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Hydrodynamic-aerodynamic
performance of a barge-type
floating offshore wind turbine
with four moonpools and
moorings

Yueyang Li, Shi Yan Sun* and Jie Cui*

School of Naval Architecture and Ocean Engineering, Jiangsu University of Science and Technology,
Zhenjiang, China

Introduction: This study investigates the hydrodynamic and aerodynamic
performance of a barge-type floating offshore wind turbine (FOWT) equipped
with four moonpools and horizontal springs as mooring lines. The integration
of moonpools enhances the platform’s hydrodynamic performance by
increasing the moment of inertia, recovery torque, and damping effects,
while the horizontal springs mitigate the tilt angle caused by wind-induced
thrust moments.

Methods: Numerical simulations are conducted using viscous flow theory, the
Finite Volume Method (FVM), and the Volume of Fluid (VOF) method to model
the fluid domain under varying wind and wave conditions.

Results: Themotion responses and the wind thrust at different wave periods and
wind speeds are provided.

Discussion: The results demonstrate that the springs effectively reduce the tilt
angle and restrain heave motion across different wind speeds and waves.
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1 Introduction

Energy has become a critical factor constraining social and economic development.
With an increasing focus on sustainable development, the robust advancement of green
energy, particularly wind energy, has become a key component of national development
strategies (Shi et al., 2023). Offshore wind farms, compared to their onshore counterparts,
benefit from vast areas and higher wind speeds, making them ideal for wind power
generation. Additionally, the absence of terrain restrictions allows for extensive installation
of wind power infrastructure (Breton and Moe, 2009).

Several types of Floating Offshore Wind Turbines (FOWT) exist, including
Spar-type, tension leg platform type, semi-submersible type, and barge-type
platforms. Among these, the barge-type platform, exemplified by Ideol, exhibits
significant application potential because of its shallow draft, straightforward
design, and ease of installation and maintenance (Ikoma et al., 2021).
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Various studies have been conducted on barge-type platforms.
For instance, Beyer et al. (2015) and Borisade et al. (2016)
explored the motion response characteristics of the Ideol-Floatgen
FOWT utilizing computational fluid dynamics (CFD) and model
testing. Mayilvahanan and Selvam (2011) investigated barge-
type foundations with differing aspect ratios and found that the
longitudinal pitch response amplitude operator (RAO) isminimized
when the aspect ratio is 1. Yang et al. (2022) and Chuang et al. (2021)
optimized the principal dimensions of barge-type FOWT, assessing
motion response and mooring loads through pool experiments
and numerical simulations. Ikoma et al. (2019) demonstrated
through numerical simulations that increasing the number of
moonpools significantly enhances the hydrodynamic performance
of the platform compared to using a single moonpool. Although
Ikoma investigated themotion characteristics of the fourmoonpools
floating offshore wind turbine (FOWT) equipped with a vertical
axis wind turbine (VAWT), the performance of the four moonpools
FOWT with a horizontal axis wind turbine (HAWT) remains
uncertain. Additionally, Ikoma’s study did not account for the
effects of wind.

When applying multiple moonpools, the interactions between
the vibrations of water in different moonpools may affect the
resonance characteristics (Lu et al., 2010; Ning et al., 2015). Tan et al.
(2021) examined a barge-type platform with four moonpools to
analyze the effect of the number of openings in the moonpools on
the average second-order drift force that the platform experiences.
Additionally, Zhai et al. (2024) and Vijay et al. (2016) combined the
barge-type FOWT with aquaculture cages and wave energy devices,
thereby enhancing the applicability of floating platforms.

In the study of floating wind turbines, the theoretical framework
is primarily based on linear potential flow theory. While this
approach simplifies the problem by disregarding the effects of fluid
viscosity and nonlinear terms, such factors become critical when
analyzing floating structures with a moon pool. Consequently, we
utilize viscous flow theory along with the finite volume method
(FVM) and volume of fluid (VOF) method to simulate the behavior
of a barge-type floating wind turbine (FOWT) equipped with a
moonpool under varying wind and wave conditions. Under the
effect of the wind, the rotation of the turbine blades generates a
thrust moment, which can lead to significant tilt of the FOWT.
One important method to reduce the tilt is adding moorings to the
platform, in present work we used horizontal springs to replace the
moorings, and hydrodynamic and aerodynamics performance of a
barge-type wind turbine are investigated systematically.

In Section 2, we introduce the physical models of the wind
turbine and the barge-type floating structure. In Section 3,
we outline the governing equations employed, including the
RANS equations, continuity equation, VOF method, and motion
equations. In Section 4, we first present the configuration for
simulating the wave environment, followed by a convergence
analysis, and subsequently analyze the numerical results of the
motion response with respect to the effects of wind and waves.

2 Description of the system

Figure 1 illustrates a barge-type floating wind turbine featuring
four moonpools within a marine environment and some of

FIGURE 1
Visualization of a barge-type floating offshore wind turbine
in the ocean.

geometric dimensions of the floating structure. Figure 2 provides
a side view of the platform. The structure measures 54 m in
length, 24 m in width, 9.6 m in overall height, and has a draft
of 3.72 m. Within this structure, there are four moonpools,
each with dimensions of 18 m in length and 6 m in width. A
5 MW wind turbine, sourced from the National Renewable Energy
Laboratory (NREL), is centrally installed within the structure, as
depicted in Figure 1, with the turbine’s specifications detailed in
Table 1. In Figure 2, the origin of the Cartesian coordinate system
is positioned at the still water surface: the x-axis is aligned with the
direction of wave and wind propagation, the z-axis is perpendicular
to the x-axis and oriented upward, while the y-axis is perpendicular
to both the x-axis and z-axis. The total mass of the floating offshore
wind turbine (FOWT) including the rotor, tower, and floating
structure—is 3,198,960 kg, with the center of mass situated at
the coordinates (0, 0, 2.28). Two springs have been implemented
to provide mooring force, each measuring 200 m in length and
exhibiting a stiffness of 3.71× 107 N/m, and are positioned parallel
to the x-axis at a height of 2.28 m above the water surface,the initial
tension is zero. Three degrees of freedom are accounted for in the
motion: surge along the x-axis, heave along the z-axis, and pitch
about the y-axis, with the center of rotation aligned with the center
of mass. Under the effects of wind, the tower will deviate from the
vertical position, forming a tilt angle between the tower and the
vertical line.

3 Mathematical equations

Anumericalmodel for incompressible fluids is established based
on viscous flow theory. The computational domain is discretized
using the Finite Volume Method (FVM), while the capturing of
the free surface is achieved through the Volume of Fluid (VOF)
method. Fluid flow is governed by the Reynolds-Averaged Navier-
Stokes (RANS) equations and the continuity equation. RANS are
derived from the Navier-Stokes equations by separating the flow
variables into mean and fluctuating components and then averaging
the resulting equations over time. For an incompressible fluid, the
time averaged continuity equation and RANS can be expressed in a
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FIGURE 2
Side view of wind turbine supported by a four-moonpool barge-type floating foundation.

TABLE 1 Main parameters of the NREL 5 MWwind turbine.

Configuration 3 blades

Blade diameter/hub diameter (m) 126/3

Tower height (m) 87.6

Diameter of tower bottom (m) 6

Diameter of tower top (m) 3.87

Rated Wind Speed v (m/s) 11.4

tensor form:
∂ρui
∂xi
= 0 (1)

∂ρui
∂t
+ uj

∂ρui
∂xj
= −

∂p
∂xi
+ ρ fi +

∂
∂xj
[μ(

∂ui
∂xj
+
∂uj
∂xi
)]−

ρ∂u′iu
′
j

∂xj
(2)

where ρ is the fluid density, μ is the fluid viscosity, p is mean pressure,
ui, uj indicates the component of the average velocity, and the
subscript specifies the direction (x, y, z), fi is defined as the average
mass force, which typically refers to gravitational acceleration
within a gravitational field. The direct solution of Equations 1, 2
is particularly challenging due to the presence of Reynolds stress
terms. To address this issue, the SST k−ω turbulencemodel (Menter,
1994) is employed to close the system of equations. The Volume of
Fluid (VOF) method is used to approximate the free liquid surface.

The equations of motion including surge, heave and pitch can be
written as the following Equation 3

(
m m −m(zm − zc)
m m −m(xm − xc)

−m(zm − zc) −m(xm − xc) I
)(

dvx
dt
dvz
dt
dω
dt

)=(
fx
fz
 n
) (3)

where vx and vz are the translational velocities in x and z direction
and ω is the pitch velocity with respect to y-axis of the floating body.
m and I represent the total mass and rotational inertia, respectively,
accounting for the contribution from the floating foundation, tower
and rotor. xm − xc and zm − zc are the horizontal distance and vertical
distance respectively between the mass center and rotational center.
fx and fz and n are the resultant force in the x and z direction
and the resultant moment about the y-axis, respectively, including
the effects of buoyancy, gravity, wave forces, and the thrust of the
wind turbine.

Using a linear spring as themooring force, the expression for the
spring restoring force takes the form of Equation 4

f1(x) = k(x− x0),  f2(x) = − f1(x) (4)

where f1(x) is the resilience at the first endpoint, f2(x) is the
resilience at the second endpoint, k is the stiffness of spring, x is the
distance between the two endpoints of the spring, and x0 is the length
of the spring in its relaxed state.

4 Numerical results and discussions

The Star CCM + solver is used to resolve the fluid control
and motion equations. The specifications of the computational
domain include a length of 900 m (along the x-axis, representing
the wave propagation direction), a width of 180 m (along the y-
axis), and a total height of 370 m, with 120 m beneath the mean
water surface, while the remainder is air. To mitigate the effects of
reflective waves from the body, damping zones are implemented
on both the left and right sides of the basin, utilizing wave force
techniques. Furthermore, a wind field is established at a speed
of 11.4 m/s, with its propagation direction aligning with that of
the waves, allowing the wind turbine to achieve its rated speed
of 12 rpm.
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FIGURE 3
Sketch of grids for the calculation.

FIGURE 4
Mesh convergence study.

4.1 The set of mesh and time step and
comparison

This section addresses the convergence of the grid and time
step. The mesh grid for the simulation is shown in Figure 3, the
entire simulation area employs a cut-cell grid generator.The cut-cell
grid is produced under size constraints using a hexagonal cuboid
grid template, which is subsequently refined by removing the excess
grid based on the surface of the input object, thereby creating the
object grid. The rotational motion of the wind turbine blades is
facilitated through sliding grids, while the movement of the FOWT
is executed using overlapping grids. The range of the overlapping
domain is at xϵ(−30,70), yϵ(−70,70), zϵ(−20,181), two grid sizes (l =
1 m and l = 0.5 m) were employed in the overlapping region. Beyond
the overlapping domain, the mesh size decreases gradually, and the
largest mesh size is l = 16. The free surface ranging from z = −2.1 to
z = 2.1 m is gradually encrypted 16 times in x direction and 64 times
in z direction relative to the smallest mesh size.

To verify time step convergence, two time steps, Δt = 0.01 s and
Δt = 0.005 s, are considered.The wave period is 8.13 s, and the wave
height is 4.2 m. The spring parameters can be found in Section 2.
The motion curves of heave and pitch for the different grid sizes
and time steps are presented in Figures 4, 5. Analysis of these figures
shows that the motion curves are in a good agreement, confirming
that both the grid sizes and time steps are convergent. Consequently,
to minimize computational time costs, a grid size of l = 1 m and a
time step of Δt = 0.01 s were selected for subsequent analysis.

4.2 Barge-type floating foundation with
moonpools and springs for mooring lines

Under the effects of wind, a significant tilt angle poses
considerable risks for FOWT, adding mooring lines is an effective
method to decrease the tilt angle, in present work we use the
horizontal springs to realize the effect of mooring lines. Under the
effects of wave, the body will undertake periodic motion in three
degrees of freedom, namely, surge, heave, pitch, and moonpools
will exert important effects in reducing them. The wind speed is
maintained at 11.4 m/s, the rotor speed at 12 rpm, and the regular
wave period T and wave height H are set as 10 s and 4.2 m,
respectively.

Figure 6 illustrates the time histories of motion responses and
aerodynamic thrust with and without springs. For the case with
springs, surge along x direction is released, while without springs,
surge is fixed. It can be found that heave motion in Figure 6A is
less affected by the springs, and this is also true for the amplitude
of wind thrust in Figure 6C. The tilt angle with spring in Figure 6B
is noticeably smaller than that without spring, this is because the
spring provide additional restoring force.

Figure 7 illustrates the mean values and amplitudes of heave
under different wave periods (T), while Figures 8, 9 depict the pitch
and thrust values, respectively. The wave height for these conditions
is consistently maintained at 4.2 m. In Figure 7A, the order of mean
value of heave is 10−2, and the effect of the spring is not prominent.
In Figure 7B, the amplitude of heave with spring becomes smaller,
the reason for this is the spring provides additional restoring force
in heave direction. The spring will provide larger restoring force in
rotational direction, directly reducing the tilt angle prominently, and
this can be found in Figure 8A. But this is not true for the pitch
amplitude in 8(B), which is also affected by the wave force, and both
effects lead to larger pitch amplitude under smaller wave periods
and smaller pitch amplitude at larger wave periods. The tilt angle
in 8(A) becomes noticeably smaller with the spring, but the thrust
with spring whereas becomes slightly larger, and this is because the
effective inlet area of the fan becomes larger when tilt angle becomes
smaller. The thrust amplitude in 9(B) is larger under smaller wave
periods and smaller under larger wave periods with spring.

4.3 Barge-type floating foundation with
moonpools with different wind speed

Figure 10 provides the time histories of motion responses of
the platform and the thrust of the wind turbine at different wind
speeds, respectively at v = 11.4 m/s, 10 m/s, 8 m/s, 6 m/s and 4 m/s,
the surge degree is released through connecting two springs, and
the spring parameters are the same as the above case. As the wind
speed decreases, the heave in 10(A) is less affected, but both the
pitch angle and aerodynamic thrust exhibit a markable decline,
as illustrated in Figures 10B, D, and this is because the thrust is
approximately proportional to the square of the wind speed, and
directly affect the pitch angle. It is of great interest to see that the
surge motion in Figure 10D actually increases at lower wind speeds,
this is because at the higher wind, the tension of the spring at the
windward side becomes larger, and it will restrain the surge motion
of the platform.
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FIGURE 5
Time step convergence study.

FIGURE 6
Time histories of motion responses of the platform and thrust of wind turbine: (A) heave, (B) pitch and (C) thrust.

FIGURE 7
(A) Mean values and (B) amplitudes of heave at different wave periods.
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FIGURE 8
(A) Tilt angles and (B) amplitudes of pitch at different wave periods.

FIGURE 9
(A) Mean values and (B) amplitudes of thrust at different wave periods.

FIGURE 10
The time histories of motion responses and thrust of wind turbine at different wind speeds: (A) heave, (B) pitch, (C) surge and (D) thrust.
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FIGURE 11
(A) Mean values and (B) amplitudes of heave at different wind speeds.

FIGURE 12
(A) Tilt angles and (B) pitch amplitudes at different wind speeds.

FIGURE 13
(A) Mean values and (B) amplitudes of thrust at different wind speeds.

Figures 11–13 depict the heave, pitch, and aerodynamic thrust
values across varying wind speeds, with a wave period (T) of
10 s and a wave height (H) of 4.2 m. In Figure 11A, it is evident
that as the wind speed increases, the mean heave values are on
the order of 10−2, significantly smaller than the heave amplitudes
shown in Figure 11B. The heave amplitude in Figure 11B is notably
smaller for the case with springs compared to that without springs.
This difference arises because the springs provide an additional

restoring force. As the wind speed increases, the heave amplitude
without springs grows with wind speed, while only minor changes
are observed for the case with springs. This demonstrates that
the springs effectively restrain heave motion across varying wind
speeds. In Figure 12A, the tilt angle increases with wind speed for
both cases, with and without springs. This is directly attributed
to the thrust being proportional to the square of the wind speed,
as illustrated in Figure 13A. However, under the influence of the
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spring force, the tilt angle with springs is smaller than that without
springs, and this difference becomes more pronounced at higher
wind speeds. This indicates that the spring’s inhibitory effect on tilt
becomes increasingly significant under stronger wind conditions.
Although the springs reduce the platform’s tilt, they amplify the pitch
amplitude and thrust amplitude. This occurs because the periodic
wave force plays amore dominant role when the tilt angle is smaller.

5 Conclusion

This study comprehensively analyzed the hydrodynamic and
aerodynamic performance of a barge-type floating wind turbine
equipped with four moonpools and horizontal springs as mooring
lines. The work is beneficial for the choice of mooring system
and vibration damping design in the real-word offshore wind farm
installations.

The key findings are summarized as follows:

(1) Because the spring provides additional restoring force, the
heave amplitude becomes slightly smaller under various wave
periods and wind speeds, and the mean position of heave is
less affected.

(2) Under the influence of the spring force, the tilt angles with
springs are noticeably smaller than those without springs at
various wave periods, and due to the thrust being proportional
to the square of the wind speed, the difference of the tilt angle
with and without spring becomes more pronounced at higher
wind speeds. But for the amplitude of pitch, the effect of spring,
wave period and wind speed all take noticeable effects.

(3) When considering the spring, the mean value of thrust
becomes slightly larger, and this is because the effective inlet
area of the fan becomes larger at smaller tilt angle.

(4) The surge motion may be larger at lower wind speeds, this is
because at the higher wind, the tension force of the spring at
the windward side becomes larger to withstand the tilt of the
platform, and it will restrain the surge motion of the platform
more tightly.
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