations are involved. Privacy
concerns and scalability of ML solutions contribute to the issues
of adoption. Emerging technologies such as digital twins and IoT
offer potential solutions by enhancing the capability to collect data
and model energy systems virtually to achieve better optimization
outcomes. Merging these technologies, ML is more efficient and
scalable in processing mining activities.

1.3 Energy consumption in the mining
industry

Global energy consumption is anticipated to increase by over 20%
by 2040, driven by urbanization and industrialization (Ardabili et al.,
2022). Such growth places immense pressure on energy-intensive
sectors like mining to adopt sustainable energy management.
Traditional frameworks, e.g., the ISO 50001 Energy Management
Standard, have been centered on systematic practices for energy
performance improvement (Mohamed and Eltamaly, 2021; Bazi et al.,
2023). Their static nature ignores the dynamic and multidimensional
nature of modern mining operations (BBHP, 2020).

Machine Learning adds such frameworks with real-time
optimization capability. For instance, ISO 50001-certified systems
integrated with ML reduced the cost of operation by 15%
and improved energy efficiency (Chen and Zhang, 2023). These
examples reflect complementarity between ML and traditional
energy management systems towards encouraging sustainable
behavior in line with global intentions like the United Nations’
Sustainable Development Goal 7 (Bisset et al., 2023).

Frontiers in Energy Research 02 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1569716
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Parvathareddy et al. 10.3389/fenrg.2025.1569716

Mining processes are very energy-intensive, and processes such
as drilling, blasting, and ore processing demand high levels of
energy. Crushing and grinding alone can account for up to 50% of
a mine’s energy consumption (Cioffi et al., 2020). Such processes
provide huge potential for improving efficiency. Upgrading ore
processing plants with ML optimization algorithms, for example,
has been reported to reduce energy costs by 15% and CO2
emissions by 10% (Huang and Qian, 2021).

ML plays a critical role in streamlining some processes.
LSTM models have been effective in forecasting energy peaks in
grinding mills, enabling predictive realignments to prevent overuse
(Mitra and Gupta, 2024). Anomaly detection algorithms have also
improved energy efficiency in hauling operations by identifying
inefficiencies in real-time (Fan et al., 2018). By addressing
inefficiencies in high-energy processes, ML enables the reduction of
operating costs and environmental effects.

1.4 Research objectives

This review is explicitly focused on the application of Machine
Learning (ML) for energy optimization in the mining industry.
While a small number of studies from adjacent sectors—such
as building energy management or smart manufacturing—are
referenced, their inclusion is limited to extracting transferable
methodologies and insights. Techniques such as anomaly detection,
load forecasting, and sensor fusion are discussed only insofar as they
apply to mining contexts, including ventilation control, grinding
optimization, and equipment scheduling. This ensures that the
review maintains a mining-centric perspective while leveraging
cross-sectoral insights.

1.5 Research questions

• RQ1: What are the existing energy management frameworks in
mining, and how canML integration enhance their adaptability
to fluctuating energy demands?

• RQ2:How areMachine Learning techniques applied to improve
energy efficiency in mining, and what measurable impacts do
they have on operational performance?

• RQ3:What are the key advantages and limitations of integrating
Machine Learning into existing energy management systems in
the mining sector?

• RQ4: Which Machine Learning methods have shown the
highest potential to improve energy efficiency and sustainability
in industrial mining settings?

• RQ5: How can ML techniques like reinforcement learning
and digital twins address the scalability challenges of energy
management in remote mining operations?

2 Literature review

2.1 Overview of energy challenges in
mining

The mining industry is a major consumer of energy, with
drilling, blasting, crushing, grinding, and ore processing accounting

for significant operational costs and environmental impacts.
Crushing and grinding alone contribute 50%–60% of a mine’s total
energy use (Rashid et al., 2023). Variability in energy demand,
driven by ore quality, production scale, andminingmethods, further
exacerbates inefficiencies. For instance, low-grade ores increase
energy requirements by up to 30% during beneficiation (Zhao et al.,
2023). Equipment downtimes and delays, such as idle haul trucks,
also contribute to unnecessary energy waste (Liu et al., 2023).

Remote mining sites face unique challenges, including
unreliable grid infrastructure and reliance on diesel generators,
which inflate costs and emissions. Traditional Energy Management
Frameworks (EMFs), such as ISO50001, offer structured approaches
to monitor and optimize energy use through the Plan-Do-Check-
Act cycle (ISO, 2022). However, static systems struggle to adapt
to real-time operational changes. Integrating machine learning
(ML) with EMFs addresses these limitations, enabling dynamic
forecasting and optimization (Nguyen et al., 2023). For example,
LSTM networks integrated with IoT sensors predict energy
demand peaks, minimizing overconsumption and aligning mining
operations with global sustainability goals like SDG 7.

2.2 Machine learning in energy
optimization

Machine learning (ML) provides data-driven solutions in
optimizing energy consumption in mining by using predictive
modeling, real-time optimization, and adaptive resource allocation.
Reinforcement learning (RL) algorithms already optimized
underground mine ventilation systems with energy savings of
up to 20% (Kumar and Tripathi, 2024). Gradient Boosting
Machines also reduced energy peaks in copper processing by 15%,
improving operational efficiency (Matthews and Sutherland, 2019).
Accurate energy demand prediction can be accomplished using
machine learning models such as LSTMs and Support Vector
Regression (SVR), thus enabling dynamic reaction to variable
conditions (Zhao et al., 2023).

For instance, RL algorithms were used at an Australian copper
mine to accomplish optimization of the underground ventilation
system by controlling airflow dynamically based on occupancy and
temperature levels. It was attained with a 20% reduction in energy
consumption and improved air quality (Kumar and Tripathi, 2024).

In another example, a Canadian gold mining operation
employed gradient-boosted trees to optimize energy consumption
in grinding ore. The model utilized real-time torque sensor data and
mill feed rates to forecast energy peaks and slow down equipment
speeds, which decreased electricity consumption by 15% during
peak hours (Matthews and Sutherland, 2019).

Also, at iron ore mines in Brazil, LSTM models forecast
energy peaks in grinding mills 30 min in advance based on
historical vibration data and ore composition metrics. The forecasts
enabled preemptive load adjustments, reducing downtime and
energy losses (Sharma et al., 2023).

Despite these promising results, ML adoption continues to face
challenges. High computational demands, data quality problems,
and limited infrastructure in remote areas hinder widespread
adoption. Integration with Internet of Things (IoT) systems
mitigates some barriers by facilitating real-time data feeds for
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continuous learning and optimization. Hybrid ML systems that
integrate RL and neural networks, for example, trained on sensor
data from conveyor belts and crushers, have enhanced scalability,
thereby reducing energy consumption across geographically
distributed mining operations (Nguyen et al., 2023).

2.3 Predictive maintenance using machine
learning

Predictive maintenance powered by ML addresses equipment
inefficiencies and unplanned downtime in mining operations.
Techniques such as LSTM networks and ANNs analyze historical
and real-time data to predict failures and optimize maintenance
schedules. For example, LSTM models in Brazilian iron ore mines
forecast grinding mill anomalies 2 weeks in advance, reducing
downtime by 18% and energy costs by 10% (Sharma et al.,
2023). Similarly, random forests combined with IoT sensors
in diamond mines have achieved a 14% reduction in fuel
consumption by optimizing haul truck operations (Matthews and
Sutherland, 2019).

In one case, Canadian open-pit mines utilized artificial neural
networks tomonitor haul truck health based on vibration and engine
load data.TheML systemflagged abnormal patterns 48 h in advance,
enabling maintenance crews to intervene before failures occurred.
This approach resulted in a 12% reduction in equipment-related
energy consumption and improved fleet availability (Akhtar, 2023).

Additionally, a Chilean copper mining operation utilized
decision tree classifiers on high-frequency SCADA data to detect
early-stage conveyor belt wear. By integrating temperature, belt
speed, and load data, the system achieved 93% accuracy in
detecting wear trends and extended component lifespan by up
to 20%, significantly reducing unplanned stoppages (Gupta and
Wang, 2023).

IoT integration further enhances predictive maintenance by
enabling real-time monitoring of equipment health. By identifying
anomalies such as vibration irregularities or energy spikes, ML
systems reduce unplanned disruptions and improve overall energy
efficiency (Zhang and Zhang, 2023). However, implementing
solutions in remote mining sites remains challenging due to
computational demands and limited connectivity, underscoring the
need for lightweight models and edge computing solutions.

2.4 Global practices in predictive
maintenance using machine learning

Case studies highlight the global adoption of ML-driven
predictive maintenance in mining. Australian copper mines using
random forests reduced energy costs by 15% through timely
equipment maintenance (Alzoubi, 2022). LSTM networks applied
in Canadian gold mines decreased downtime by 12%, leading
to significant energy savings (Nguyen et al., 2023). In Brazil,
predictive maintenance systems identified conveyor anomalies,
resulting in a 18% reduction in failures and an improvement in
energy efficiency (Sharma et al., 2023).

In South African platinum mines, Bayesian networks
were deployed to predict crusher motor failures based on

pressure and current load readings. By modeling probabilistic
dependencies among these variables, maintenance actions were
scheduled before faults occurred, resulting in a 21% reduction in
unexpected breakdowns and a 9% decrease in associated energy
consumption (Rahman and Mokoena, 2024).

Similarly, in Finnish underground mines, reinforcement
learning models were used to dynamically adapt drilling equipment
operations based on rock hardness and tool wear data. This adaptive
scheduling approachminimized idle times and reduced unnecessary
energy consumption, resulting in an 11% increase in operational
efficiency and more consistent maintenance intervals (Heinonen
and Lahti, 2023).

Scalability remains a challenge for ML applications in
predictive maintenance, particularly in resource-constrained
environments. Edge computing and streamlined machine learning
(ML) models offer potential solutions by enabling real-time
analysis with minimal computational overhead (Vik et al.,
2023). These advancements demonstrate the potential of ML to
enhance sustainability and operational reliability across various
mining contexts.

2.5 Energy demand forecasting using
machine learning

ML techniques such as SVR, Bayesian Networks, and LSTMs
enable accurate energy demand forecasting in mining operations.
SVR, effective for modeling non-linear relationships, predicts
energy consumption patterns based on ore characteristics and
operational parameters. For example, SVR models reduced
energy overuse in crushing mills by 10%, improving resource
allocation (Huang and Qian, 2021).

LSTM networks excel in time-series forecasting, capturing
fluctuations in energy demand caused by varying ore grades and
production schedules. At Rio Tinto’s Pilbara mines, reinforcement
learning models optimized task scheduling, resulting in reduced
energy waste during peak demand (Huchuk et al., 2019).

In Chinese coal mines, hybrid deep learning models combining
LSTM with attention mechanisms were trained on sensor streams
from conveyor belts, crushers, and weather stations. These models
predicted hourly energy demand with an accuracy rate of 96%,
enabling proactive load shifting and reducing peak demand
charges by 13% (Li et al., 2023).

In another instance, a large-scale nickel mine in the Philippines
employed Bayesian networks to model conditional dependencies
between ambient temperature, machine load cycles, and ore type.
The resulting forecasts helped operations teams optimize energy
scheduling during critical processing periods, leading to a 9%
improvement in power usage effectiveness (PUE) (Santos and
Cruz, 2024).

However, reliance on high-quality historical data and
computational resources limits ML’s applicability in remote
operations. Incorporating renewable energy sources into mining
microgrids using ML models presents additional opportunities
for sustainability (Wang et al., 2023). In particular, ML-enabled
forecasting supports the dynamic integration of solar and wind
generation, helping balance intermittent supply with fluctuating
mine loads.
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2.6 Support Vector Regression (SVR)

Support Vector Regression (SVR) is a supervised learning
technique effective for modeling non-linear relationships in energy
consumption data. It constructs an optimal hyperplane in a high-
dimensional feature space to predict continuous values while
minimizing error. In mining, SVR models have accurately predicted
energy peaks in ore processing operations with up to 95%
accuracy, improving real-time energy scheduling and reducing peak
load stress (Vik et al., 2023).

SVR’s strength lies in its balance between model complexity
and generalization. However, it relies heavily on manual feature
engineering, which can limit its scalability compared to deep
learning methods, such as Long Short-Term Memory (LSTM)
networks, that learn temporal patterns automatically. For instance,
integrated SVR models in copper processing plants have resulted in
a 12% reduction in energy use by forecasting mill loads based on ore
hardness and feed rate (Matthews and Sutherland, 2019).

Unlike Bayesian or ensemble methods, SVR does not rely
on probabilistic modeling or tree-based decisions; thus, its
mathematical formulation—while theoretically important—is
typically abstracted in operational settings in favor of empirical
performance indicators, such as Mean Absolute Error (MAE) or
Root Mean Square Error (RMSE).

2.7 Bayesian Networks and Gradient
Boosted Trees in mining

Bayesian Networks (BNs) are probabilistic graphical
models that encode relationships among variables through
conditional dependencies, providing interpretable frameworks
ideal for modeling uncertainty in data mining. For example,
in South African platinum mines, Bayesian Networks analyzed
operational telemetry data—such as equipment pressure,
temperature, and vibration—to predict grinding mill failures.
This proactive approach reduced energy overuse during peak load
periods by 15% (Sharma et al., 2023).

The joint probability distribution governs the model’s structure:

P(X1,X2,…,Xn) =
n

∏
i=1

P(Xi ∣ Pa(Xi))

where:

• Xi represents random variables (e.g., energy demand,
equipment fault probability).
• Pa(Xi) are the parent nodes influencing Xi.

This expression enables the modeling of interdependencies
between operational factors—allowing for robust risk estimation and
fault prediction—especially in data-sparse mining environments.

Gradient Boosting, primarily implemented in mining through
Gradient Boosted Trees (GBT), is an ensemble learning method
that iteratively combines weak learners—typically decision trees—to
minimize prediction errors. GBT has become especially prominent
in forecasting energy consumption, anomaly detection, and
load balancing in processing plants. For example, in Canadian
gold mines, GBT models were trained on features such as ore
throughput, motor torque, and ambient temperature to predict

energy consumption during milling. These models achieved a 10%
reduction in overall energy costs by improving control logic in
real-time (Matthews and Sutherland, 2019).

The loss function GBT minimizes is:

min
f

n

∑
i=1
[(yi − f (xi))

2 + λ‖ f‖2]

where:

• f is the ensemble prediction function (i.e., sum of weak
decision trees).
• λ is the regularization parameter used to prevent overfitting.

This mathematical representation clarifies the GBT’s goal of
improving prediction performance over successive iterations while
maintaining generalization through regularization. Its practical use
in mining is favored for high interpretability, ease of deployment,
and strong performance on tabular sensor data. Comparative
Perspective: While SVR, BN, and GBT are often favored for
their interpretability and efficiency, other essential models in
mining—such as LSTM, Random Forest (RF), and Artificial Neural
Networks (ANN)—also warrant attention.LSTMs are widely used
in time-series energy forecasting due to their ability to capture
long-range dependencies. RF models are effective in feature-rich
settings, such as maintenance scheduling. ANNs are applied in
anomaly detectionwhere complex nonlinearities exist.Thesemodels
complement each other, and their selection often depends on
operational goals, data availability, and deployment constraints.

2.8 Limitations and challenges in ML
applications

Despite its benefits, the application of machine learning (ML)
in mining faces significant challenges, including computational
demands, data privacy concerns, and integration with legacy
systems. High computational requirements for models like LSTMs
and Gradient Boosting can be a barrier, especially in remote
mining sites with limited infrastructure (Anderson et al., 2024).
Furthermore, privacy concerns related to sensitive operational data
necessitate secure protocols such as federated learning, which trains
models on distributed data without compromising confidentiality.

Integration with legacy systems, such as SCADA platforms,
poses additional challenges due to outdated software and
incompatible data formats. Custom middleware and data pipelines
are often required to bridge these systems, introducing complexity
and potential delays (Yang et al., 2023). Scalable solutions like edge
computing are emerging to address these issues by enabling on-site
data processing with reduced latency.

2.9 Scalability and adaptability across
diverse mining sites

Mining operations vary significantly in geological conditions and
operational practices, making scalability and adaptability critical for
ML applications. Techniques such as transfer learning and domain
adaptation have shown promise by reusing pre-trained models for
similar tasks across sites. For example, transfer learning applied in
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Australian coal mines improved energy forecasting accuracy by 12%
whenadaptingmodels trainedon ironoredata (Rodrigueset al., 2022).
However, these methods require substantial labeled data and careful
model fine-tuning to maintain stability.

2.10 Data privacy and security

Data privacy and security remain critical concerns in mining,
particularly with cloud-based ML models. Encryption protocols
and secure access controls are crucial for safeguarding sensitive
data. In Canadian gold mines, implementing GDPR-compliant
encryption increased data processing times by 20%, underscoring
the need for efficient security measures (Müller and Peters, 2024).
Federated learning has emerged as a viable solution, enabling
collaborative model training across sites without sharing raw data,
ensuring compliance with privacy regulations while maintaining
performance (Sharma et al., 2023).

3 Methodology

3.1 Research approach

This study adopts a scoping systematic literature review (SSLR)
to evaluate the application of Machine Learning (ML) in energy
management within the mining industry. The review synthesizes
current practices, emerging trends, and key challenges in areas such
as predictive maintenance, energy forecasting, and sustainability-
focused optimization. While the primary emphasis is on mining-
specific studies, select research from related industrial domains is
included only when theML techniques presented—such as anomaly
detection or load prediction—are directly transferable to mining
contexts.The goal is to offer a structured and thematically organized
synthesis of insights to inform future research and deployment
strategies in mining energy systems.

3.2 Data sources and search strategy

The literature search was conducted using major academic
databases including IEEE Xplore, ScienceDirect, SpringerLink,
Scopus, and Google Scholar. These databases provide
comprehensive access to peer-reviewed articles in engineering,
energy systems, and artificial intelligence. A Boolean query was
developed to capture publications most relevant to ML in energy
management within industrial settings:

(”energy management” OR ”energy

efficiency” OR ”energy optimization”)

AND (”mining” OR ”industrial

operations”) AND (”machine learning”

OR ”artificial intelligence”

OR ”predictive analytics”) AND

(”sustainability” OR ”renewable energy”

OR ”optimization frameworks”)

The search was limited to English-language publications from
2018 to 2023, ensuring inclusion of recent methodological advances
and deployment trends.

3.3 Selection criteria

A structured screening process was applied based on the
following criteria:

3.3.1 Inclusion criteria

i. Studies focusing on ML applications in energy management
within mining or directly transferable industrial
contexts.

ii. Research employing ML for energy forecasting, optimization,
anomaly detection, or predictive maintenance.

iii. Peer-reviewed journal articles, conference papers, or detailed
case studies.

3.3.2 Exclusion criteria

i. Studies unrelated to energy use or energy systems.
ii. Editorials, opinion pieces, or non-peer-reviewed sources.
iii. Articles lacking methodological detail or with inaccessible

full texts.

3.4 Data screening and analysis

The screening process involved three structured stages:

i. Title and Abstract Screening: Initial filtering of irrelevant
papers based on scope.

ii. Full-Text Review: Assessment of each paper’s alignment with
review objectives.

iii. Quality Assessment: Studies were scored on methodological
rigor, clarity, and relevance. Papers scoring 7 or higher on a 10-
point rubric were selected for inclusion. The overall process is
illustrated in Figure 1.

3.5 Data extraction and thematic synthesis

Key information was extracted using a structured matrix. Each
study was reviewed for the following aspects.

i. Study objectives and domain scope.
ii. ML techniques applied (e.g., LSTM, Random Forest,

reinforcement learning).
iii. Energy-related outcomes such as cost reduction, forecasting

accuracy, or sustainability impact.
iv. Contextual challenges including infrastructure limitations or

cybersecurity concerns.

A thematic synthesis was then conducted to categorize
findings into predictive maintenance, energy forecasting, process
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FIGURE 1
Overview of the publication selection process.

optimization, sustainability, and deployment challenges. Cross-
sector studies were included only when their methods were
adaptable to mining conditions.

3.6 Limitations

This review is limited by the availability of mining-
specific case studies with detailed ML implementation. While
cross-sector inclusion enhances methodological diversity, it
may dilute sectoral depth. Additionally, some studies lacked
transparency in performance metrics or data sources. Future
research should prioritize real-world ML deployments in
mining, including benchmarking frameworks and longitudinal
analyses.

4 Results

4.1 Characteristics of selected studies

4.1.1 Research papers considered
The selected research papers represent a geographically diverse

body of work on the application of Machine Learning (ML)
and Artificial Intelligence (AI) in energy management across
industrial and mining sectors. As shown in Table 1, Morocco
contributes the highest number of publications in this review,
with five papers focusing on digital twin frameworks and data-
driven optimization techniques for mining operations. This
concentration may reflect Morocco’s recent investments in smart
mining and digital infrastructure.Croatia and Iran follow with
three publications each, primarily addressing ML applications for
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TABLE 1 Distribution of selected publications by country and Year.

Count Country Year(s) References

3 Croatia 2021 (Adewale et al., 2024, Zhang et al., 2024, Smith and Brown, 2024)

5 Morocco 2022, 2023 (Mosavi et al., 2019, Huotari et al., 2023, Ardabili et al., 2022, Rutland and Zhao, 2023, Zhao et al., 2023)

3 Iran 2022 (Akhtar et al., 2024, Forootan et al., 2022, Mostafa and Mahmoud, 2022)

2 Greece 2020, 2024 (Ardabili et al., 2022, Fan et al., 2023)

2 Global 2023, 2024 (Cioffi et al., 2020, Liang et al., 2024)

2 Slovakia 2019, 2022 (Fan et al., 2018, Marinakis, 2020)

1 United States 2018 Fan et al. (2023)

1 Italy 2020 Forootan et al. (2022)

1 Slovakia, Hungary, Germany 2022 Huotari et al. (2023)

1 China 2022 Huotari et al. (2023)

1 Canada 2023 Koulinas et al. (2024)

1 Canada, Singapore, China 2023 Laayati et al. (2022)

1 Finland 2024 Liang et al. (2024)

1 Nigeria, South Africa 2024 Robinson and Evans (2024)

energy efficiency, fuel optimization, and industrial automation.
Additional contributions come from countries including the
United States, Italy, China, Canada, Finland, and South Africa,
with studies covering topics such as AI in smart manufacturing,
advanced energy analytics, and lifecycle optimization
in buildings.

This international representation underscores the growing
global interest in leveraging ML and AI—not only in traditional
industrial energy systems but also in mining-specific use cases—to
improve efficiency and support sustainability goals. Figure 2
illustrates the distribution of research focus areas from the reviewed
literature.

While mining-related energy management constitutes the
majority, select studies from adjacent sectors—particularly
buildings and manufacturing—were included where their machine
learning methodologies demonstrated clear relevance to mining
applications.

For instance, techniques such as load forecasting,
predictive maintenance, and sensor-driven control systems,
originally developed for building energy management,
are directly applicable to mining contexts, including
ventilation optimization, grinding mill control, and haul truck
scheduling.

The inclusion of manufacturing-related studies addresses
an earlier gap in cross-sector analysis and reflects the
increasing convergence of industrial energy strategies.
This targeted inclusion enhances the review’s capacity to
identify transferable ML frameworks, thereby providing
a broader and more versatile foundation for designing

mining-specific solutions that are both scalable and
sustainable.

4.2 Research objectives

The research objectives identified in the reviewed studies
fall into four thematic categories, each addressing a key
aspect of energy management through machine learning (ML)
applications.

I. Energy Management in Buildings: Studies such as
(Adewale et al., 2024; Matthews and Sutherland, 2019;
Kumar et al., 2023) focus on intelligent building energy
systems that utilize machine learning (ML) and big data
to optimize HVAC and lighting operations. These systems
enhance energy efficiency by analyzing real-time data and
dynamically adjusting control parameters.

II. Energy Optimization in Mining and Open-Pit Operations:
Research by (Akhtar et al., 2024; Bisset et al., 2023) examines
the application of machine learning (ML) algorithms for
analyzing fuel consumption, forecasting energy demand, and
enhancing grid quality management in mining operations.
These studies highlight the role ofML in enhancing operational
efficiency and energy allocation under variable mining
conditions.

III. Digital Twins for Sustainable Mining: The work of (Huang and
Wu, 2023) presents digital twin frameworks for lifecycle asset
management, focusing on energy consumption reduction,
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FIGURE 2
Distribution of research focus areas across selected studies.

real-time monitoring, and predictive maintenance. A case
study in Morocco showed a 15% reduction in energy costs
through live system optimization.

IV. AI for Smart Grids and Renewable Integration:
Contributions such as (Liu et al., 2023; Martínez-
Álvarez et al., 2020; Huchuk et al., 2019) explore how machine
learning (ML) supports smart grid development, renewable
energy coordination, and intelligent energy distribution.
These approaches reduce environmental impact and align with
sustainability targets in industrial and mining applications.

4.3 Findings and trends

The reviewed studies highlight the transformative impact of
Machine Learning (ML) on energy management, particularly in
predictive maintenance and sustainability. Research highlights the
growing importance of smart grids in facilitating the integration
of renewable energy, particularly in regions adopting progressive
energy policies. Studies on predictive maintenance demonstrate
reductions in unplanned downtime by up to 20%, translating to
a 15% decrease in energy costs. Additionally, the implementation
of digital twin technologies has enabled real-time monitoring and
predictive analytics, achieving energy cost savings of 10%–15% in
mining operations.

Despite these advancements, recurring challenges include
limited availability of high-quality datasets, scalability issues in ML
implementations, and difficulties in integrating ML with legacy
systems. Addressing these challenges requires future research to
prioritize robust data collection strategies, the development of
lightweight ML models, and middleware solutions to facilitate
seamless integration.

4.3.1 Smart manufacturing and AI integration
Studies by (Fan et al., 2023; Nguyen et al., 2019; Qin et al., 2022)

focus on integrating AI and machine learning into manufacturing
processes to optimize energy use and production efficiency.
These studies highlight critical areas such as real-time production

monitoring, adaptive energy management, and process automation
to enhance operational efficiency in manufacturing environments.

For example, Qin et al. (2022) demonstrated that AI
algorithms for adaptive energy management reduced energy use
in manufacturing processes by 18%, particularly during peak
production hours. Similarly, Fan et al. (2023) reported a 15%
improvement in energy efficiency in a smart factory setting through
AI-driven real-time monitoring of HVAC systems. These results
underscore the potential of AI to provide both cost savings and
energy optimization in smartmanufacturing. However, comparative
analyses reveal that while real-time monitoring systems are cost-
effective, theymay require additional computational resources when
scaled to larger facilities.

4.3.2 Machine learning and deep learning
frameworks

Research by (Liang et al., 2024; Qin et al., 2022; Recalde et al.,
2024) compares various ML and deep learning (DL) models
suitable for data mining, en-ergy systems, and smart building
purposes. These researches compare the efficacy of ML/DL
models in management of big data, identification of energy-saving
opportunities, and predicting energy consumption trends. For
instance, Qin et al. (2022) employed convolutional neural networks
(CNNs) to predict energy consumption patterns, with 95% accuracy
rate in smart building environments. In addition, Recalde et al.
(2024) compared Support Vector Regression (SVR) and Gradient
Boosting Machines (GBMs) for energy consumption prediction,
with GBMs being 20% more accurate in the instance of non-
linear data patterns. These articles refer to the relative merits of
different ML frameworks: although deep learning models such as
LSTMs can be more accurate for sequential data, they require more
computational resources than computationally light algorithms such
as random forests. Liang et al. (2024) demonstrated the application
of Long Short-Term Memory (LSTM) networks in energy demand
in intelligent grids, improving significantly the predictive accuracy
of loads under fluctuating environmental conditions. These findings
illustrate the flexibility of ML and DL models to the resolution
of multidimensional energy management problems but show also
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the imperative of good data sets and computationally sound
resources. Marinakis (2020) demonstrated the application of
Long Short-Term Memory (LSTM) networks in predicting energy
demand in smart grids, significantly improving load forecast
accuracy under varying environmental conditions. These findings
underscore the versatility of ML and DL frameworks in addressing
complex energy management challenges but also highlight the need
for high-quality datasets and robust computational infrastructure.

4.3.3 AI and sustainability in mining
The work of Nguyen et al. (2019) illustrates the potential

presented by digitalization, and specifically by AI, to promote the
sustainability of mining operations. Its purpose is to maximize
energy consumption, reduce greenhouse gas emissions, and apply
AI-driven measures for more sustainable mining.

For example, Nguyen et al. (2019) had implemented anAI-based
optimization model in an Australian iron ore mine, reducing the
energy consumed by 12% and green gas emissions by 20%. This
assists in achieving global sustainability targets and emphasizes the
contribution of AI in facilitating eco-friendly mining operations.
However, scaling such AI models to different mining sites still
remains challenging due to variations in geological composition and
equipment.

Additionally, Nguyen et al. (2019) employed AI-driven
forecasting models to reduce fuel consumption in open-pit mining,
achieving a 15% improvement. Comparative research shows that
despite the effectiveness of these models in energy-intensive
activities, their deployment entails significant investment in data
amalgamation and real-time monitoring structures.

In brief, the sumof these studies emphasizes the change potential
of AI in augmenting sustainability, reducing operational costs, and
achieving green objectives. Upcoming research should focus on
integrating these AI solutions with emerging technologies like IoT
and digital twins so as to enhance scalability and efficiency further.

4.4 Research design

Based on experimental and comparative approach, the current
research evaluates the efficiency of machine learning (ML)
algorithms and artificial intelligence (AI) techniques in energy
management. Experimental studies, e.g., by Recalde et al. (2024),
Akhtar (2018), tested various ML algorithms, i.e., predictive and
reinforcement learning (RL) founded models, to control energy
consumption and operation efficiency. For example, Recalde et al.
(2024) applied RL algorithms to adjust energy usage in factory
locations adaptively, leading to a 15% reduction in energy spending
through optimization of HVAC systems during peak periods.

Comparative studies, such as those by Liang et al. (2024),
Huchuk et al. (2023), sought to compare ML models with
traditional energy management strategies. The comparative studies
indicated the higher accuracy, forecasting, and optimization of
resources enabled by ML methods. For instance, Liang et al. (2024)
employed Gradient Boosting Machines (GBM) to reduce energy
prediction errors by 20% compared to conventional rule-based
systems.However, Huchuk et al. (2023) identified issues such as high
computational demands and utilization of quality datasets, which

can limit ML model deployment in resource-scarce environments
such as remote mines.

Despite these successes, significant challenges remain in
implementing ML for energy management. High computational
requirements, particularly for advanced models like Long Short-
Term Memory (LSTM) networks, pose barriers to real-time
deployment in remote settings. Data quality and availability
further complicate the scalability of these solutions, especially
when training models requires extensive and reliable datasets
(Huchuk et al., 2023; Liang et al., 2024). To mitigate these
limitations, innovative solutions such as lightweight ML models,
edge computing, and federated learning have been proposed. For
instance, federated learning allows decentralized model training,
addressing data privacy concerns while maintaining performance
across diverse operational sites.

Real-world applications of ML in energy management
demonstrate its transformative potential. For example, Akhtar
(2018) implemented AI-driven predictive maintenance in mining
haul trucks, reducing fuel consumption by 12% through optimized
scheduling. Similarly, Liang et al. (2024) applied GBM to optimize
smart grid energy management, achieving a 20% improvement in
energy efficiency. These practical implementations underscore the
importance of continued research to refine ML applications and
address their inherent challenges, paving the way for sustainable
and efficient energy practices across diverse industrial contexts.

4.5 Research findings

The reviewed studies reveal several significant themes related
to energy management and the integration of machine learning
(ML), artificial intelligence (AI), and digital twin technologies.
These technologies have demonstrated transformative potential in
improving energy efficiency, predictive accuracy, and sustainability,
particularly in energy-intensive industries such as mining.

The findings emphasize the role of ML and AI frameworks
in enhancing energy efficiency by enabling real-time monitoring,
adaptive optimization, and predictive analytics. Studies such as
(Adewale et al., 2024; Akhtar et al., 2024; Ardabili et al., 2022;
Liu et al., 2023; Matthews and Sutherland, 2019) highlight their
ability to reduce operational costs and energy consumption. For
instance, Akhtar et al. (2024) demonstrated 20% reduction in
energy costs in open-pit mining through AI-driven predictive
maintenance. However, challenges such as computational demands
and requirements for high-quality data remain fundamental
barriers to widespread adoption, especially in resource-constrained
environments such as remote mines.

Predictive performance in energy demand forecasting has been
enhanced through the application of algorithms such as Artificial
Neural Networks (ANNs), hybrid ML models, and Long Short-
Term Memory (LSTM) networks. These methods enable accurate
resource allocation, minimizing energy wastage and preventing
operational downtime. Research such as (Matthews and Sutherland,
2019) reported a 15% improvement in system reliability through the
integration of ML models in energy optimization. However, issues
of data variability and scalability for large systems point to the need
for more adaptive and robust models.
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Digital twin systems, which yield virtual replicas of physical
infrastructure, have been effective for real-time monitoring,
predictive maintenance, and sustainability optimization. Studies
such as (Huchuk et al., 2019; Mitra and Gupta, 2024) show that
digital twins are able to reduce energy consumption by identifying
inefficiencies and forecasting long-term energy requirements.
For example, Mitra and Gupta (2024) measured 15% reduction
in energy consumption and 12% increase in the life of equipment in
Canadian mines through the application of digital twin technology.
But they are held back from broader application by their high
upfront cost and infrastructure requirements.

Application of ML and DL architectures still keeps energy
management on a higher level through the improvement of data
processing for forecasting, optimization, and fault detection.
Models like LSTMs ensure maximum utilization of resources
and reduce downtime, thereby enhancing sustainability through
reduced greenhouse gas emissions. For instance, Wang et al.
(2023) demonstrated a 20% reduction in energy overconsumption
in manufacturing by utilizing LSTMs in predicting energy
consumption peaks. Such models, nevertheless, require extensive
computational resources and large-scale data, rendering them less
attractive to small businesses.

4.6 Sustainable energy management
Frameworks (RQ1)

The reviewed research articles highlight the revolutionary role
of Machine Learning (ML), Artificial Intelligence (AI), and frontier
technologies in optimizing energy management across different
industrial settings. The systems are intended to enhance energy
efficiency, reliability, and sustainability by leveraging real-time data,
predictive analytics, and intelligent control systems.

Solutions like the MERIDA system (Adewale et al., 2024;
Bisset et al., 2023; Singh and Meena, 2023) integrate Big Data, IoT,
andML formonitoring and control of energy consumption in public
sector buildings. Energy consumption is monitored in real time
using IoT sensors, and the analysis is done using ML models such
as RNNs and decision trees. These systems also enable dynamic
management of energy usage, e.g., adaptive control of HVAC and
lighting systems, leading to reducedwastage of energy and improved
efficiency of operations.

In the mining sector, models (Akhtar et al., 2024; Zhang and
Zhang, 2023; Liu et al., 2023) emphasize compliance with ISO 50001
energy management standards and the adoption of digital twin
solutions. Digital twins create virtual replicas of mining operations,
allowing real-time simulation and predictive analytics. Using ML
algorithms like support vector machines (SVM) and K-means
clustering, these systems monitor energy-consuming processes like
drilling and ore processing. By simulating operational changes and
forecasting their impact, they optimize resource utilization and
reduce excess energy consumption.

ML- and AI-powered systems [(Wang et al., 2023;
Fan et al., 2023; Nguyen et al., 2023; Matthews and
Sutherland, 2019; Kumar et al., 2023)] are also spearheading energy
optimization through the optimization of smart grid operations and
enabling the integration of renewable energy. Predictive modeling,
such as artificial neural networks (ANNs) and gradient-boosting

machines, foresees energy demands and optimizes distribution in
real time. These systems optimize grid stability, reduce waste, and
effectively integrate renewable energy sources like solar and wind,
resulting in a resilient and sustainable energy system.

In order to improve energy efficiency and minimize the
consumption of resources, optimization systems (Ardabili et al.,
2022; Bisset et al., 2023; Mitra and Gupta, 2024) employ advanced
ML techniques like random forests and reinforcement learning.
Such platforms take real-time data on equipment usage, eradicating
idle periods and the overconsumption of resources. Particle Swarm
Optimization (PSO) and Genetic Algorithms (GA) are a few of the
methods that are used to improve the efficiency of processes, leading
to significant cost savings and less environmental impact.

Asset lifecyclemanagement systems (Huchuk et al., 2019; Xu et al.,
2024) extend equipment life with predictive maintenance using
algorithms like Long Short-Term Memory (LSTM) networks. Such
systems minimize downtime and energy consumption associated
with recurrent repairs, optimize the use of resources throughout
an asset’s life, and decrease environmental impact by a significant
percentage.

Finally, renewable energy integration systems (Xu et al., 2024;
Wang et al., 2023) promote grid sustainability by reducing the
reliance on fossil fuels. Founded on ML algorithms like Deep
Q-Learning and Fuzzy Logic Controllers, these systems predict
renewable energy generation patterns and optimize grid interaction.
They also facilitate the integration of distributed energy resources
(DERs), allowing decentralized and resilient energy systems and
reduced greenhouse gas emissions.

4.7 Machine learning techniques for energy
efficiency (RQ2)

The research described here outlines the new application of
Machine Learning (ML) techniques to enhance energy efficiency in
industrial and mining environments. These improvements address
predictive maintenance, real-time optimization, and resource
planning, resulting in significantly enhanced sustainability, cost
savings, and performance.

Sophisticated ML models like convolutional neural networks
(CNNs), long-short-term memory (LSTM) networks, and Random
Forests are critical for themanagement of energy-intensive processes
(Adewale et al., 2024; Matthews and Sutherland, 2019; Wang et al.,
2023; Zhang et al., 2024; Fan et al., 2023). CNNs aremost optimal for
the study of spatial patterns of energy distribution, whereas LSTMs
work well with time-series data, supporting precise load forecasting
and anomaly detection for lengthy periods. Random Forests utilize
decision trees to improve classification robustness and are therefore
applicable to fault detection and predictive maintenance of the
energy system.

Predictive models like Support Vector Regression (SVR)
and Bayesian networks enhance energy demand forecasting by
leveraging historical and real-time data (Akhtar et al., 2024;
Liu et al., 2023; Rashid et al., 2023). Bayesian networks are
particularly effective in managing probabilistic and uncertain
data, while SVR excels in regression tasks involving non-linear
relationships. These models enable precise demand forecasting,
reducing energy reserves and minimizing environmental impact.
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Supervised learning techniques, such as Decision Trees,
and unsupervised methods, like K-means clustering, optimize
production processes and energy management (Huang and Wu,
2023; Fan et al., 2023; Liu et al., 2023). Decision Trees simplify
complex decisions for predictive maintenance, while K-means
clustering identifies inefficiencies by segmenting large datasets, such
as machinery performance data, to optimize maintenance schedules
and energy usage.

Artificial Neural Networks (ANNs) and reinforcement learning
algorithms, such as Deep Q-Learning, streamline workflows in
mining operations by dynamically optimizing fuel consumption and
energy distribution (Bisset et al., 2023; Müller and Peters, 2024; Guo
and Huang, 2023). Reinforcement learning methods adapt to real-
time data, making autonomous energy allocation adjustments that
enhance system flexibility and minimize waste.

Digital twins, powered by Gradient Boosting Machines and
Recurrent Neural Networks, simulate real-time operations in
mining, such as haul truck performance and drilling equipment
efficiency (Huang and Wu, 2023; Matthews and Sutherland,
2019). These technologies predict equipment behavior based on
historical data, supporting proactive maintenance strategies and
reducing downtime.

ML frameworks also play a critical role in renewable energy
integration within smart grids (Liu et al., 2023; Nguyen et al.,
2023; Müller and Peters, 2024; Li and Wu, 2022). Techniques like
Deep Reinforcement Learning (DRL) optimize energy storage and
distribution for renewables, while Fuzzy Logic Controllers manage
imprecise inputs typical in solar and wind energy systems. These
approaches enhance grid stability, support large-scale renewable
adoption, and improve energy infrastructure resilience.

General ML frameworks, leveraging Ensemble Learning and
Transfer Learning, enable scalable energy optimization solutions
across industries (Liu et al., 2023; Fan et al., 2023). Ensemble
learning combines multiple models for higher accuracy in energy
forecasting, while Transfer Learning accelerates the deployment
of ML solutions in related tasks. These frameworks enable real-
time energy monitoring and adaptive control, fostering data-driven
energy management practices.

4.8 Machine learning in energy
Management (RQ3)

Machine Learning (ML) application in energy management
exemplifies its transformative potential in optimizing energy
efficiency, improving predictability, and enhancing sustainability
across industries such asmanufacturing andmining.Thekey themes
include predictivemodeling, real-timemonitoring, cost savings, and
collaboration based on sustainability.

Advanced ML techniques, i.e., Neural Networks (NNs),
Gradient Boosting Machines (GBMs), and Long Short-Term
Memory (LSTM) networks, support energy demand forecasting
through accurate analysis of time-series data and discovery of subtle
patterns (Adewale et al., 2024; Matthews and Sutherland, 2019;
Wang et al., 2022; Zhang and Zhang, 2023). GBMs combine weak
learners to reduce forecast errors and are particularly ideal in volatile
energy markets. Techniques like Bayesian Networks and Support
Vector Regression also offer further enhancements to the accuracy

of predictions by weighing non-linear correlation and uncertainty
with energy information (Akhtar et al., 2024; Rashid et al., 2023;
Liu et al., 2023). Predictive maintenance is achieved through
Artificial Neural Networks (ANNs) and reinforcement learning
techniques like Deep Q-Learning, enabling early fault detection in
equipment and energy inefficiencies (Bisset et al., 2023; Müller
and Peters, 2024). Reinforcement learning optimizes energy-
intensive processes by dynamically adapting to operational changes.
Optimization techniques like Particle Swarm Optimization (PSO)
andGenetic Algorithms (GA) optimize energy savings bymodifying
operational parameters in real-time (Huchuk et al., 2019; Matthews
and Sutherland, 2019).

ML algorithms, such as Recurrent Neural Networks (RNNs)
and Deep Reinforcement Learning (DRL), facilitate real-time
monitoring and autonomous adjustments to fluctuating energy
demands (Liu et al., 2023; Lin and Wang, 2023). These systems
ensure stability and resource optimization by detecting anomalies,
predicting energy consumption patterns, and making adaptive
decisions without manual intervention.

ML supports sustainability by optimizing renewable energy
integration into smart grids. Deep Reinforcement Learning (DRL)
and Fuzzy Logic Controllers manage the variability of renewable
energy sources like solar and wind, improving energy storage
and grid stability (Nguyen et al., 2023; Müller and Peters, 2024).
Transfer Learning accelerates the adaptation of ML models to new
sustainability applications, facilitating adopting renewable energy
practices across industries.

Clustering algorithms (e.g., K-means) and Natural Language
Processing (NLP) streamline data processing by uncovering
inefficienciesandextractingactionable insights fromlargedatasetsand
unstructured records like maintenance logs (Liu et al., 2023; Müller
and Peters, 2024). These tools refine energy management strategies
and reveal opportunities for resource optimization.

While ML improves energy efficiency and operational
reliability, challenges such as high computational demands,
integration difficulties, and data privacy concerns remain significant
(Cioffi et al., 2020; Rodrigues et al., 2022). Deploying complex
algorithms, such as deep learning, requires robust infrastructure
and specialized expertise, while issues like data interoperability
and cybersecurity risks hinder seamless adoption. Addressing
these challenges through enhanced data governance, cybersecurity
measures, and investment in skilled personnel is crucial for
successful implementation.

4.9 Promising machine learning methods
for enhancing energy management (RQ4)

Machine learning (ML) continues revolutionizing energy
management systems by optimizing resource allocation, improving
predictive accuracy, and integrating advanced technologies such as
IoT, Big Data, and digital twins. This section summarizes the key ML
methods and their implications in energy management, emphasizing
their technical benefits, challenges, and future potential.

Random Forests, a robust ensemble learning method,
demonstrate high predictive accuracy in analyzing energy
consumption patterns, particularly in mining operations with
highly variable parameters (Adewale et al., 2024; Bisset et al., 2023;
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Singh and Meena, 2023). Similarly, Artificial Neural Networks
(ANNs) effectively model nonlinear relationships for tasks such as
equipment performance prediction, energy demand forecasting,
and sustainability optimization. Reinforcement learning (RL),
including Deep Q-Learning, is gaining traction for its ability to
dynamically optimize energy distribution in response to real-time
operational feedback (Bisset et al., 2023; Müller and Peters, 2024;
Yao et al., 2023). Hybrid models, combining techniques like Genetic
Algorithms with ANNs, enhance the robustness of predictive
frameworks by leveraging the strengths of multiple algorithms
(Mitra and Gupta, 2024; Zhao et al., 2024).

Digital twin technologies paired with predictive modeling are
transforming energy management in industries like mining. These
systems create virtual replicas of physical operations, enabling real-
time monitoring, simulation of operational scenarios, and proactive
maintenance (Huchuk et al., 2019; Rashid et al., 2023; Matthews
and Sutherland, 2019). By predicting equipment failures and
optimizing resource allocation, digital twins reduce downtime
and improve energy efficiency, aligning operational practices with
sustainability goals.

Deep learning methods such as Convolutional Neural Networks
(CNNs) and Long Short-Term Memory (LSTM) networks excel in
analyzing large-scale and sequential data for anomaly detection,
load forecasting, and optimization tasks (Fan et al., 2018; Mitra
and Gupta, 2024; Yao et al., 2023). Emerging techniques like
graph neural networks (GNNs) and transformer-based models
further enhance capabilities for complex energy management tasks,
enabling autonomous systems that adapt to operational changeswith
minimal human intervention (Nguyen et al., 2023; Liu et al., 2023).

Real-time monitoring systems powered by ML enable
immediate decision-making and operational adjustments.
Algorithms such as Recurrent Neural Networks (RNNs) and
deep reinforcement learning (DRL) autonomously balance
fluctuating energy demands and ensure resource optimization
in energy-intensive sectors such as manufacturing and mining
(Liu et al., 2023; Lin andWang, 2023).These capabilities significantly
enhance grid stability and improve the integration of renewable
energy sources.

Despite the benefits, ML-based energy management faces
challenges, including high computational demands, complex
integration with legacy systems, and data privacy concerns
(Cioffi et al., 2020; Rodrigues et al., 2022). The scalability of
advanced techniques like deep learning and digital twins remains
critical, particularly for smaller firms or operations in remote
locations. Ethical and cybersecurity concerns further complicate
the deployment of collaborative and data-sharing frameworks.

Figure 3; Table 2 present a comprehensive comparison of
machine learning models in energy forecasting and anomaly
detection. Among the reviewed techniques, XGBoost demonstrated
the highest reported accuracy (ROC-AUC of 98.7%) in the
LEAD anomaly detection competition, reflecting the strength
of ensemble tree methods in high-noise environments. LSTM-
based architectures, including LSTM with attention mechanisms,
achieved accuracies of 90%–96%, particularly in coal mining
and time-series applications where sequential patterns dominate.
Traditional models like Random Forests also performed robustly,
often outperforming ANNs and SVMs in open-pit mine energy
prediction scenarios.These results support the adoption of ensemble

and recurrent models for practical deployment in industrial-
scale mining energy systems. The consistency across multiple use
cases further validates their utility in predictive maintenance and
energy load management within smart mining infrastructures.
Beyond model performance metrics, Table 3 highlights key trends
and developments in machine learning for energy management,
providing valuable insights into technical advancements, prevailing
challenges, and practical considerations that are shaping the future
of the field.

5 Discussion

5.1 Machine learning in energy
management: key insights and applications

The review highlights the transformative role of Machine
Learning (ML) in advancing energy management across various
industries, particularly mining. Energy management frameworks
have significantly improved operational efficiency and sustainability
by integrating advanced technologies such as Artificial Intelligence
(AI), Big Data, and the Internet of Things (IoT). Frameworks like
MERIDA (Adewale et al., 2024; Bisset et al., 2023; Singh et al.,
2024) demonstrate the effectiveness of real-time energy monitoring,
predictive maintenance, and dynamic resource allocation in
reducing energy waste and operational costs.

Digital twin technology and ISO 50001-compliant systems
are particularly impactful in industrial contexts. Digital twins
replicate physical assets virtually, allowing real-time simulations
and proactive energy adjustments. For instance, mining operations
utilize digital twins to monitor energy-intensive processes
such as drilling and hauling, optimizing resource allocation
and minimizing environmental impact (Akhtar et al., 2024;
Huchuk et al., 2019; Fan et al., 2023). These systems align
energy management practices with sustainability goals by
reducing inefficiencies and facilitating the integration of renewable
energy sources.

In manufacturing and industrial operations, ML-driven
frameworks utilize optimization algorithms, such as Particle
Swarm Optimization (PSO) and Genetic Algorithms (GA), to
enhance energy efficiency by minimizing resource consumption
and waste. These methods, while effective, often involve trade-
offs between computational efficiency and solution accuracy
(Bisset et al., 2023; Fan et al., 2023; Liu et al., 2023). Neural networks,
reinforcement learning techniques, and hybrid models enhance
predictive maintenance and real-time decision-making, though
their complexity may hinder interpretability and deployment
in safety-critical environments (Wang et al., 2023; Mitra and
Gupta, 2024; Nguyen et al., 2023).

Although some reviewed studies originate from non-mining
domains, their inclusion serves a methodological purpose rather
than expanding the scope.These studies introducemachine learning
techniques that can be applied to mining-specific applications,
such as utilizing HVAC-based energy optimization algorithms
to inform mine ventilation strategies. The review deliberately
avoids generalizing ML applications across Industry 4.0 and
remains grounded in the operational and environmental realities
unique to mining.
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FIGURE 3
Machine learning models applied to energy forecasting and anomaly detection in mining and energy systems.

TABLE 2 Verified ML model performance in energy forecasting and anomaly detection.

ML technique Application Accuracy Study References

Random Forest Energy forecasting in open-pit mining High R, low MAE/RMSE Maghraoui et al. (2022)

ANN Same mining dataset, comparison model Moderate Maghraoui et al. (2022)

SVM Same dataset, forecast modeling Slightly lower than RF Maghraoui et al. (2022)

RNN (LSTM) Anomaly detection on TVA energy data High detection accuracy Hollingsworth et al. (2018)

XGBoost LEAD anomaly detection competition ROC-AUC 0.9866 Fu et al. (2022)

LSTM + Attention Energy forecasting in coal mines (China) ∼96% accuracy Liu et al. (2023)

5.2 Addressing challenges in ML-Driven
energy management

Their lack of interpretability often hinders the adoption
of ML models in energy management. Explainable AI (XAI)
techniques, such as SHapley Additive exPlanations (SHAP)
and Local Interpretable Model-Agnostic Explanations (LIME),
address this limitation by providing insights into model
decision-making processes (Bisset et al., 2023; Fan et al., 2023).
Enhancing the transparency of ML models is particularly
important in high-stakes environments, such as mining, where
decisions directly impact safety, compliance, and operational
efficiency.

With the increased integration of IoT and Big Data platforms
in energy management, cybersecurity risks, and data privacy
concerns are critical. AI-enabled infrastructures are vulnerable
to cyber threats, disrupting energy systems and compromising

sensitive data. Future research should develop secure encryption
techniques, robust anomaly detection systems, and privacy-
preserving ML methods, such as federated learning and
differential privacy, to safeguard data integrity and confidentiality
(Nguyen et al., 2023; Akhtar et al., 2024).

Scalability remains a significant challenge in implementing
ML-driven energy management systems, particularly in resource-
constrained environments such as remote mining sites. Modular
ML frameworks, supported by edge computing and fog computing,
offer promising solutions by enabling on-site data processing and
reducing latency (Lin and Wang, 2023; Bazi et al., 2023). These
adaptable frameworks can support distributed energy resources
(DERs) and renewable energy integration, addressing the dynamic
energy needs of diverse industrial operations.These solutions,
summarized in Table 4, illustrate viable pathways to make ML
deployment more practical, scalable, and secure across diverse
mining contexts.
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TABLE 3 Key trends and developments in machine learning for energy management.

Trend/Development Insights References

IoT and ML Integration Enables real-time optimization; challenged by scalability Bisset et al. (2023), Mosavi et al. (2019)

Advanced Neural Networks Improve forecasting and maintenance; high computational cost Cioffi et al. (2020), Wang et al. (2023), Akhtar et al. (2024)

Digital Twins Real-time control; costly to implement Rashid et al. (2023), Huotari et al. (2023)

Explainability Aids trust; deep models remain opaque Cioffi et al. (2020), Liu et al. (2023)

Cybersecurity ML systems need stronger protections Nguyen et al. (2023), Marinakis (2020)

Predictive Maintenance Reduces downtime; resource-intensive Liu et al. (2023), Fan et al. (2023)

TABLE 4 Solutions to practical challenges in ML deployment for energy management.

Challenge Proposed solution Study reference

Model complexity and lack of interpretability Use SHAP or LIME to generate interpretable insights
for real-time predictions and anomaly detection

(Bisset et al., 2023, Fan et al., 2023)

Data privacy and cybersecurity risks Apply federated learning and differential privacy to
protect sensitive mining and energy data

(Nguyen et al., 2023, Akhtar et al., 2024)

High computational demands and energy usage on site Deploy pruned and quantized models on edge devices
(e.g., Jetson Nano, Xavier) using TensorRT acceleration

(Suo and Zhang, 2021, Lahmer and Khoshsirat, 2022)

Latency and bandwidth limitations Use edge offloading frameworks with Bayesian
optimization to reduce inference delay and manage
connectivity constraints

Zhao et al. (2023)

5.3 Advancing data-driven energy systems

IoT and Big Data platforms are pivotal in modernizing energy
management systems. IoT devices enable the collection of granular,
real-time data, while Big Data platforms provide the computational
infrastructure for processing and analyzing this information.
Standardized data protocols, such as OPC Unified Architecture
(OPC UA) and MQTT, can streamline data integration across
heterogeneous systems, facilitating the deployment of ML models
in legacy environments (Adewale et al., 2024; Cioffi et al., 2020).

Techniques such as Random Forests, Artificial Neural Networks
(ANNs), and hybrid models have shown exceptional promise
in optimizing energy usage and forecasting energy demands.
Random Forests excel in handling complex, multidimensional data,
making them ideal for classifying energy consumption patterns
in industrial processes (Bisset et al., 2023; Adewale et al., 2024).
ANNs, particularly Long Short-Term Memory (LSTM) networks,
are effective in load forecasting and anomaly detection, enabling
proactive energy adjustments and reducing unplanned downtime
(Wang et al., 2023; Zhang et al., 2024).

6 Conclusion

This study provides a comprehensive review of Machine
Learning (ML) applications in energy management, with a
particular focus on the industrial and mining sectors. It

demonstrates that advanced ML techniques—including deep
learning, reinforcement learning, and hybrid models—hold strong
potential for enhancing predictive accuracy, optimizing resource
allocation, and enabling real-time decision-making.

Despite these benefits, practical deployment in mining
contexts faces several challenges, including high computational
costs, complex system integration, and growing cybersecurity
vulnerabilities. To address these obstacles, recent research suggests
solutions such as edge computing for local model inference,
lightweight neural architectures for constrained environments, and
open-source toolkits like TensorFlow Lite and TinyML that reduce
model size and resource usage. These technologies are particularly
valuable in remote or infrastructure-limited mining sites.

Securing ML-enabled systems through privacy-preserving
methods (e.g., federated learning), encrypted communication
pipelines, and AI-based anomaly detection is essential to maintain
operational trust and compliance. By investing in interpretable,
efficient, and scalable ML solutions, the mining industry can
significantly accelerate its transition toward intelligent, low-
emission, and data-driven energy management practices.

6.1 Future research directions

Future work should address specific deployment challenges
and refine the roadmap for ML-based energy optimization in
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mining. Instead of broad themes, the following targeted directions
are proposed.

i. Explainable AI in Critical Operations: Apply interpretable ML
techniques such as SHAP and LIME to support transparent
decision-making in predictive maintenance and energy
anomaly detection. How can explainability improve trust
and human-in-the-loop adoption in safety-critical mine
operations?

ii. Lightweight ML for Harsh Environments: Optimize and
compress models (e.g., pruning, quantization) for deployment
on Jetson Nano/Xavier edge devices in off-grid or low-
power mining setups. What trade-offs between accuracy and
efficiency are acceptable in remote energy forecasting tasks?

iii. Federated Learning for Data Privacy: Enable collaborative
model training across geographically distributed mines
without sharing raw data. How can federated approaches
maintain performance while reducing network traffic and
preserving cybersecurity standards?

iv. Edge–Cloud Decision Frameworks: Use intelligent edge-cloud
orchestration (e.g., Bayesian offloading) to adaptively balance
computation and latency.What is the optimal offloading policy
under variable mine connectivity and energy costs?

v. Transformer-Based Forecasting underUncertainty: Investigate
whether transformer models outperform LSTM/FNN
architectures for real-time energy prediction in dynamic
mining environments. Can these models generalize across
different ore processing loads and operational cycles?
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