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To address the issues of insufficient control parameter identification accuracy
and convergence speed during the grid connection of distributed power
sources, a control parameter identification method for the Virtual Synchronous
Generator (VSG) convertermodel considering the integration of electric vehicles
(EVs) based on the dynamic particle swarm optimization algorithm is proposed.
By constructing a VSG inverter control model suitable for distributed power
sources and EV charging systems, analyzing the interactions between active
and reactive power control loops under EV integration scenarios, selecting
parameters and observations to be identified, and improving the Particle Swarm
Optimization (PSO) algorithm based on actual conditions, the method ensures
enhanced system adaptability. Simulation results demonstrate that the proposed
method exhibits higher dynamic response capabilities, system stability, and
adaptability under varying load conditions and uncertainties introduced by EV
charging behaviors, highlighting its significant engineering application value.

KEYWORDS

VSG converter, EV charging, generator control model, parameter identification, particle
swarm optimization

1 Introduction

With the global transformation of energy structure and the widespread application of
renewable energy, the proportion of distributed energy sources such as photovoltaics and
wind power in power systems is increasing.This raises higher demands for the stability and
dynamic response of the grid. Traditional power systems rely on synchronous generators
to provide stable voltage and frequency support. However, due to the variability and
uncertainty of renewable energy output, the complexity of grid operation has significantly
increased. As a result, Virtual Synchro-nous Generator (VSG) technology has emerged as
one of the key solutions to this problem (Dai et al., 2022). Among the key aspects of VSG
technology, the most critical issue is the identification of control parameters. To improve
identification accuracy and system stability, variousmethods have been proposed, including
traditional techniques such as least squares estimation, Kalman filtering, and gradient-based
optimization methods (Marques and Verdelho, 1998). However, these traditional methods
suffer from slow convergence speeds and are prone to being affected by local minimum,
particularly when dealing with nonlinear dynamic systems like VSG. VSG technology
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FIGURE 1
Control block diagram of virtual synchronous generator converter
model.

FIGURE 2
Schematic diagram of the VSG inverter.

enhances the stability and dynamic response of the power
grid by simulating the inertia and damping characteristics of
traditional synchronous generators (Xia et al., 2024) However,
traditional control parameter identification methods often suffer
from slow convergence and insufficient accuracy, making precise
control difficult under complex operating conditions (Li, 2022).
To address these issues, intelligent optimization-based control
parameter identificationmethods have received increasing attention
in recent years (Driesen and Visscher, 2008). Among them, Particle
Swarm Optimization (PSO) is highly regarded for its simplicity,
ease of implementation, and strong global search capabilities.
However, the standard PSO algorithm is prone to falling into local
optima, which limits its performance, especially when applied to
dynamic nonlinear systems like VSG (Torres and Lopes, 2009).
To overcome these limitations, this study develops a VSG inverter
control model suitable for distributed energy, investigates the
impact of active and reactive power control loops on system
performance (Karapanos et al., 2011), and improves the PSO
algorithm to enhance the accuracy and convergence speed of
control parameter identification (Liu et al., 2017). In addition, recent
studies have proposed various control strategies to enhance the
inertia and damping capabilities of VSG, thereby supporting grid
stability. Combining these strategies with intelligent optimization
algorithms can significantly improve the system performance of
VSG in microgrid environments. Simulation results show that the
improved PSO outperforms traditional methods under practical
conditions.

Furthermore, with the rapid global adoption of electric vehicles
(EVs), their integration into the power grid has become increasingly
important. Electric vehicles not only represent a new massive load
but also act as distributed energy resources through Vehicle-to-
Grid (V2G) technology (Vishnu et al., 2023). VSG plays a crucial
role in facilitating the interaction between electric vehicles and the

FIGURE 3
Dynamic particle swarm optimization algorithm flowchart.

TABLE 1 Comparison of different algorithms.

Algorithm RMSE Iterations to
convergence

Execution
time (s)

Standard PSO 3.8496 86 1767

Improved PSO 3.0296 28 490

FIGURE 4
Simulation topology diagram of the VSG control model.

grid by providing necessary inertia and damping characteristics to
stabilize the grid during the charging and discharging process of
electric vehicles. Therefore, optimizing VSG control parameters is
vital to ensuring the efficient and reliable integration of electric
vehicles with the power grid. The method proposed in this
study enhances the ability of VSG to respond to the dynamic
demands introduced by electric vehicles, thus supporting the
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FIGURE 5
Simulation architecture diagram of the VSG control model.

FIGURE 6
Parameter identification block diagram.

seamless integration of electric transportation with the existing
power infrastructure. The writing structure of this article is
as follows. Section 1 provides an overview of the research content
of this paper; Section 2 introduces the parameter identification
methodology for virtual synchronous generators (VSGs); Section 3
elaborates on the simulation process and analysis of results;
Section 4 discusses the simulation findings and Section 5 concludes
with a comprehensive summary of the entire paper. Compared
with existing research, the novel contributions of this paper can be
summarized as follows:

1. We have improved the inertial weight and learning factors in
conventional particle swarm optimization algorithms through

dynamic adjustment mechanisms to enhance global search
capability.

2. The velocity and position update rules of conventional
particle swarm algorithms have been optimized to accelerate
convergence speed.

3. The algorithm’s response has been tested under scenarios
involving electric vehicle load disturbances, validating its
robustness in practical applications.

2 Control parameter identification
method for virtual synchronous
generator inverter model considering
EV

To overcome the limitations of traditional identification
methods, a dynamic Particle Swarm Optimization (PSO) algorithm
is proposed for identifying the control parameters of the VSG
inverter. By dynamically adjusting the algorithm’s inertia weight
and learning factors, the global search capability and local
optimization performance are significantly enhanced, leading to
improved accuracy and faster convergence in the identification
process.
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TABLE 2 Comparative analysis of two conditions.

Condition type Base load (kW) Load change Event Load variation severity Impact on system stability

Normal Conditions 120 kW EV charging adds 20 kW at 0.2 s Moderate Minor grid fluctuations

Harsh Conditions 120 kW 140 kW Sudden 80 kW load disturbance at
0.3–0.4 s

Severe High stress on VSG control

TABLE 3 Setting the initial values of the standard identification
parameters.

Identification parameters Initial value Range

Dvsg 15 [10,30]

H 60 [40,80]

Du 20 [10,40]

K 30 [10,50]

2.1 Characteristics of electric vehicle
models

Electric vehicles (EVs) have two main characteristics: one is the
need for charging, and the other is their ability to move randomly.
Therefore, EVs are stochastic mobile loads, and these two attributes
pose several challenges to the operation of the power grid. First, the
charging process of EVs introduces high-order harmonics, which
can affect the normal operation of electrical equipment. Second,
due to the randomness of charging, grid voltage fluctuations are
more likely to occur, leading to increased network losses and
operational costs. As the number of EVs increases, their charging
and discharging behaviors further exacerbate load fluctuations and
uncertainties. To address these issues, this study incorporates an EV
load model into the VSG inverter control framework, considering
the rapid load variations caused by dynamic charging demands.
By analyzing the impact of EV load characteristics on both active
and reactive power control loops, and combining dynamic particle
swarm optimization algorithms, the proposed method enhances the
adaptability and robustness of the control parameter identification
process under conditions of rapidly changing loads and high
uncertainty.This approach effectively mitigates the negative impacts
of EV charging on the power grid, thereby improving the stability
and operational efficiency of the grid.

2.2 Establishment of the VSG inverter
control model

In order to achieve stable grid integration of distributed energy
sources, it is first necessary to establish the control model for
the VSG inverter. The core of this model involves simulating the
active and reactive power control loops of a traditional synchronous

generator, which regulate the output frequency and voltage, thereby
enabling intelligent control of distributed energy sources.

The active power control loop of the VSG simulates
the rotor dynamics of a traditional synchronous generator,
as shown in Equation 1:

dω
dt
=
Pset − Pvsg −Dvsg(ωvsg −ωg)

H
(1)

The reactive power control loop of the VSG simulates the
voltage regulation equation of a traditional synchronous generator,
as shown in Equation 2:

dVvsg

dt
= K[(Qset −Qvsg) +Du(Uvsg −Un)] (2)

Among them. Dvsg, H damping coefficient and inertia constant
of VSG; Pset, Qset are the active and reactive power reference values
respectively. Pvsg,Qvsg are the real values of active and reactive power,
respectively, and ωvsg is the frequency of VSG; ωg is the actual
operating frequency of the grid. ω0 the grid reference frequency. K
is the voltage gain coefficient of the reactive power control link, the
Du is the reactive link sag factor. The control block diagram of the
VSG is illustrated in Figure 1.

Through the combined operation of these two control loops, the
VSG can effectively regulate the output characteristics of distributed
generation and improve its dynamic response capability and stability
in the power grid.

Figure 2 shows the schematic diagram of the VSG-controlled
inverter. It mainly includes the AC grid, power electronic switches,
filter capacitors and inductors, pow-er measurement unit, dual-loop
system, and PWM (Pulse Width Modulation) components.

2.3 Improved particle swarm optimization
algorithm

To improve the efficiency of the PSO algorithm and prevent
premature convergence, the inertia weight (ω) and learning factors
(c1, c2) are dynamically adjusted. Initially, a large inertia weight
promotes extensive exploration, preventing early convergence to
a local minimum. As iterations progress, ω is gradually reduced
to enhance convergence speed. Similarly, c1 is set high in the
early stages to encourage independent exploration, while c2
increases over iterations to allow particles to benefit from collective
knowledge. This adaptive strategy enhances the algorithm’s ability
to escape local optima while improving solution accuracy. This
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TABLE 4 Parameter identification result under normal conditions.

Identification parameters Measurement Observed value Identification error RMSE

Dvsg Pvsg 15.5531 3.69%
4.5772

H Pvsg 56.8007 5.3%

Du Qvsg 19.9955 0.02%
2.1137

K Qvsg 30.3936 1.31%

FIGURE 7
Active power optimal fitness curve.

FIGURE 8
Reactive power optimal fitness curve.

FIGURE 9
Active power tracking curve.

FIGURE 10
Reactive power tracking curve.

TABLE 5 Setting the initial values of the standard identification
parameters under harsh conditions.

Identification parameters Initial value Range

Dvsg 30 [10,30]

H 80 [40,80]

Du 40 [10,40]

K 50 [10,50]

approach helps prevent the algorithm from getting stuck in local
optima and improves its global search capability. The proposed
improvement method is Equation 3:

{{{{
{{{{
{

c1 = c1_start− (c1_start− c1_end) ∗ (i/maxgen)

c2 = c2_start+ (c2_end− c2_start) ∗ (i/maxgen)

w = w_start− (w_start−w_end) ∗ (i/maxgen)

(3)

Among them. ω is the inertia weight, the c1, c2 for the
individual learning factor and the social learning factor, i the
is the current iteration number, and maxgen is the maximum
number of iterations; the w_start, c1_start, c2_start inertia weights,
individual learning factors, and social learning factor starting values
respectively; the w_end, c1_end, c2_end Inertia weights, individual
learning factors, and social learning factor termination values
respectively.

In addition, the population initialization method has also
been improved. The initial position and velocity of each particle
are defined Equation 4:

{
{
{

X0 = Lx0 ⊙ (Xmax −Xmin) +Xmax

V0 = Lv0 ⊙ (Vmax −Vmin) +Vmax

(4)

Among them. X0 is the initial position and V0 is the velocity
of the particle, the Lx0, Lv0 are the Latin hypercube normalized
sampling position matrix and velocity matrix, respectively. ⊙ is
Hadamard product, which means multiplication by element, Xmax,
Vmax, respectively, are the position of the particle, the maximum
value of the velocity, the Xmin, Vmin are the position of the particle
and the velocity minimum respectively.

After initializing the algorithm, the fitness function values of
each particle are evaluated based on the parameters to be identified.
In each iteration, the particle’s new personal best is calculated and

Frontiers in Energy Research 05 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1574038
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Wu and Hu 10.3389/fenrg.2025.1574038

TABLE 6 Parameter identification result under harsh conditions.

Identification parameters Measurement Observed value Identification error RMSE

Dvsg Pvsg 29.6432 1.19%
2.2172

H Pvsg 79.0245 1.22%

Du Qvsg 39.8237 0.44%
2.1317

K Qvsg 49.3619 1.28%

FIGURE 11
Parameter active power result diagram with EV charging power.

FIGURE 12
Parameter reactive power result diagram with EV charging power.

updated. By comparing the personal best positions of all particles,
the global best is updated. Once the accuracy requirement is met,
the iteration stops, and the optimal fitness value and the parameters
to be identified are output.

The update of particle position and velocity is Equation 5:

{
{
{

Vi(t+ 1) = ωVi(t) + c1r1(Pi(t) −Xi(t)) + c2r2(g(t) −Xi(t))

Xi(t+ 1) = Xi(t) +Vi(t+ 1)
(5)

Among them.Xi(t+ 1),Vi(t+ 1) for particles t+ 1 Time Position
and Velocity. Xi(t), Vi(t) for particles Time Position and Velocity.
Pi(t) for t the optimal position of the individual at the moment, the
g(t) for the optimal position of the population at the moment, the
ω is the inertia weight, the c1, c2 for the individual learning factor
and the social learning factor, the r1, r2 for [0,1] Interval random
numbers.

The improvement to the traditional PSO algorithm proposed
in this study involves dynamic adjustments of inertia weight and
learning factors to enhance both the global search ability and local
optimization efficiency. The inertia weight, which determines the

influence of previous velocities, is dynamically adjusted to balance
exploration and exploitation throughout the optimization process.
This adjustment helps the algorithm to avoid premature convergence
and improves its ability to escape local optima.The learning factors,
which control the influence of individual and social best positions,
are also adapted to ensure faster convergence without sacrificing the
global search ability. In comparison to standard PSO, the proposed
method shows superior performance, particularly in complex and
nonlinear systems, by providing faster convergence and higher
accuracy in parameter identification. Additionally, when compared
to other optimization algorithms such as Genetic Algorithms
(GA) and Ant Colony Optimization (ACO), PSO demonstrates
better efficiency in this application due to its less computational
complexity and its ability to better handle continuous optimization
problems with fewer parameters to tune. These improvements
allow the proposed PSO algorithm to effectively identify control
parameters in the VSG inverter model under varying conditions,
showcasing its strong potential for real-world applications. Figure 3
introduces the process of the dynamic particle swarm optimization
algorithm.

To validate the performance of the proposed PSO method,
we conducted comparative simulations between standard PSO
and our improved algorithm. The results in Table 1 indicate
that the proposed method achieves a lower RMSE in parameter
identification acrossmultiple scenarios. Furthermore, our algorithm
maintains its accuracy while reducing computational cost,
making it more suitable for real-time applications in complex
nonlinear systems.

3 Simulation and result analysis

In order to verify the effectiveness of the proposed improved
particle swarm optimization algorithm in the control parameter
identification of the VSG converter, we built the control
module of the VSG converter in the MATLAB simulation
environment. Figure 4 shows a topology diagram of the VSG
control model.

Figure 5 shows the connection between the VSG system and
the power grid. It mainly consists of components such as the
Virtual Synchronous Generator (VSG) control module, power
electronic converter, filter capacitors and inductors, and pow-er
measurement devices. The VSG control module is the core part of
the grid connection topology. It simulates the inertia and damping
characteristics of a synchronous generator by adjusting the inverter’s
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output power, ensuring synchronization between the generator and
the grid. The power electronic converter converts the grid’s AC
power into DC power for charging electric vehicle loads. The filter
capacitors and inductors are used to smooth the output current and
voltage waveforms, reduce harmonic interference, ensure the quality
of the system’s power, and improve the stability of the system. Power
measurement devicesmonitor the power flowwithin the system and
provide feedback signals to the VSG control module, maintaining
synchronization with the grid.

Figure 5 shows the simulation architecture of the VSG (Virtual
Synchronous Generator) converter module, covering the entire
process from coordinate transformation to final power output. It is
divided into four main parts.

The first part is the coordinate transformation section. The
core function of this module is to convert the three-phase
stationary coordinate system (abc coordinate system) into the
synchronous rotating coordinate system (dq coordinate system).
By processing current and voltage in the rotating coordinate
system, the time-varying issues of the three-phase system can
be transformed into a DC problem. This allows the current
components to be decoupled, making the control more stable
and easier to implement, and facilitating subsequent electromotive
force (EMF) generation and power regulation. At the same time,
it simplifies the control algorithm, reduces computational load,
and helps improve the system’s real-time response speed and
accuracy.

The second part is the electromotive force (EMF) generation
layer.Thismodule controls themagnitude and frequency of the EMF
to simulate the operating characteristics of a traditional synchronous
generator, allowing the system to remain synchronized with the grid
during varying loads and fluctuations in power demand, providing
a stable output similar to that of a traditional generator. It can also
dynamically adjust the required EMF according to load changes,
ensuring that the system can provide stable power under different
load conditions. This enables the system to have higher flexibility
and responsiveness. Figure 6 shows the block diagram of parameter
identification. From the diagram, it can be seen that the active and
reactive components of the electromotive force generation module
are controlled, thereby achieving the identification of VSG control
parameters.

The third part is the PWM signal generation layer, which
combines the output from the EMF generation layer with the
reference voltage to generate the necessary PWM signals for driving
the power conversion in the next stage. This module ensures high-
precision regulation of the output voltage, allowing the converter
to efficiently supply power to the load while avoiding issues like
waveform distortion or low efficiency that may arise with traditional
control methods.

Finally, the main circuit layer is the core power output section
of the VSG converter module. It converts the control signals and
voltage generated by the previousmodule into efficient, stable power
through power electronic devices (such as IGBTs), and outputs this
power to electric vehicles or other load devices.

To assess the robustness of the improved PSO algorithm, we
designed simulations under two distinct operating conditions: (1)
normal conditions, where the load variation is moderate and
predictable, and (2) harsh conditions, where sudden and significant

load disturbances are introduced. The technical differences are
summarized in Table 2.

3.1 Simulation analysis of electric vehicles
under normal conditions

3.1.1 Simulation parameter design
In the simulation, the improved particle swarm optimization

algorithm was compared with the standard particle swarm
optimization algorithm. The evaluation metrics include the relative
error and root mean square error (RMSE) of the parameter
identification to assess the accuracy of the identification. The
initial values of the standard identification parameters are set
as shown in Table 3.

The simulation time is set to 0.5 s. From 0 to 0.2 s, the load
consists of a steady 120 kW base load representing other types of
non-EV loads. At 0.2 s, an electric vehicle (EV) charging load is
introduced, increasing the total load to 140 kW. To simulate the
dynamic characteristics of EV charging, an active load disturbance
of 20 kW is added between 0.3 and 0.4 s, representing the rapid
fluctuations in power demand caused by EV charging behaviours
under actual operating conditions.This setup reflects the interaction
between the VSG control and the varying load profiles, including
both traditional loads and EV-specific dynamics. At the same time,
corresponding identification parameters and observation values are
selected, Dvsg, H selected Pvsg as the observation quantity and Fit1
as the fitness function, and Du, K selected Qvsg as the observation
quantity and, Fit2 as the fitness function.

3.1.2 Simulation results
Using the improved algorithm for iterative optimization, the

number of iterations is set to 100, and the population size is
set to 20. After reaching the maximum number of iterations,
the optimal parameters are output as the identified parameters.
The identification error is calculated using relative error to verify
the validity of the identified parameters. The final simulation
results are obtained. As shown in Table 4, the identification errors
of the improved algorithm are significantly lower than those of
the traditional algorithm for all parameters, especially for the
identification of the damping coefficientDu and the inertia constant
K, where the errors are kept within a very small range. As seen in
Figures 7, 8, the optimal fitness function value converges, proving
the rationality of the algorithm.

Figures 9, 10 shows the variation curves of active and reactive
power output from the VSG converter under different load
disturbance conditions. As can be seen from the figure, the improved
algorithm is able to respond to load changes more quickly and
accurately track the reference values, demonstrating the superiority
of the improved algorithm.

3.2 Simulation analysis of electric vehicles
under harsh conditions

3.2.1 Simulation parameter design
The initial values of the standard identification parameters are

set as shown in Table 5.
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The simulation time is set to 0.5 s. From 0 to 0.2 s, the load is
120 kW, and from 0.2 to 0.5 s, the load is 140 kW. An 80 kW active
load is introduced between 0.3 and 0.4 s to simulate the scenario
of an electric vehicle charging. At the same time, corresponding
identification parameters and observation values are the same as
those in the normal scenario.

3.2.2 Simulation results
The improved dynamic algorithm is used for iterative

optimization, with the same number of iterations and population
size as in the standard case. In the simulation, the electric
vehicle is model as a load during the charging process, with load
disturbances introduced. The final results, as shown in Table 6,
demonstrate that the dynamic algorithm can accurately track
these disturbances, ensuring the stability of the charging
process.

The number of iterations of the design at this stage is the same
as the population size and normal conditions, and the identification
parameters are output after the number of iterations are reached, and
the simulation results are finally obtained.

Figures 11, 12 show the variation curves of active and reactive
power output from the VSG converter during the electric vehicle
charging process. The enlarged section shows the variation in
reactive power after the electric vehicle load is connected. As
seen from the figures, the dynamic particle swarm optimization
algorithm can quickly respond to changes in the electric vehicle
and accurately output the design values, meeting the charging
requirements of the electric vehicle.

4 Discussion

The simulation results indicate that the improved particle swarm
optimization (PSO) algorithm significantly enhances the accuracy
and convergence speed of VSG converter control parameter
identification. Particularly in the face of nonlinear and complex
operating conditions, the improved algorithm demonstrates better
global search capability and disturbance resistance. In addition,
simulations of electric vehicle load under harsh conditions were
conducted, and the results indicated that the algorithm has strong
adaptability. In contrast, the traditional PSO algorithm is more
prone to getting stuck in local optima during the iteration process,
resulting in unstable identification results. The effectiveness of
the improved algorithm is mainly reflected in the following
aspects:

1. Dynamic adjustment of inertia weight and learning factors
enhances the global search capability, enabling the algorithm
to escape local optima more quickly.

2. Optimizing the particle update rules improves the convergence
speed of the algorithm, allowing it to obtain better solutions
with fewer iterations.

3. Under electric vehicle load disturbance conditions, the
algorithm can respond quickly to changes, maintaining high
control accuracy and system stability.

While the improved PSO algorithm significantly enhances
the accuracy and convergence speed of VSG control parameter
identification, it has certain limitations. First, the dynamic

adjustment of inertia weight and learning factors increases
computational complexity. Second, the algorithm remains sensitive
to hyperparameter selection, which may require additional tuning.
Third, the scalability of the method in large-scale distributed
energy systems is yet to be extensively validated. Lastly, although
the method performs well under various disturbances, extreme
grid scenarios require further study. Future research will explore
adaptive learning-based PSO, automated hyperparameter tuning,
and applications in multi-agent VSG coordination to overcome
these challenges.

5 Conclusion

This study addresses the issues of insufficient accuracy
and convergence speed in the control parameter identification
of Virtual Synchronous Generator (VSG) converters during
the integration of distributed power sources. A dynamic
particle swarm optimization (PSO) algorithm is proposed. By
constructing a control model for the VSG converter suitable
for distributed power sources and combining it with the
dynamic PSO algorithm, the accuracy and efficiency of control
parameter identification are significantly enhanced. The simulation
results verify the effectiveness and superiority of the proposed
method.

Furthermore, the enhanced dynamic response and system
stability achieved through the proposed method not only
improve the integration of distributed energy sources but also
facilitate intelligent charging and discharging management of
EVs. This contributes to more efficient energy utilization and
supports the deep integration of renewable energy with electric
mobility, advancing the development of smart grids. Future
research will focus on exploring particle swarm optimization
(PSO) algorithms with automated hyperparameter tuning and
mitigating systemic complexities through intelligent swarm
control, while extending their applications to large-scale electric
vehicle (EV) fleet management, aiming to address evolving
energy demands.
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