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Chance-constrained optimal
schedule of battery energy
storage considering the
uncertainties of renewable
generation

Zhi Li1, Dawei Xie1, Haifeng Ye1, Yujun Li1, Jinzhong Li1,
Yichi Chen2 and Yue Yang2*
1State Grid Anhui Electric Power Co., Ltd., Hefei, China, 2School of Electrical Engineering and
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Since renewable energy generation has strong uncertainties and pure
conventional unit dispatch schemes are limited by the unit-operating capacities,
such scheduling is inapplicable for power systems with high proportions of
renewable energy sources (RESs). We propose an optimal scheduling model for
battery energy storage systems (BESSs) by considering the uncertainties of RESs.
The probability distribution of renewable energy generation is characterized
using a Gaussian mixture model that effectively captures its stochastic nature.
Chance constraints are incorporated into the dispatchmodel to enhance system
security while ensuring sufficient reserve capacity to mitigate fluctuations in
the RES outputs. Furthermore, these constraints are transformed into their
deterministic equivalents using quantile-basedmethods. Case studies were then
conducted on two systems to demonstrate the ability of the proposed model
to improve system security and economic efficiency. The results indicate that
incorporating BESSs can significantly reduce the system risk probability and
operational costs, particularly under scenarios with high RES penetration. The
model also highlights the tradeoffs between BESS capacity and system risk levels
as well as constraint settings and economic benefits to provide valuable insights
for practical applications. It is expected that future efforts in this field will be
focused on extending the model to include the impacts of BESSs on branch
power transmission risks.

KEYWORDS

battery energy storage system, renewable energy, Gaussian mixture model, chance
constraint, optimal dispatch, system risk

1 Introduction

The global shift toward renewable energy sources (RESs) has become the cornerstone
of efforts to reduce greenhouse gas emissions and combat climate change. However, the
growing reliance on wind, solar, and other RESs has introduced challenges owing to
their intermittent and unpredictable nature. To address these challenges, battery energy
storage systems (BESSs) have emerged as critical components for enhancing the stability
and reliability of modern power systems. BESSs can store excess energy generated during
periods of high renewable output and discharge it when the generation is low, thereby
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smoothing the fluctuations and ensuring more stable power supply.
Additionally, BESSs can provide ancillary services such as frequency
regulation, voltage support, and peak shaving, which are essential
for maintaining grid stability. These capabilities make a BESS a key
technology for integrating a greater proportion of renewable energy
into a power grid.

The optimal dispatch of a BESS has been studied extensively,
where researchers have focused on various aspects, such as economic
dispatch and integration with renewable energy. For instance,
Chen et al. (2020) proposed a two-stage chance-constrained unit
commitment model considering a BESS to cooptimize the day-
ahead energy and reserve schedules, demonstrating the potential
to enhance system flexibility and promote wind consumption.
Similarly, Li et al. (2016) formulated a stochastic unit commitment
approach with wind power forecast uncertainty and energy storage;
they presented a two-step framework for evaluating the potential
value of energy storage in power systems with renewable generation,
thereby demonstrating the ability of a BESS to decrease curtailment
of wind generation while reducing load and reserve shortfalls.
Nguyen et al. (2015) defined a lifetime cost function to indicate
the cost incurred by a BESS for dispatching 1 kWh of wind
energy while determining the optimal battery capacity. Jiang et al.
(2018) aimed to maximize the benefits of wind-storage union
systems and established an optimal capacity model by considering
BESS investment costs, wind curtailment savings, and auxiliary
service compensation; further, they explored the roles of BESSs
in alleviating the variability and uncertainty of wind output
as well as the system costs of auxiliary services. However, the
unpredictable nature of renewable generation has necessitated the
development of dispatch models that can account for uncertainties;
this has motivated the development of stochastic and robust
optimization methods.

Stochastic optimization models have been widely used to
manage the uncertainties associated with RESs. For example, in
rolling scheduling, Gu and Xie (2017) used the deterministic
scheduling model for the time period close to the current time
and leveraged the stochastic scheduling model for the longer
time periods to generate the random scene; then, they used the
parallel algorithm to accelerate the solution.They also proposed the
criteria for comparing the effects of stochastic and deterministic
scheduling. Gangammanavar et al. (2016) proposed a stochastic
programming framework for subhourly economic dispatch to
address renewable energy integration. This framework modeled
slow-response resources at hourly intervals and fast-response
resources at subhourly intervals. By using stochastic decomposition,
thismethod improved cost prediction and efficiency over traditional
models, as demonstrated on the IEEE RTS96 and Illinois systems.

Robust optimization has also gained attention for ensuring
reliable BESS dispatches under a wide range of scenarios.
For instance, Wu et al. (2014) established a one-stage robust
optimization model by considering the uncertainty of wind power
output to solve the rolling scheduling problem and ensure the
safe operation of the system by establishing the allowable output
range of wind power. Zeng and Zhao (2013) utilized the spatial
correlation of wind power output to build a prediction model for
wind power and established a robust rolling economic dispatch
model. Xie et al. (2014) proposed a general column-constraint
generation algorithm for solving two-stage robust optimization.

By assuming that the generator output will be adjusted linearly
according to the renewable energy output, Jabr (2013) established
a two-stage DC power flow scheduling model. Another notable
contribution is the work by Zhao et al. (2013), who proposed a
multistage robust economic dispatchmodel wherein the uncertainty
set in each stage is dynamically updated based on the uncertainty
set of the previous stage to capture the variation of renewable energy
output more accurately. Here, the first-stage decision variables
represent the immediate dispatch decisions, while the dispatch
decisions for the subsequent stages are treated as the second-stage
decision variables.

As a special form of stochastic optimization, chance-constrained
optimization relaxes the constraints of traditional optimization.
Since these constraints involve random variables, they may
not be met for all possible values of the random variables.
Chance constraints ensure that the probability of the constraints
being satisfied exceeds a certain threshold, thereby converting
deterministic constraints into probabilistic ones. Bolognani et al.
(2017) proposed a chance-constrained optimization method
suitable for fast online solutions and applied it to power grid
dispatching; here, it is assumed that the sample set of uncertain
variables can be obtained fromhistorical data. In the offline stage, the
feasible region of chance-constrained optimization is constructed
from the sample information. In the online decision-making
stage, it is only necessary to solve the deterministic optimization
problem based on the measurement information and feasible region
determined in the offline stage, which offers high computational
efficiency. Zhao et al. (2023) proposed a data-driven chance-
constrained dispatch strategy for integrated power and natural gas
systems to handle uncertainties from wind power prediction errors;
through numerical experiments on a modified IEEE 33-bus system,
they demonstrated enhanced economic operation, reduced total
costs, and improved robustness against uncertainties compared to
traditional methods.

Scheduling methods based on stochastic optimization
often model renewable energy generation as random variables.
Consequently, the probability model of the random variables is
closely related to the accuracy of the optimization results and
efficiency of the solution method. In recent years, Gaussian mixture
models (GMMs) have been employed to model uncertainties
in power systems. GMMs demonstrate strong performance by
accurately representing arbitrary probability density functions and
possess desirable mathematical properties, such as invariance under
linear transformations, making them well-suited for applications
in probabilistic power flow analyses and chance-constrained
optimization problems. In their application to uncertainty
modeling and probabilistic power flow analysis, Singh et al. (2010)
employed a GMM to describe the uncertainty of the distribution
network load and noted that it effectively fits different probability
distributions. Valverde et al. (2013) employed GMMs to describe
the probabilistic model of individual loads in the distribution
network by selecting appropriate component combinations through
the weighted least-squares approach; this approach was also
used to obtain the probability distributions of voltage and power
flow in probabilistic power flow analysis and state estimation.
Additionally, they proposed a component clustering and reduction
method for GMMs. Wang et al. (2017a) utilized a high-dimensional
GMMto describe the joint probability distribution of randompower
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FIGURE 1
Mean log likelihood under different numbers of Gaussian mixture model (GMM) components.

FIGURE 2
Distribution of the prediction errors of the total renewable power output.

Frontiers in Energy Research 03 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1588704
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Li et al. 10.3389/fenrg.2025.1588704

TABLE 1 Battery attributes.

Type A Ea (J/mol) R (J/(mol·K)) z C ($/MWh)

LiFePO4 battery 30,330 31,500 8.314 0.552 300,000

FIGURE 3
Probabilities of insufficient reserve capacities of different algorithms in system #1.

TABLE 2 Objective function values of different optimization methods for
system #1.

Method Objective function value ($)

CC-GMM 36,544,833.85

LSO 36,544,833.85

DRO 36,546,871.41

injection; based on the linear transformation invariance of the
GMM and linear power flow model, the expression for probability
distribution of the branch power flow was obtained analytically.

In the application of GMMs to stochastic optimization
scheduling, Wang et al. (2017b) investigated chance-constrained
economic dispatch by considering wind power uncertainty; they
used a GMM to describe the joint probability distribution of
power generation across multiple wind farms and approximated the
cumulative distribution function of the GMM through a piecewise
linear combination of quartic polynomials. The quantiles of the
random variables in the chance constraints were determined by
solving these quartic equations. Viafora et al. (2020) considered
the uncertainties of dynamic power limits on transmission lines
and wind power by constructing a joint probability distribution
model using a Gaussian copula. They employed a GMM for the
fitting and investigated the optimal power flow problem under
chance constraints, where the quantiles of the random variables
were calculated using a lookup table during the transformation of
the chance constraints.

Despite the advancements in BESS dispatch strategies, there
remain challenges in optimizing BESS operations under the
uncertainties associatedwith renewable generation.Weaim toaddress
thisbydevelopinganintegratedoptimizationframeworkthat leverages
chance-constrained stochastic optimization methods to mitigate the
uncertainties of renewable generation. The proposed approach seeks
to enhance the operational efficiencies of BESSs by ensuring that they
can effectively mitigate the variability of renewable resources while
maintaining grid stability and economic viability.

2 Methodology

In this study, we consider the day-ahead operation of a power
system.The schedule of the BESS is cooptimized with the generation
schedules of conventional generators, such as thermal units and
hydraulic stations, in theday-aheaddispatch stage.Thepowerdemand
of the loads is obtained from the day-ahead forecast as deterministic
inputs. The actual generation from the RESs are regarded as random
variables, and theirprobabilitydistribution ismodeledwith theGMM,
which is introduced in detail in the following sections.

2.1 Objective function of the dispatch
model

The objective of day-ahead dispatch is to minimize the total
operational cost of the power system, including the fuel cost of
conventional units and cycle aging cost for a single optimization
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FIGURE 4
Total upward reserve capacities of different algorithms in system #1.

FIGURE 5
Total downward reserve capacities of different algorithms in system #1.

dispatch cycle. The objective function of the dispatch model is
expressed as in Equation 1

Obj =min
T

∑
t=1
(

NG

∑
i=1
(aiP2i,t + biPi,t + ci) +

NE

∑
j=1

NK

∑
k=1

ωkP
e,dis
j,k,t), (1)

where T is the total period of optimization; NG is the number
of conventional units; ai, bi, and ci are the coefficients of the
quadratic fuel cost function of the conventional units; Pi,t is
the generation schedule of the ith conventional unit at the tth
period; NK is the segment of the piecewise linear aging cost
model for battery index k; ωk is the middle value in segment
k; NE is the number of BESSs; Pe,chj,t and Pe,disj,t are the charging
and discharging powers of the jth BESS at the tth period. The

relationship between the depth of discharge (DoD) of the battery
and its capacity degradation is non-linear; to address this, we
apply an approach that approximates the impact of a single-
cycle DoD on battery degradation through piecewise linearization
(Zhang et al., 2022). The piecewise linear model can be expressed
by Equations 2–5

ω(ht) = ωi ifht ∈ (
i− 1
NK
, i
NK
), i = 1,2,…,NK (2)

Qcycle(ht) = A exp(
−Ea
RT
)(htErate)

z (3)

ωi =
C

ηdisErate
ki (4)
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FIGURE 6
Probabilities of insufficient reserve capacities for different battery energy storage system (BESS) parameters in system #1.

FIGURE 7
Total upward reserve capacities for different BESS parameters in system #1.

ki =
1
2
[Qcycle(

i
N
)−Qcycle(

i− 1
N
)], (5)

where Qcycle is the capacity fading of the battery over a single cycle;
A is the Arrhenius constant; z is the reaction rate constant; R is the
molar gas constant; Ea is the activation energy; T is the absolute
temperature;Erate is the battery capacity;C is the replacement cost; ht
is the depth of the cycle at time t;ηdis is the discharge efficiency factor.

2.2 Constraints of the dispatch model

The dispatch schedules of the conventional units and BESSs
must maintain the balance and security of the power system, so

the dispatch model considers the physical constraints expressed in
Equations 6–12.

NG

∑
i=1

Pi,t +
NE

∑
j=1

Pej,t +
NR

∑
k=1

PRk,t =
ND

∑
d=1

Ld,t (6)

Pmin
i ≤ Pi,t ≤ P

max
i (7)

Pei,t = P
e,dis
i,t − P

e,ch
i,t (8)

Pe,min
i ≤ P

e
i,t ≤ P

e,max
i (9)

Eei,t+1 = E
e
i,t −

Pe,disi,t

ηdisi

Δt+ ηchi P
e,ch
i,t Δt (10)
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FIGURE 8
Power curves of BESSs with different capacities in system #1.

FIGURE 9
Probabilities of insufficient reserve capacities for different chance-constraint probability settings in system #1.

Ee,min
i,t ≤ E

e
i,t ≤ E

e,max
i,t (11)

−Smax
l ≤

NG

∑
i=1

sl−iPi,t +
NB

∑
j=1

sl−jP
e
j,t +

NB

∑
k=1

sl−kP
R
k,t +

ND

∑
d=1

sl−dLd,t ≤ S
max
l (12)

In the power balance constraint of Equation 6, Pej,t is the net
power of the BESS, which is equal to the difference between
the discharging and charging powers shown in Equation 8. NR is
the number of RESs, PRk,t is the day-ahead schedule of forecast
generation of the kth RES in the tth period less than its forecast;
ND is the number of power loads; Ld,t is the power demand of

the dth load in the tth period. Constraint Equation 7 restricts
the generation schedule of the conventional units to the upper
bound Pmax

i and lower bound Pmin
i . Constraint Equation 9 ensures

that the discharging and charging powers of the BESS do not
exceed the upper bound Pe,max

i or lower bound Pe,min
i . The energy

stored in the BESS is denoted by Eei,t and has temporal dependence
between periods, as shown in Equation 10, where ηdisi and ηchi are
the efficiency factors of discharging and charging, respectively. Δt
is the length of the period. The energy of the BESS is restricted
by its storage capacity, as shown in Equation 11. The power flow
in each branch l is restricted according to Equation 12, where sl−i
denotes the power transfer distribution factor calculated from the
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TABLE 3 Objective function values under different chance-constraint
probabilities for system #1.

Chance-constraint
probability

Objective function value
($)

0.05 36,544,909.68

0.04 36,544,929.96

0.03 36,544,970.19

0.02 36,545,038.49

0.01 36,545,172.39

DCpower flowmodel and Smax
l is themaximal transmission capacity

of branch l.
It is worth noting that the actual generation of the RES is

stochastic and will not always follow the day-ahead forecast PRk,t, so
we use ̃PRk,t to represent the actual power generation of the RES to
emphasize this uncertainty. The deviation of the actual renewable
energy generation and its deterministic forecast ̃PRk,t − P

R
k,t introduce

a power imbalance in the system and must be compensated by
other power sourceswith regulationflexibilities.Therefore, sufficient
reserve capacity should be allocated among the conventional units
and BESSs to ensure that they can respond to fluctuations of
renewable generation at the intraday stage after day-ahead dispatch.
Here, we use chance constraints to formulate the constraints of the
reserve capacity.

Prob{
NG

∑
i=1

r+i,t +
NE

∑
j=1

re+j,t ≥ (
NR

∑
k=1

PRk,t −
NR

∑
k=1

̃PRk,t)} ≥ 1− α
+ (13)

Prob{
NG

∑
i=1

r−i,t +
NE

∑
j=1

re−j,t ≥ (
NR

∑
k=1

̃PRk,t −
NR

∑
k=1

PRk,t)} ≥ 1− α
− (14)

Here, r+i,t and r
−
i,t are the upward and downward reserve capacities

of the ith conventional unit in the tth period, respectively; re+j,t and
re−j,t are the upward and downward reserve capacities of the jth BESS
in the tth period, respectively; Prob refers to the probability of an
event; α+ and α− represent the tolerable risk levels where the upward
and downward reserves are insufficient, respectively.The constraints
in Equations 13, 14 indicate that the sufficiency of upward and
downward reserves is guaranteed with a high probability, except in
extreme scenarios where the actual renewable generation deviates
severely from its forecast.

We also have the constraints shown in Equations 15–18, where
the available reserve capacity of the conventional units is restricted
by the ramping capability Ri as well as the space between the current
generation and upper/lower bounds. Similarly, the available reserve
capacity of the BESS is constrained by its stored energy, as shown in
Equations 19–22.

Ri ≥ r
+
i,t ≥ 0 (15)

r+i,t ≤ P
max
i − Pi,t (16)

Ri ≥ r−i,t ≥ 0 (17)

r−i,t ≤ Pi,t − P
min
i (18)

Eei,t
Δt
≥ re+i,t ≥ 0 (19)

re+i,t ≤ P
e,max
i − P

e
i,t (20)

Eei,t
Δt
≥ re−i,t ≥ 0 (21)

re−i,t ≤ P
e
i,t − P

e,min
i (22)

2.3 Probabilistic model of renewable
generation

Owing to the limitations of using normal distribution to describe
random variables in engineering practice, such as the fact that the
symmetry of a normal distribution relative to the mean may not
always hold in practice, we use a GMM to describe the probability
distribution of renewable generation. Each component of the GMM
is normally distributed, and the probability density function is
a convex combination of the probability density functions of all
normally distributed components. A GMM with K components
and N dimensions is used to describe the joint probability
distribution of ξ, and its probability density function is expressed by
Equations 23–25

PDFξ =
K

∑
k=1

ωkN(x|μk,Σk)

=
K

∑
k=1

ωk

exp(− 1
2
(x− μk)T(Σk)−1(x− μk))

√(2π)N|Σk|

(23)

ωk > 0 (24)

K

∑
k=1

ωk = 1, (25)

where μk and Σk represent the mean vector and covariance matrix of
each normally distributed component, respectively; ωk is the weight
coefficient of each normally distributed component, which is non-
negative with a total sum of 1.

The GMM has stronger fitting ability than a single normal
distribution. By setting the model parameters reasonably, such as
the number of components, weight coefficients of the components,
mean, and covariance,we can accurately characterize any probability
distribution. In this work, we fit the GMM using historical
generation forecast data and actual output data from wind and
photovoltaic power plants under the jurisdiction of the Electric
Reliability Council of Texas. The fitted variable was the error
between the actual and predicted values, with its dimensionality
equal to the number of renewable energy sites.The fitted parameters
were μk and Σk, for which ωk was selected beforehand based on
average log-likelihood to ensure high likelihood while retaining a
moderate number of component parameters to avoid a negative
impact on the subsequent computational speed.
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FIGURE 10
Probabilities of insufficient reserve capacities of different algorithms in system #2.

FIGURE 11
Total upward reserve capacities of different algorithms in system #2.

2.4 Chance-constraint transformation in
the probabilistic model

In the probabilistic optimization model, we represent the
safety constraints as risk-controllable chance constraints. These
constraints contain random variables that cannot be solved
directly using existing solvers, so they must be transformed into
deterministic constraints. For example, constraint Equation 13 can
be rewritten as Equation 26.

Prob{−
NR

∑
k=1

̃PRk,t ≤
NG

∑
i=1

r+i,t +
NE

∑
j=1

re+j,t −
NR

∑
k=1

PRk,t} ≥ 1− α
+ (26)

The left-hand side expression −∑NR
k=1
̃PRk,t is a linear combination

of the actual generation power of the RES, which can be written in
the form sTξ , where sT = −1T, ξ = ̃PRk,t , and 1T is a column vector
where each dimension is 1. According to the affine transformation
invariance of the GMM (Flåm et al., 2013), the probability
distribution of the linear combination sTξ of various components of
the high-dimensional random variable ξ can be described using a
one-dimensional GMM. Therefore, sTξ can be regarded as a one-
dimensional random variable, and Equation 26 implies that the
cumulative distribution function (CDF) of the random variable
−1T ̃PRk,t at ∑

NG
i=1r
+
i,t +∑

NE
j=1r

e+
j,t −∑

NR
k=1P

R
k,t is greater than or equal to
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FIGURE 12
Total downward reserve capacities of different algorithms in system #2.

TABLE 4 Objective function values of different optimization methods
for system #2.

Method Objective function value ($)

CC-GMM 142,935,563.34

LSO 142,987,249.67

DRO 142,937,156.21

1− α+, as shown in Equation 27.

CDF−1T ̃PRk,t(
NG

∑
i=1

r+i,t +
NE

∑
j=1

re+j,t −
NR

∑
k=1

PRk,t) ≥ 1− α
+ (27)

Because a CDF is a monotonically increasing function, it
is necessary that ∑NG

i=1r
+
i,t +∑

NE
j=1r

e+
j,t −∑

NR
k=1P

R
k,t be greater than the

variable value corresponding to the CDF of −1T ̃PRk,t when the
function value is equal to 1− α+, which is the 1− α+ quantile of sTξ
referred to as Q(−1T ̃PRk,t|1−α

+).
Thus, the chance constraints in Equations 13, 14 can

be transformed into deterministic constraints, as shown in
Equations 28, 29.

NG

∑
i=1

r+i,t +
NE

∑
j=1

re+j,t −
NR

∑
k=1

PRk,t ≥ Q(−1
T ̃PRk,t|1−α

+) (28)

NG

∑
i=1

r−i,t +
NE

∑
j=1

re−j,t +
NR

∑
k=1

PRk,t ≥ Q(1
T ̃PRk,t|1−α

−) (29)

3 Numerical tests

To evaluate the effectiveness of the proposed models and
approaches, numerical tests were conducted. Accordingly, we

conducted day-ahead dispatch tests on two systems to compare the
proposed chance-constrained method with the GMM (CC-GMM)
to two other algorithms, namely, limited-scenario optimization
(LSO) and distributionally robust optimization (DRO). Then, the
impacts of different reserve capacity constraints andBESS parameter
settings on the system risk probability and operational costs were
assessed. The proposed model is solved using the Gurobi optimizer.

3.1 Case settings

For the parameter settings, the GMM parameters of the
renewable energy sites were obtained by fitting historical data.
Taking the first system as an example, we configured 10 renewable
energy sites and initially performed GMM fitting using historical
forecast error data from these 10 sites. For different numbers of
components, we calculated the average log-likelihood values of the
fitted GMMs, where higher values indicated better fitting accuracy.
Then, we selected a component count that achieved sufficient fitting
precision without excessive complexity to obtain the final GMM
parameters, including the mean vectors, covariance matrices, and
component weights. Figure 1 illustrates the variation in the average
log-likelihood value with respect to the number of components,
based on which we set the number of Gaussian components to 15.
To illustrate the accuracy of the fitted GMM, the distribution of the
total renewable power output prediction errors is shown in Figure 2.

The maximum energy storage capacity of each BESS station
was set, and the basic attribute parameters of the batteries are
shown in Table 1; the remaining parameters have the quantitative
relationships shown in Equations 30–34

Ee,min
i,t = 0.1 ·E

e,max
i,t (30)

Pe,max
i =

Ee,max
i,t

2
(MW) (31)
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FIGURE 13
Probabilities of insufficient reserve capacities for different BESS parameters in system #2.

FIGURE 14
Total upward reserve capacities for different BESS parameters in system #2.

Pe,min
i = −P

e,max
i (32)

ηdisi = η
ch
i = 0.93 (33)

Δt = 1. (34)

Based on these parameters, we conducted simulations on two
systems: system #l is a modified 57-bus system (case 57) comprising
five conventional, 10 BESS, and 10 RES units, including five wind
farms and five photovoltaic power stations; system #2 is a modified
118-bus system (case 118) comprising 29 conventional, 15 BESS,
and 20 RES units, including 10 wind farms and 10 photovoltaic

power stations. With regard to the permissible system risk level
setting, a typical system that can tolerate a certain level of risk would
be assigned a risk probability of 0.05. For systems requiring high
reliability where cost is not the primary constraint, a risk probability
of 0.01 would be more prudent. In this case study, we consider
a probability of 0.05 as the standard value. For the optimization
results, if the risk probability during any period exceeds this set
probability, then the method is deemed a failure. The 24-h power
curves for the renewable energy sites are selected as the forecast
values from a specific day in historical data while their actual
power outputs remain uncertain.These actual values are obtained by
adding the predicted power curves to the forecast errors modeled as
random variables.
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FIGURE 15
Probabilities of insufficient reserve capacities under different chance-constraint probability settings in system #2.

TABLE 5 Objective function values under different chance-constraint
probabilities for system #2.

Chance-constraint
probability

Objective function value
($)

0.05 142,951,180.28

0.025 142,951,180.28

0.01 142,951,180.28

0.005 142,951,180.28

0.0025 142,964,999.84

3.2 Test on system #1

We first compared the performances of different optimization
algorithms on system #1, namely, CC-GMM, LSO, and DRO. The
maximum capacity of each BESS unit is 30 MWh, which is at a
medium value. The permissible system risk level of 0.05 is the most
critical metric here for validating the effectiveness of the method.
This threshold represents the maximum acceptable probability
of reserve inadequacy, and all optimization algorithms should
demonstrate compliance with this requirement while maintaining
economy. For CC-GMM, the reserve capacity chance constraints
are set at α+ = α− = 0.025 to limit the system risk probability to
under 0.05. For the LSO method, we considered three discrete
scenarios for the actual renewable generation outputs, namely 1.1,
1.0, and 0.9 times the forecast values; the corresponding reserve
capacity constraints and branch power flow constraints under these
three scenarios are simultaneously incorporated as deterministic
constraints in the optimizationmodel.TheDROmethod utilizes the
mean vector and covariance matrix of the forecast errors calculated
from historical data; it incorporates the reserve capacity constraints

by considering the worst-case distributions within an ambiguity
set. Given the inherent conservatism of the DRO method, we
set the probability of its reserve capacity constraints at 0.05 to
mitigate excessive conservativeness in the operational decisions.The
comparative results of the three optimizationmethods are presented
in Figure 3 and Table 2.

From the results, it is seen that the LSOmethod fails to meet the
risk requirements of the system as it exceeds the allowable risk level
during 8:00–11:00, 16:00–17:00, and at 19:00 hours. This is because
the LSO adopts deterministic constraints under multiple scenarios,
and it can at most consider scenarios with ±10% deviations in the
renewable energy output in this case study. If the deviation exceeds
this range, the model becomes infeasible as it cannot satisfy all the
constraints simultaneously.The objectives of the LSO andCC-GMM
are close while that of DRO is the highest. Both CC-GMMandDRO
meet the system risk requirements at all times. However, the DRO
method yields overly conservative optimization results, leading to
lower economic efficiency than the CC-GMM method. Therefore,
the CC-GMMmethod allows more effective handling of renewable
energy uncertainty.

The efficacies of different algorithms are specifically reflected
in the total system reserve capacity provided by their optimization
results. The upward and downward reserve capacities achieved by
each algorithm are shown in Figures 4, 5. The red dashed lines in
the figures represent the quantile corresponding to an insufficient
reserve risk probability of 0.025 calculated on the basis of the
GMM. When the available reserve capacity is above this line, the
probability of violation of the individual upward or downward
reserve constraints is less than 0.025; when the available capacity is
below the line, the probability of violation exceeds 0.025,with greater
deviations indicating higher risk. Figure 4 illustrates the upward
reserve of the system. For the LSO method, during 8:00–11:00,
16:00–17:00, and at 19:00 hours, the available reserve capacity is
significantly below the quantile curve, resulting in the system risk
probability exceeding the acceptable level during these periods.
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This is because LSO cannot account for situations beyond the
predefined scenarios and fails to capture the true distribution of
the renewable generation forecast errors, leading to unsatisfactory
results. Between 7:00 and 19:00 hours, the reserve capacity provided
by the CC-GMM method is generally aligned just above the
quantile curve, while the reserve capacity provided by the DRO
method is significantly higher for sacrificing a part of the economic
performance. As shown in Figure 5 for the downward reserves, all
three methods satisfy the reserve requirement corresponding to a
risk probability below 0.025, with the DRO method remaining the
most conservative.

Next, we verify the influences of different power parameters of
the BESS units on the system risk probability.The Ee,max

i,t of the BESS
units tested in three groups are 10 MWh, 30 MWh, and 50 MWh.
In these trials, we set the reserve capacity chance constraints and
α+ = α− = 0.025. The computed results are shown in Figure 6, which
indicates the general trend; the larger the capacity of the BESS,
the lower is the risk level of the system. This is attributable to the
characteristics of the BESS parameter settings in this work, where
a larger maximum capacity also means a greater maximum charge
and greater discharge power. According to Equation 20, this enables
the BESS to provide a higher reserve capacity.

To further analyze how the BESS affects the system risk
probability, we plotted the total upward reserve capacity curves and
BESS power curves for BESS capacities of 10 MWh, 30 MWh, and
50 MWh, which are shown in Figures 7, 8. Figure 6 specifies that
the BESS charges when the power is less than 0 and discharges
when the power is greater than 0. During 0:00–5:00 hours, owing
to the low load power and the fact that the RESs maintain a certain
output power, the BESSs promote consumption of renewable energy
through charging. During the peak load periods of 10:00–11:00 and
19:00–21:00 hours, the BESSs reduce the outputs of conventional
units by discharging, thereby reducing generation costs. When the
BESS capacity is 10 MWh, its charging and discharging schedule
is relatively limited owing to capacity constraints, resulting in a
lower reserve capacity, as shown in Figure 7; from 7:00 to 20:00
hours, the upward reserve capacity curve of this BESS nearly
coincides with the 0.025 quantile reserve curve, leading to the higher
corresponding risk probability noted in Figure 6. When the BESS
capacity is increased to 30 MWh and 50 MWh, the charging and
discharging schedules are almost identical; this is because if the
generation cost savings from discharging the BESS are lower than
the degradation cost incurred by discharging, the system will not
plan additional discharging. Consequently, although the schedules
are similar, the BESS of 50 MWh capacity can provide more reserve
capacity, resulting in a slightly lower risk curve for the 50 MWh case
than the 30 MWh case, as shown in Figure 6.

We further investigated the impacts of the chance-constraint
probability limitations on the system risk level and objective
function value under such situations. The Ee,max

i,t of each BESS is
set to 20 MWh, while α+ and α− are both set to 0.05, 0.04, 0.03,
0.02, and 0.01 each. The computed results are shown in Figure 9
and Table 3. Figure 9 shows that as the set probability of the chance
constraints decreases, the system risk level also decreases. It is
worth noting that since the upward and downward reserve risks
may overlap, setting the individual chance-constraint probabilities
to 0.05 for both upward and downward reserves may result in the
total system risk exceeding 0.05 during certain periods. As shown

in Figure 9, when the individual chance-constraint probabilities
are set below 0.03, the total system risk meets the requirement
at all times. From Table 3, it is seen that as the probability of
the chance constraints decreases, the objective function shows an
increasing trend, which is in linewith the notion that system security
improvements are often achieved at the cost of reduced economy.

3.3 Test on system #2

To further verify the effectiveness of the proposed method,
we performed tests on system #2. Here, we again conducted tests
on the probability of insufficient reserve capacity under different
optimization methods, different BESS parameters, and different
chance-constraint probability settings. The first type of experiment
was on the performances of the three optimization algorithms,
whose results are shown in Figures 10–12 and Table 4. Compared
to Figure 4, the risk probability curves for the three methods have
changed in system #2 owing to the higher number of conventional
generators, renewable energy stations, and energy storage devices.
As shown in Figure 10, the LSO method fails to meet the risk
requirement only at 19:00 hours, while the risk probability for CC-
GMM is higher than that of LSO during several other periods
throughout the day. This can be explained with the upward and
downward reserve capacities shown in Figures 11, 12.

In Figure 11, the downward reserve capacity provided by LSO
at 19:00 hours is significantly lower than that corresponding to the
0.025 quantile, leading to the highest risk probability at this point that
exceeds 0.05. Figure 12 demonstrates that all three methods provide
reserves greater than the 0.025 quantile capacity for downward reserve
capacity. Additionally, during nighttimewhen there is no photovoltaic
generation, such as 0:00–6:00 and 20:00–23:00 hours, LSO exhibits
the strongest downward reserve conservatism. This is because the
positiveforecasterrorofwindpowerissmallerthanthatofphotovoltaic
generation, and LSO allocates more downward reserve capacity as it
considers up to 10% positive deviation.Thus, the total risk probability
of LSO in certain periods is lower than that of CC-GMM while its
objective function is the highest.

Owing to the conservatism of DRO, its risk probabilities are
low throughout the day, while its objective function is higher
than that of CC-GMM. These results further confirm that so long
as the probability setting is reasonable, the CC-GMM method
always meets the system risk requirements while maintaining good
economic performance. In contrast, the LSO and DRO methods
have certain shortcomings because they cannot account for the
actual uncertainties of renewable energy generation, leading to
suboptimal results. In the test of probability of insufficient reserve
capacity in the system under different BESS parameters, the Ee,max

i,t
of the BESS units tested in the three groups are set to 10 MWh,
30 MWh, and 50 MWh.Thecomputed risk probabilities andupward
reserve capacities are shown in Figures 13, 14.

In Figure 13, the system risk probability during 0:00–6:00 hours
does not show regular alteration with increase in BESS capacity.
During certain periods, such as 0:00–1:00 hours, the risk is lowest for
the 50 MWh system, while the risk is medium for the 30 MWh and
highest for the 10 MWh systems. However, in other periods, such as
at 4:00 hours, the risk is highest for the 30 MWh BESS. The reason
for this can be explained using Figure 14. As seen in Figure 14, the
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upward reserve capacity provided by the 30 MWh system drops
at 4:00 hours, just touching the reserve capacity corresponding
to the 0.025 quantile. On the one hand, the reserve capacity
provided by the energy storage system must satisfy the state of
charge constraint, but the system cannot provide too much reserve
capacity as it has to meet the charging and discharging schedules
for the next period. On the other hand, this phenomenon occurs
because the reserve capacity of conventional generators does not
directly affect the objective function.These generators are subject to
their ramping constraints and maximum/minimum power output
limits, while still needing to provide sufficient reserves to meet
the instantaneous demand. A simple example of this is when
a generator is operating at its maximum power; it retains full
downward regulation capability within its ramping constraints,
and such adjustments do not incur any penalties in the objective
function. Since the sole objective of the optimization solver is to
minimize the objective function while satisfying the constraints,
unexpected situations may arise: during certain periods, only
some of the generators provide the full reserve capacity while
the remaining generators provide no reserve capacity within their
adjustable ranges.

In system #2, we set lower chance-constraint probabilities of
0.05, 0.025, 0.01, 0.005, and 0.0025 to explore their impacts on
system risk and the objective function; the corresponding results
are shown in Figure 15 and Table 5. As seen from Figure 15,
as the chance-constraint probability reduces, the system risk
probability also decreases generally, which is consistent with the
results shown in Figure 10. However, the changes in the objective
function are different. As shown in Table 5, when the probability
is reduced from 0.05 to 0.005, the objective function remains
unchanged. Only when the probability is set to 0.0025 does the
objective function increase significantly. This is because system
#2 contains larger-scale generators and energy storage systems,
allowing it higher capability to provide reserve capacity. Even
with a 0.005 chance-constraint probability, the reserve capacity
constraint remains relaxed. It is only when the probability is set to
0.0025 that the constraint tightens, causing the objective function
to increase. Thus, the chance-constraint probability setting must
comprehensively consider both the economic and security aspects of
system operation.

4 Conclusion

This study proposes an optimal dispatch model of BESS
called CC-GMM by considering the uncertainties of renewable
generation. Here, we leverage the GMM to describe the probability
distribution of the prediction errors of RESs, thereby considering
the uncertainties of renewable generation. Chance constraints are
incorporated into the model to ensure system security and are
transformed into deterministic constraints using quantiles for the
solution. The results show that involving BESSs in scheduling
effectively promotes the consumption of renewable energy while
improving the safety of systems containing a high proportion
of RESs. Compared to the LSO and DRO methods, CC-GMM
maintains good economic performance while ensuring system
security. However, the proposed method can be improved in certain
areas, such as considering the impact of BESS on the risk of

branch transmission power in the model, to better match the
actual operation of the power system; this is intended as the future
direction of this research.
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