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Online determination of state of
charge in lithium-ion batteries:
influence of the state of health

Carlos Armenta-Deu*

Facultad de Ciencias Físicas, Universidad Complutense de Madrid, Madrid, Spain

This paper focuses on determining the state of charge (SOC) of lithium-
ion batteries when they are in operation and the influence that the state of
health (SOH) has on SOC determination. The paper studies the effects of the
discharge rate on battery performance and evaluation of the SOC. The paper
also analyzes the influence of battery aging on the determination of SOC. The
online determination of SOC in lithium-ion batteries uses the linear behavior
of battery discharge and the influence of the discharge rate on the battery
voltage slope. The paper describes a simple algorithm that relates the SOC of
the battery with online battery voltage. The proposed measurement method
uses a very short controlled discharge at a specific rate that avoids unexpected
interferences with the current operation of the battery during states of charge or
discharge. We conducted a simulation process to evaluate the evolution of the
SOC in Li-ion batteries for different operating stages. Experimental tests validate
the proposed methodology, showing a close agreement between theoretical
values and experimental results with 98% accuracy. The paper also deals with
determining the aging factor in lithium batteries as a critical parameter to
calculate the SOC. The method determines the aging factor using a specific
simulation for calculating the SOC. The paper compares the results with the
values obtained in an experimental test showing high agreement (>93%). The
proposed model applies to all lithium-ion batteries and validates for a wide
range of battery state-of-health, up to 50%, and with accurate prediction,
higher than 90%.

KEYWORDS

lithium-ion batteries, state of charge, state of health, aging effects, simulation process,
online determination, operating stage, online battery voltage

1 Introduction

Lithium-ion batteries are widely used as electric storage systems inmodern applications,
mobile or stationary (Korthauer, 2018; Jiang and Zhang, 2015; Choi and Wang, 2018);
electronics and microelectronics (Megahed and Ebner, 1995; Wang et al., 2015; Pistoia,
2013); UPS and data centers (Stan et al., 2014; Kok and Setyadi, 2023; Horiba, 2014); or
in the industry (Lavoie et al., 2017). Lithium-ion batteries have been implemented in many
areas of the modern society (Zubi et al., 2018) and show promising expectations for the
future (Zubi et al., 2018; Scrosati et al., 2011). Among the many advantages that lithium-ion
batteries have compared to other batteries such as nickel or lead, the specific power is one of
the most interesting since it reduces the size and weight of the battery to supply the required
energy (Linden and Reddy, 2002; Yoshio and Ralph, 2009). High specific power results in
more available energy and autonomy for the defined battery size. The operational time of a
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battery depends on its capacity and discharge rate. The dependence
of a lithium-ion battery capacity on the discharge rate is
low, although the capacity reduces with the increase in the
discharge rate (Armenta-Déu et al., 2019).

The state of charge (SOC) of a battery is a critical point in
managing the operational time; indeed, the autonomy of a battery
for a specific capacity depends on the remaining SOC. In many
applications, the accuracy in determining the SOC conditions the
operation of the external load, such as in electric vehicles, where an
inaccurate calculation of the SOC can cause the battery power to
deplete earlier than expected, with highly negative consequences;
therefore, an accurate determination of the SOC is essential
(Yang R. et al., 2017; Adaikkappan and Sathiyamoorthy, 2022).

The determination of the SOC of lithium-ion batteries is the
goal of many studies; some studies base the SOC calculation on
thermodynamic considerations (Li et al., 2017), while others have
used adaptive methods and neural networks to evaluate the SOC
(Zhang et al., 2015; Li et al., 2019; Wang et al., 2014). Modeling is
also a practical tool in determining the lithium-ion batteries’ SOC,
especially when using simulation techniques (Zhang et al., 2012;
Xiong et al., 2017; Yang et al., 2016).

The open circuit voltage (OCV) of lithium batteries is the key
parameter in calculating the SOC (Xiong et al., 2017; He et al.,
2012; Ren et al., 2021; Chen et al., 2019; Lee et al., 2008;
Zheng et al., 2016; Xing et al., 2014) since it determines the
starting point of the discharge curve for any current rate. The
OCV is a characteristic parameter of any battery and represents
the electromotive force, which depends on the structure and
configuration of the electrochemical cell. It is near a constant value,
although it is affected by temperature changes and aging processes
(Zhang et al., 2018; Farmann and Sauer, 2017).

Many methods proposed to determine the SOC of lithium-ion
batteries use the OCV as a reference (Xiong et al., 2017; He et al.,
2012; Ren et al., 2021; Chen et al., 2019; Lee et al., 2008; Zheng et al.,
2016; Xing et al., 2014; Zhang et al., 2016). This value, however,
depends on the battery capacity itself (Pattipati et al., 2014), the aging
processes (Lavigne et al., 2016), and the discharge path (Petzl and
Danzer, 2013); therefore, the determination of the OCV requires
a modeling process that considers all the factors mentioned above
(Zhang et al., 2016; Birkl et al., 2015; Yu et al., 2018; Weng et al.,
2014; Weng et al., 2013; Yu et al., 2021).

Since the OCV must be measured offline, determining the SOC
of a lithium battery based on the OCV requires a disconnection
of the battery during operation. This process is not time-
consuming and barely interferes with the current battery discharge.
Nevertheless, online determination of the battery OCV results is
more effective and practical. Some works in the past have studied
and analyzed the online determination of OCV to resolve the
existing gap between online and offline operational conditions,
leading to inaccuracies in OCV calculation and SOC determination
(He et al., 2012; Chiang et al., 2011).

Recent research bases the lithium batteries’ SOC determination
on thermodynamic analysis (t-SOC) and engineering approach (e-
SOC) (Li et al., 2017), electrochemical modeling (Wang et al., 2023),
adaptive methods (Yang et al., 2021), or recurrent neural networks
(Li et al., 2021). Other recently published works deal with SOC
stacked encoder–decoder techniques (Terala et al., 2022) or Kalman
filter algorithms (Xie et al., 2023).

The determination of the SOC in lithium batteries based on the
OCV, however, is not the only method for calculation; alternative
solutions arise from the analysis of the evolution of the battery
voltage during the discharge, especially if we consider the influence
of the discharge rate on the performance of the battery. This paper
proposes a new technique to characterize the SOC in lithium-ion
batteries during operationwithminimum interference in the current
operation.

2 State of the art

Previous works have analyzed the various methodologies
developed for determining a battery’s SOC (Piller et al., 2001). In
this work, the authors analyze the existing methods for all types of
batteries, such as lead-acid and lithium. Because we are dealing with
lithium batteries, we include only the methodologies related to this
type of batteries.

• Discharge test
• Ampere hour counting (including loss calculation)
• Linear model
• Artificial neural network
• Impedance spectroscopy
• Kalman filters

Since a detailed description of every method is arduous,
we summarize the main characteristics in Table 1, showing the
advantages and drawbacks of all the methods.

We notice that the proposed method avoids many of the
drawbacks shown in Table 1, while sharing some advantages, and
provides a reliable, confident, and accurate methodology valid for
all kinds of lithium batteries.

3 Materials and methods

3.1 Theoretical basis

The SOC of a battery defines the remaining available charge in
the battery pack; mathematically:

SOC = 1−
Qm

QD
. (1)

In terms of discharge time:

SOC = 1−
tm
tD
. (2)

Q represents the extracted charge from the battery during a
specific time t. Sub-indexes m and D account for intermediate and
complete discharge, respectively.

Since the voltage evolution of a lithium battery during the
discharge process is linear, we can relate discharge time and battery
voltage for an intermediate point as follows:

tm =
Vo −Vm

m
. (3)

Vm and Vo are the battery voltages at the intermediate and full
charge state, respectively, and m is the discharge curve slope.
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TABLE 1 Advantages and disadvantages of the used methodologies for determining the state of charge in lithium batteries.

Method Advantages Disadvantages

Discharge test High reliability Time-consuming
Current battery operation interruption

Amperes hour counting Uses a balancing method Requires a well-known starting point
Possibility of incorrect current measurement leading to a high error
in SOC determination
Not all current supplied to the battery is consumed by charging

Linear model Applicable to any battery type
High robustness

Requires reference data for every battery type and characteristics

Artificial neural network Can be utilized for all battery systems and for all applications Requires previous “battery training”
Errors in SOC determination strongly depend on the battery training
method accuracy

Impedance spectroscopy Applicable to all battery systems
Highly accurate

Complexity
Sophisticated equipment
High dependence on temperature effects

Kalman filters It is applicable for online measurements Needs high computing capacity
Requires a previously tested battery model
Difficulties in determining the input parameters for the method
development

The time for a complete discharge depends on the battery
capacity, Cr , and on the discharge current, ID:

tD =
Cr

ID
. (4)

Battery capacity depends on the discharge rate according to the
following expression (Armenta-Déu et al., 2019):

Cr = fCCn. (5)

fC is the capacity correction factor, and Cn is the nominal capacity of
the battery.

The capacity correction factor is a parameter that depends on the
discharge rate X as follows:

fC = a(
Cn

ID
)
b
= aX−b. (6)

Parameters a and b are empiric. Equation 7 provides the values
for lithium-ion batteries (Armenta-Déu et al., 2019):

a = 0.9541; b = 0.0148. (7)

Combining Equations 2–6:

SOC = 1−
Vo −Vm

a
(
ID
Cn
)

1+b
. (8)

This equation provides a practical algorithm to determine
the lithium battery’s SOC by only measuring the voltage at an
intermediate point and the discharge current.

Equation 8, however, is only valid for non-aged batteries, which
is not the current situation; aging causes a reduction in the capacity
of delivering charge (Broussely et al., 2005; Yang X. G. et al., 2017;
Keil et al., 2016; Petzl et al., 2015) due to degradation of the active

matter of the battery, an increase in internal resistance, secondary
electrochemical reactions at the electrode interphase, etc. (Zeng and
Liu, 2023; Xiong et al., 2020).

If the reduction in battery capacity is due to the depletion of
active matter, the discharge curve maintains the slope but reduces
the time to reach the collapse point (Zhang et al., 2000); if the
increase in the internal resistance is the cause of battery capacity
reduction, the discharge curve slope increases, and the time before
reaching the collapse time is decreased (Mandli et al., 2019). In the
case of the combined effects of active matter depletion and internal
resistance increase, the battery performance is similar to the case of
internal resistance increase only.

Considering the battery performance, we can represent the
aging effects as a linear evolution of the battery voltage. The
aged battery has a higher slope in the voltage drop and reduced
discharge time. Figure 1 shows the simulation.

Figure 1 represents the comparative evolution of the lithium-ion
battery voltage during a complete discharge for aged and non-aged
batteries.The solid line corresponds to a completely new battery, and
the dashed line corresponds to the aged one.

3.2 Simulation process

To analyze the battery aging influence on SOC determination,
we consider two identical batteries of nominal capacity Cn submitted
to a discharge rate X, where one is completely new (SOH = 100) and
the other one with some previous cycling (SOH<100).

Although it is not critical, the simulation applies to a
complete discharge process until reaching the collapse point
to facilitate the comprehension of how aging modifies SOC
determination; nevertheless, we can develop the simulation to a
partial discharge as well.
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FIGURE 1
Schematic representation of the comparative performance of lithium
battery discharge curve for aged and non-aged cases.

Let us suppose we measure a battery voltage, Vm, during
operation that corresponds to an intermediate point of the discharge
process, and thus to a partial discharge of the battery. At this
point, the battery shows a specific SOC, which is different for
the aged and non-aged batteries. We identify these two points as
A and B in Figure 1 and the corresponding SOC as SOCag and
SOCn-ag, respectively.

In current conditions, the control system that evaluates the
battery SOC provides SOCn-ag as the estimated value since it
considers the battery as new; however, if the battery is aged, the
value is SOCag, as shown in Figure 1.The difference between the two
values represents a loss of delivered charge that we must compute
to correct the estimated value of the SOC and convert it into
the true one.

The SOC of the battery, point B, is calculated using Equation 2,
which is as follows for the two batteries (Equation 9):

SOCag = 1−
tm
toD
; SOCn−ag = 1−

tom
toD
. (9)

Operating in Equation 9, we have:

Δ(SOC) = (1−
tom
toD
)−(1−

tm
toD
) =

tm − tom
toD
. (10)

Using Equation 3:

tm =
Vo −Vm

m
; tom =

Vo −Vm

mo
. (11)

Combining Equations 10 and 11:

Δ(SOC) =
Vo −Vm

toD
( 1
m
− 1
mo
). (12)

The expression for the discharge curve slope is as follows:

m =
Vo −Vof f

tD
; mo =

Vo −Vof f

toD
. (13)

Replacing Equation 13 in Equation 12:

Δ(SOC) =
Vo −Vm

Vo −Vof f
(
tD − t

o
D

toD
). (14)

Applying Equation 4 to Equation 14:

Δ(SOC) =
Vo −Vm

Vo −Vof f
(
Cr −Co

r

Co
r
). (15)

Using Equations 5 and 6, and replacing in Equations 15:

Δ(SOC) =
Vo −Vm

Vo −Vof f
(
X−bCn −X−bo Co

n

X−bo Co
n
). (16)

Replacing X in Equation 16 in terms of intensity and capacity,
and using Equation 13:

Δ(SOC) =
Vo −Vm

Vo −Vof f
[ fag(

mo

m
)
b
− 1]. (17)

Here, the aging factor, fag , represents the nominal capacity ratio
of aged to non-aged batteries.

The battery manufacturer provides the voltages for the charged
and discharged batteries, Vo and Voff, respectively. The control
circuit voltmeter measures the operational voltage at the control
point, Vm (Figure 2).

To calculate the discharge curve slope, we measure the
battery voltage at the initial and final points of a time interval
and determine it using Equation 11, where tm and tom are the
time intervals for every battery, aged and non-aged. We make
this operation during the battery discharge process; the control
unit regulates the current extracted from the battery during the
measurement to avoid changes in the intensity.

The proposed methodology complements other existing
techniques based on thermodynamic analysis (Li et al., 2017),
neural networks and adaptive methods (Zhang et al., 2015;
Li et al., 2019; Wang et al., 2014), or modeling (Zhang et al., 2012;
Xiong et al., 2017; Yang et al., 2016), enriching the current state of
the art regarding SOC determination of lithium-ion batteries.

Temperature effects are considered for more accurate
determination of the battery SOC. Previous studies used a joint
estimation method for lithium-ion battery SOC and temperature
based on ultrasonic reflection waves (Zhang et al., 2023). If the
battery operates in climates with a wide temperature variation, it
is suitable to apply a method to correct the battery’s SOC as the
temperature changes.

3.3 Aging factor

We need to know howmany agents intervene in the degradation
of the battery, their action time, and the activity depth of each
agent to determine the aging factor. Since this requires a deep
knowledge of the battery history such as the cycling, the working
temperature, the discharge rate, and the depth of discharge, it is
difficult to determine the aging factor accurately. Nevertheless, we
can estimate the aging factor considering that the battery’s current
capacity represents the state of health (SOH); therefore, we assume
that an aged battery has a lower capacity than a non-aged one.
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FIGURE 2
Layout of the testing system.

Based on the previous statement, we evaluate the aging factor
by comparing the discharge curve slope of an aged battery and a
non-aged one. According to Figure 1, an aged battery discharges
quicker for the same discharge rate; therefore, if we submit the
battery to a controlled discharge of known intensity, we can calculate
the discharge curve slope by applying Equation 11. This equation is
valid for batteries that were initially charged, which requires starting
the controlled discharge process with a charged battery.

To avoid altering the SOCof the battery, the controlled discharge
is kept short in time; however, the intensity is high enough to
generate ameasurable voltage dropwith high accuracy. After the test
run, we process the information, adapting Equation 13 to calculate
the slope for every battery in the following form:

mag =
Vo −V

ag
test

ttest
; mn−ag =

Vo −V
n−ag
test

ttest
. (18)

Vag
test andVn−ag

test are the aged and non-aged battery voltages at the end
of the test run; ttest is the time interval of the test.

By extrapolating the voltage evolution of the test until reaching
the cut-off point where the battery collapses is given by Equation 19:

tD =
Vo −Vof f

mag
; toD =

Vo −Vof f

mn−ag
. (19)

Since the intensity is the same for the two batteries, we obtain
the aging factor from the ratio of the aged to non-aged battery
capacity as follows:

fag = 1−
Cag

Cn−ag
. (20)

Or

fag = 1−
mn−ag

mag
. (21)

Equation 21 shows how to determine the aging factor with only
the knowledge of the two discharge curve slopes.

Since the battery SOH depends on micro-health changes that
occur in short and fast battery discharges, it is critical to evaluate
these micro-changes to improve the test efficiency. For this goal, the
proposed methodology can be applied to short and fast discharges,
analyzing the discharge curve slope differential for any process.
Considering that global health loss is the addition of micro-health
losses, we determine the battery SOH by computing the sum of
all micro-health losses and encompassing the process set in a
single one.

4 Results

4.1 Experimental tests

4.1.1 Aging factor
To run the tests, we designed and built a control circuit

consisting of a double-battery block, one aged and one non-
aged, connected to a computerized battery analyzer (CBA),
a model CBA V from West Mountain Radio manufacturer
(Computerized Battery Analyzer (CBA V), 2025), for automatic
battery discharge. To charge the battery, we use a RobbeModellsport
automatic control charger, a model Ultramat 18 from Graupner
(Graupner Ultramat 18, 2025). The electric circuit uses a power
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analyzer PCE model PA6000 (PCE INSTRUMENTS, 2025) to
measure the battery voltage and the working electric current.We use
a PC to control the CBA andUltramat devices; therefore, we regulate
the intensity during the charge or discharge of the battery. The CBA
and Ultramat software permit continuous registering of the voltage
and intensity values. We record the values in the PC hard disk for
later analysis. Figure 2 shows the layout of the testing system.

The test runs at 5 A intensity at 1-s intervals, lasting for 15 s, which
means a discharge of 0.02 Ah, which is less than 1% of the non-aged
battery’s capacity.The corresponding voltage drop was 0.037 V, which
matches the expected theoretical value with 95% accuracy.

We calculate the theoretical value of the voltage drop during
the test from Equation 22:

ΔVtest =
Vo −Vof f

toD
ttest. (22)

For the discharge time, toD:

tD =
Cr

Itest
=

fCCn

Itest
. (23)

Applying values to Equation 23, we obtain the discharge time,
(Equation 24), and test voltage drop (Equation 25):

tD =
(0.95141)(2.5/5)0.0148(2.5)

5
= 0.472. (24)

ΔVtest =
12.6− 8.4

0.472
15

3600
= 0.0370V. (25)

Since the power analyzer has a voltage accuracy of 0.1 mV, the
voltage drop at the test run has a precision of 97.3%, which is high
enough to validate the test.

Repeating the test for the aged battery, we obtained a voltage
drop of 0.045 V; therefore, on applying the developed equations for
the aging factor, it results in the following:

Cr = Itest
Vo −Vof f

mag
. (26)

Combining Equations 18, 26:

Cr = Itest
Vo −Vof f

Vo −V
ag
test

ttest. (27)

Applying values to Equation 27, we have:

Cr = 5
12.6− 8.4

0.045
15

3600
= 1.940Ah. (28)

We ran a complete discharge test for the aged battery to validate
the calculation, obtaining a capacity of 1.978 Ah, which means a
deviation of 2% referred to the tested value in Equation 28.

Now, applying Equation 21, we obtain the aging factor in
Equation 29:

fag = 1−
mn−ag

mag
= 1− 0.037

0.045
= 0.178. (29)

We checked the different parameters using the tests and the
complete discharge values to validate the method. We show the
results of the comparative analysis in Table 2.

We notice high matching in the determination of the battery
capacity using any of the two methods, the one derived from the
application of a previous work (Armenta-Déu et al., 2019) or the
alternative proposed in this paper, with an accuracy higher than 98%
for the aged battery and almost 100% for the non-aged one.

FIGURE 3
Evolution of deviation in aging factor determination with time of the
initial test.

FIGURE 4
Evolution of the battery DOD with the interval time of the initial test.

Weobtain a similar result from the analysis of the determination
of the discharge curve slope, with almost identical values in the
accuracy for the aged battery and the same value for the non-
aged one.

Finally, the analysis of the aging factor, which is the goal of the
testing method, results in a perfect matching when using the values
from the specific discharge test for charged batteries, but it differs
by nearly 10% if we use the global discharge process. This deviation
shows that the performance does not remain uniform during the
entire discharge compared to the initial test, probably due to the
non-homogeneous behavior of aged batteries.The result is, however,
acceptable, and the influence on the determination of the battery
SOC is limited.

Further tests show that the deviation reduces if the initial
test lasts longer (Figure 3); however, the extracted current during
the test increases, resulting in higher interference in the battery
performance. Figure 4 shows the evolution of the battery depth of
discharge (DOD) associatedwith the initial test. If the initial interval
is higher than 15 s, the DOD exceeds 1%; therefore, we consider
this value as the threshold beyond which the initial discharge is
not acceptable. Consequently, we estimate the aging factor with a
minimum accuracy of 9.6%.

The evolution of the deviation with the aging factor adjusts to a
right line within 98% accuracy; the corresponding linear regression
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FIGURE 5
Evolution of the aging test intensity with the allowed maximum values
of DOD and δ

is of the following type:
δ( fag) = −0.4564t+ 17.545. (30)

Equation 30 allows us to set up the minimum required time for
the aging determination test as a function of the DOD caused by the
test. Indeed, since we should know the discharge intensity at which
the aging test is running, Itest , and if we set up a maximum value of
the DOD for the test, (DOD)set , we have

δ( fag) = −0.4564
(DOD)set

Itest
+ 17.545. (31)

Equation 31 permits regulating the aging test discharge intensity
for the maximum setup value of DOD and aging factor deviation, δ.

We obtain moderate values of the initial test intensity if the
allowed DOD is low; however, the intensity increases rapidly for
intermediate and high values of the DOD.

We can express the maximum test duration as follows:

ttest|max = fC
(DOD)set

Itest
Cn. (32)

The DOD related to the aging test refers to the corrected battery
capacity due to the discharge rate.

Figure 5 shows the evolution of the test intensity for the different
values of DOD and aging factor deviation.

If, for instance, for a battery of 2.5 Ah capacity, we set up a
maximum DOD of 1% and a maximum deviation of the aging
factor of 5%, checking Figure 5, we obtain a test intensity of 3.64 A;
therefore, applying Equation 32, we have

ttest|max = fC
(DOD)set

Itest
Cn = 0.949

0.01
3.64

2.5 = 6.5x10−3h = 23.5s.

(33)

Equation 33 provides the duration of the test for determining the
aging factor.

4.1.2 State of charge
Once the aging factor is determined, we run a group of tests

to validate the SOC determination method, which consists of a
controlled discharge process at a constant intensity from 1 A to 5 A
in 1 A interval. We apply the two discharge groups to aged and

non-aged batteries. For the aged batteries, we use three different
batteries with an aging factor of 0.178, 0.335, and 0.486; therefore,
we can analyze the influence of the aging factor on the determination
of the SOC.

To determine the SOC, we use two different methods. In the
first one, we apply the simulation developed in the present work
(Equation 11) based on the battery voltage measurement during
discharge at regular intervals of 5 min; in the second one, we evaluate
the charge extracted from the battery at the experimental test
by applying Equation 1. Since we operate at a constant intensity, we
calculate the extracted charge, Qout, using the following expression:

Qout = IDtop. (34)

Here, top is the operating time, and ID is the discharge intensity.
The term QD in Equation 1 computes for the global

discharge time, tD; therefore, we obtain the experimental value
of the SOC from Equation 35:

SOCi = ID(tD − tm). (35)

tm represents the time at which we measure the battery voltage.
We present the results of the SOC in two paired graphs (Figures

6–9): one shows the evolution of the SOC during discharge for the
different discharge intensities, and the other shows the ratio of the
experimental to theoretical value, which indicates the accuracy in
determining the SOC using the proposed methodology. The solid
line in the SOC evolution figure corresponds to the theoretical
calculation using the algorithmof Equation 11, while the dashed line
accounts for the experimental values.

Applying Equation 17 and using data from the developed study,
we obtain the estimated error in the SOC determination, resulting
in a value lower than 0.42% and 0.51% for the theoretical prediction
and experimental results, respectively.

Analyzing figures from different tests, we realize that there is a
high agreement between theoretical values and experimental results
(graphics on the left) for all the discharge intensities and the aged
and non-aged batteries. On the other hand, looking at the graphs
on the right, we notice that the accuracy in predicting the SOC
decreases with the increase in intensity and the DOD. The effect is
more evident as the battery ages. Table 3 summarizes the average
accuracy for every discharge rate and battery.

The analysis of results in Table 3 confirms that the lithium
batteries’ SOC determination diminishes in accuracy as the
discharge rate and aging increase. Nevertheless, the obtained results
are promising since we predict the SOC on the average value of
98.4% for non-aged batteries and 97.4%, 94.8%, and 90.2% for low,
medium, and deep aged batteries, respectively.

Statistical analysis of data fromTable 3 shows a dispersion factor
that increases with aging and discharge rate, similar to the accuracy
average value in battery SOC determination. We realize that for all
the cases, the standard deviation (STD) increases along with the
discharge rate and aging factor.

5 Conclusions

A new method to determine the SOC in lithium-ion batteries is
proposed and developed.Thismethod resides in the linear evolution
of the battery voltage with discharge time.
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FIGURE 6
State of charge evolution for non-aged battery with discharge time for different discharge intensities (left); theoretical to experimental ratio of the state
of charge for the discharge test for different discharge intensities (right).

FIGURE 7
State of charge evolution for aged battery (fag= 0.178) with discharge time for different discharge intensities (left); theoretical to experimental ratio of
the state of charge for the discharge test for different discharge intensities (right).

FIGURE 8
State of charge evolution for aged battery (fag= 0.335) with discharge time for different discharge intensities (left); theoretical to experimental ratio of
the state of charge for the discharge test for different discharge intensities (right).

FIGURE 9
State of charge evolution for aged battery (fag= 0.486) with discharge time for different discharge intensities (left); theoretical to experimental ratio of
the state of charge for the discharge test for different discharge intensities (right).
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TABLE 2 Parameter values for the test and complete discharge process.

Equation 5 Equation 26 Deviation (%)

Aged battery capacity (Ah) 1.978 1.940 2.0

Non-aged battery capacity (Ah) 2.361 2.365 0.2

Equation 13 Equation 18 Deviation (%)

Discharge curve slope (aged battery) (V/h) 10.617 10.800 1.7

Discharge curve slope (non-aged battery) (V/h) 8.895 8.880 0.2

Equation 20 Equation 21 Deviation (%)

Aging factor (test) 0.178 0.178 0.0

Aging factor (global capacity) 0.178 0.162 9.6

TABLE 3 Theoretical to experimental ratio of the state of charge for aged and non-aged lithium batteries.

Type of battery Discharge intensity (A) Parameter

1 2 3 4 5 (%)

Non-aged
99.0 98.6 98.4 98.0 97.9 Average ratio

±1.2 ±2.0 ±3.5 ±4.0 ±6.9 STD

Aged

fa = 0.162
98.7 98.0 97.2 96.7 96.5 Average ratio

±2.1 ±3.4 ±3.8 ±4.4 ±8.7 STD

fa = 0.335
95.5 95.8 95.4 94.3 92.9 Average ratio

±5.0 ±7.0 ±9.0 ±11.2 ±12.1 STD

fa = 0.486
91.2 91.8 90.1 89.5 88.4 Average ratio

±8.1 ±9.4 ±11.1 ±14.0 ±14.0 STD

A capacity correction factor, which depends on the discharge
rate, applies to determining the battery current capacity. This
correction is critical to enhance the accuracy of SOC prediction.

The proposed model considers the battery aging to determine
the current SOC. These effects relate to an aging factor, which
modifies the battery’s SOC. We propose a method to estimate the
aging factor. This method runs on a simulation process, which
determines the battery aging with enough accuracy.

We determined the aging factor of the tested batteries with
90.4% accuracy for a testing process of 15 s; this value improves
if the test interval increases up to 30 s, where the precision in the
determination of the aging factor is approximately 96%. Longer
testing time, however, presents the inconvenience of discharging
more than 1% of the battery’s total capacity, which represents a
significant energy loss.

The developed simulation for the aging factor determination
permits the user to calculate the duration of the test, provided that
we set up the maximum value of the battery DOD associated with
the test and the accuracy in determining the aging factor.

The proposed method determines, with high accuracy, the
lithium battery’s SOC, depending on the discharge rate and the
battery aging. For non-aged batteries, the methodology determines
the SOC with an average precision higher than 98%; if we used aged
batteries, the accuracy depends on the battery age; for a slightly
aged battery, with an aging factor of 17.8%, the average accuracy
in determining the battery SOC is 97.4%. However, if the battery
ages up to an aging factor of 0.486, the average SOC accuracy
reduces to 90.2%.

The discharge rate also influences the SOC determination
accuracy; indeed, for low rate discharges such as 0.4 C, the
average value, considering aged and non-aged batteries, is 96.1%,
while for medium to high discharge rates of 2 C and over, the
accuracy in determining the SOC is 93.9%. The high precision
in determining the SOC in lithium-ion batteries allows the user
to predict the remaining charge, and thus, the autonomy of the
operating system.

We also developed a statistical analysis on the results of the
battery SOC determination to evaluate their spreading; a high
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dispersion represents a drawback because of the uncertainty in the
current SOC and, consequently, in the battery autonomy.

The statistical analysis results show that for non-aged batteries,
the average standard deviation is only σ = 3.52, representing a low
value below an acceptable threshold of σ = 5. Low-degraded batteries
with an aging factor below 0.2 show a similar behavior with an
average standard deviation below the threshold (σ = 4.48).

The standard deviation for aged batteries exceeds the setup
threshold, with average characteristic values of σ = 8.88 and σ =
11.32 for the intermediate- (fag = 0.335) and high (fag = 0.485)-
degraded batteries, respectively. These results indicate that the SOC
estimation for medium- and high-degraded lithium batteries suffers
from uncertainty.

The proposed method can be integrated into a battery
management system (BMS) by simply collecting the relevant
parameter data in SOC and SOHcalculation.The computer unit that
manages the battery operation calculates the voltage slope using the
current and stored data and determines the battery’s SOH.
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