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Prediction of electricity
production by small wind power
using artificial neural networks

Justyna Zalewska-Lesiak, Mateusz Oszczypała and
Jerzy Małachowski*

Faculty of Mechanical Engineering, Institute of Mechanics and Computational Engineering, Military
University of Technology, Warsaw, Poland

Introduction: Wind energy is one of the most significant and rapidly growing
renewable energy sources worldwide. It is a clean and environmentally friendly
form of energy production, which emits no harmful substances or greenhouse
gases during the power generation process. There has been a growing interest
in research in the field of wind energy. In this article, an artificial neural network
method is used to evaluate the forecasting of wind energy production from
a small wind turbine (SWT) installed in central Poland, reflecting inland wind
conditions.

Methods: A comprehensive set of algorithms and results from simulations
are presented. An artificial neural network (ANN) is trained and verified using
a large observation dataset. The model includes four input variables: wind
speed and direction, rotor speed, air temperature, and one output variable -
the power generated by the turbine. Among the available neural networks,
Multilayer Perceptron was selected. Genetic algorithms were used to optimize
the structure of the model. The Pearson correlation coefficient was used to
assess the correspondence between the predicted values and the actual ones.
Themodelingwas carried out inMATLAB, and coefficients such asMean Squared
Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Percentage
Error (MAPE) were used to evaluate the prediction error.

Results and Discussion: The learning and testing performance of the neural
network model using back propagation with feedback was 96.3% and 97.0%,
respectively. Additionally, a sensitivity analysis of the predictive model was
performed. The neural networkmodel presented in the article provides accurate
predictions of the power generated by a wind turbine. The results obtained
confirm the effectiveness of the use ofMLP-type neural networks in tasks related
to the prediction of energy production in small wind turbines in inland locations.

KEYWORDS
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1 Introduction

With growing energy demand driven by economic development and improved living
standards, reliance on fossil fuels poses serious environmental challenges, including
pollution and global warming (Gómez and García, 2018; Wang et al., 2019). Given their
limited and non-renewable nature, fossil fuel overuse accelerates resource depletion. In
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this context, renewable energy, particularly wind power, emerges
as a key alternative. Widely adopted worldwide, wind energy
plays an increasingly important role in smart grids, buildings,
and homes (Wang et al., 2021).

According to the Directive on the Promotion of the Use of
Renewable Energy, by 2030, the share of renewable energy sources
(RES) in the gross final energy consumption in the European
Union (EU) is expected to reach 42.5%. Another ambitious goal
for the EU is to achieve climate neutrality by 2050. Currently,
all EU member states have targets for the share of renewable
energy in the national energy mix, which they must meet by
2030 (European sources, 2023; Consilium, 2023). Therefore, there
is an acceleration of the transition to clean energy by increasing
the share of RES in power generation, industry, construction, and
transportation.

Wind energy is one of the fastest growing renewable energy
sources and is widely regarded as an interesting alternative to
conventional fossil fuel energy sources. In 2022, 77.6 GW of new
wind capacity was connected to electricity gridsworldwide, bringing
the total installed wind capacity to 906 GW (9% increase compared
to 2021). Thus, 2022 was the third best year ever in terms of
new capacity (Global Wind Energy Council, 2023).

The wind power market is growing rapidly, so there is a
strong need for development in this field for both technical and
economic progress. This motivates researchers to conduct analysis
and prediction of wind power generation. When considering
technical aspects, maximizing the yield of wind potential is taken
as the goal. On the other hand, with regard to economic issues,
intentionality is turned to obtaining maximum profits from the
available resources (Marugán et al., 2018). While technically aimed
at maximizing energy yield, forecasts also help secure financial
returns. Due to the variability of wind, reliable prediction remains
a complex challenge—yet it is essential for energy trading, grid
stability, and reducing economic risks, especially for small wind
turbine owners. Forecasts are crucial for wind farm owners and
operators, distribution and transmission system operators, and
maintenance teams.

Accurate wind power forecasts improve power system efficiency
by helping align generation with demand, optimize energy storage,
and support bidding strategies in electricity markets (Kim and
Powell, 2011; Zugno and Conejo, 2015; Gómez et al., 2017). They
also aid in real-time turbine control,maintenance planning, and grid
management, enabling operators to balance loads and ensure system
stability (Okumus and Dinler, 2016). Thus, predictive models are
vital for sustainable and efficient energy system operation.

The rapid growth of wind energy has increased the need for
accurate forecasting tools. Effective predictions should consider key
parameters and reflect future trends. Forecasts support balancing
supply and demand, grid optimization, and planning reserves
(Hossa et al., 2014; Sweeney et al., 2020). However, due to the
variability of atmospheric conditions, wind energy is difficult to
predict reliably, and minimizing forecast errors remains a major
challenge (Augustyn and Kamiński, 2018; Mentes et al., 2012).

Wind is highly variable in time and space, influenced by
meteorological and geographical factors. This variability, along with
uncertainties in weather forecasts and turbine conditions, poses
major challenges for predicting wind power generation (Kou et al.,
2013; Markowicz, 2011; Özgür, 2014). In terms of evaluating

forecasts made for wind power, it is also important to use different
ways of developing forecasting methods, leading to different criteria
for evaluating methods and their results (Popławski et al., 2013).

Wind power forecasting methods can be divided into physical
and statistical depending on the modeling approach. Physical
forecasting methods are based on converting data resulting from
the numerical weather prediction system (NWP) into wind turbine
data. They then forecast wind power based on the predicted wind
speed and turbine power curve. Statistical methods are based on
the analysis of a large amount of historical data and use various
statistical models to predict wind power, such as time series analysis
and machine learning algorithms (Li et al., 2023). Furthermore,
some solutions based on statisticalmodels are introduced as a hybrid
algorithm in combination with NWP models (Pourmousavi Kani
and Ardehali, 2011).

The development of computer technology has contributed to the
popularization of predictive models based on artificial intelligence,
among which artificial neural networks (ANN) (Ak et al., 2018;
Liu Y. et al., 2020), support vector machines (SVM) (Liu M. et al.,
2020), fuzzy logic (Severiano et al., 2021), through which it is
possible to capture the features of nonlinearity contained in the
input data (Heng et al., 2022). Neural networks are the most widely
used tool in artificial intelligence methods for forecasting electricity
production (Drałus and Gomółka, 2017; Jiménez et al., 2018). The
main advantages of the ANN approach are the model’s ability to
self-learn, self-organize and self-improve.

In recent years, researchers around the world have been
conducting numerous studies to predict wind power output. Many
reviews of wind power prediction have been published with various
approaches (Foley et al., 2012; Marugán et al., 2018). Wang et al.
(2021) reviewed the literature on various DNN (Deep Neural
Networks) models and analyzed their effectiveness in predicting
wind speed and wind power. The publication (Wang K. et al., 2018)
applied the k-means clustering algorithm to process numerical
weather prediction (NWP) data and, in turn used a deep belief
network (DBN) for short-term wind power forecasting.

Xiao et al. (2021) proposed an effective high-performance
learning model, the kernel extreme learning machine (KLEM).
Han et al. (2022) presented a new short-term wind speed prediction
method using advanced hybrid deep learning algorithms to improve
numericalweather forecasting (WRF).Thepaper (Liu H. et al., 2020)
develops a new hybrid ensemble deep reinforcement learningmodel
for short-term wind speed forecasting.

The paper (Wang et al., 2020) discusses a hybrid Laguerre
neural network model for wind energy prediction with multi-stage
advance. Yan et al. (2019) trained a geometric model artificial neural
network (GM-ANN) based on offshore wind farm observation data.
They proposed a two-dimensional (2-D) power curve that allowed
one to estimate the generated power by a wind farm based on
wind speed and direction. Sun et al. (2020) proposed a power
prediction model and optimized the deviation angles to minimize
the total impact of the track footprint onwind turbines. Zameer et al.
(2017), for short-term wind energy prediction, proposed a model
based on ANN genetic programming. Nielson et al. (2020) used
ANN to generate multi-parameter input models to estimate the
power generated by a wind turbine. In his work, Blonbou (2011)
used the wind speed and power from the previous time step
to train the SSN using adaptive Bayesian learning and Gaussian
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process approximation. In the publication (Qureshi et al., 2023)
the authors examine the application of various artificial intelligence
techniques for forecasting wind power generation and analyze
their effectiveness and precision. The paper (Taghinezhad and
Sheidaei, 2022) discusses an advanced ANN adapted to diffuser
wind turbine systems.

The scientific literature is dominated by topics related to large
wind turbines, due to their widespread use in utility power systems
and a wealth of operational data. In contrast, small wind turbines
(SWTs), which are playing an increasingly important role in local,
decentralized power systems (e.g., for domestic, agricultural or off-
grid purposes), are much less frequently analyzed. The current
state of research on forecasting SWT-generated power is limited,
especially in the context of applying artificial intelligence methods
such as artificial neural networks. Most of the available work focuses
on large installations, which creates an important research gap in
the area of small units. This work aims to partially fill this gap
by proposing an ANN-based predictive model for a specific small
wind turbine.

By SWT, we mean a wind turbine with a power rating of less
than 50 kW and a rotor area of less than 200 m2 (Zalewska et al.,
2021). These turbines are more affordable and have lower operating
and maintenance costs, making them a reliable solution for off-
grid rural and suburban areas. Among other things, small wind
turbines can generate decentralized energy and reduce energy bills
for consumers and power purchase costs for distribution companies,
as well as helpmanage periods of peak demand (Zishan Akhter et al.,
2023; Eltayesh et al., 2023). It is concluded that they represent an
economically viable and beneficial solution in the area of renewable
energy that can contribute to the achievement of the Sustainable
Development Goal (SDG 7) of providing affordable access to clean
energy for all. These goals were included in the 2030 Agenda for
SustainableDevelopment, whichwas adopted by all theUNmember
states in 2015 (IEA et al., 2022). However, the commercial success
of these turbines depends on the economic feasibility of the energy
produced, which is determined by the initial cost per unit of power
and the unit cost per kilowatt hour (kWh) produced (Tummala et al.,
2016). Therefore, it is worth focusing on the prediction of energy
from small wind turbines, which is done in this paper.

The paper demonstrates the potential of artificial neural
networks (ANNs) to predict the generated power of a small wind
turbine. The network is trained and verified using a large dataset
of observations of air temperature, wind speed and direction, and
turbine rotor speed. The prediction of energy from small wind
turbines (SWTs). The novelty aspects of the paper are based on the
new methodology developed for the study based on the proposed
neural network and the experimental data incorporated for this
study. It should be emphasized that the developed model can
be useful for energy planners and wind turbine owners who are
looking for the effectiveness of neural networks for the energy
production of SWTs.

The article is structured as follows: Chapter 1 is an introduction,
which includes the basics of turbine power prediction and a review
of the literature in the area under study. Chapter 2 presents the
methodology developed for the study, the theoretical assumptions of
the model, the input parameters, and the structure of the proposed
neural network. This chapter also presents a case study of the
analyzed wind turbine and describes the data collection. Chapter 3

presents the wind power forecasting model and the results from the
study, as well as the sensitivity analysis of the results.The conclusions
of the article and the conclusions are included in Chapter 4.

2 Materials and methods

2.1 Wind turbine power prediction model

2.1.1 Artificial neural network
Machine learning algorithms are widely used due to their

ability to process large amounts of data, and one of the most
widely used methods is ANN (Jóźwiak and Lesiak, 2020). Artificial
neural networks can learn from data and use this knowledge,
leading to their widespread use in various fields, such as an
advanced tool formodeling, classification, identification, prediction,
and control (Karaman, 2023). Learning a neural network involves
searching the parameter space of the network for an optimal
set of weights that provide a good fit of the target input-output
relationship. Artificial neural networks are trained by historical
data sets to understand the relationship between output and input
variables.

The ANN model consists of various layers, including an input
layer, one or more hidden layers, and an output layer. The input
layer is responsible for receiving input data, which is then processed
by hidden layers, ultimately leading to the generation of the final
output by the output layer. The hidden layers play a key role in
transforming the input data through a set of weighted connections
and activation functions, enabling the network to understand
complex patterns and relationships in the data. Each layer contains
numerous neurons that connect to each other through connections
between successive layers of multilayer networks; neurons are
connected between layers on a peer-to-peer basis (typically, neurons
of nearby layers are connected). This allows modeling the nonlinear
dependence of the output variable on the input variable (Babbar and
Langah, 2022; Augustyn and Kamiński, 2018).

The first step in building an ANN model is to choose a neural
network topology. These include unidirectional networks, in which
information flows in one direction, recurrent neural networks,
where neurons send feedback signals to each other, and competitive
learning networks (Senthil Kumar, 2019). The next step is to choose
the appropriate learning algorithm. Learning can be supervised - the
network’s task is to learn a function that determines the dependence
of the output variable on the input variables based on a historical
data set consisting of input-output pairs. The second option is
unsupervised learning, which involves determining the parameters
of the ANN depending on the dataset and the cost function. The
third type is reinforcement learning, inwhich input data is generated
by interacting with the environment (Rahman et al., 2021; Jung and
Broadwater, 2014). The performance of artificial neural networks
depends on many different factors, including data preprocessing,
data structure, learning method, connections between input and
output data (Marugán et al., 2018).

In this article, the authors chose to use artificial neural networks
due to their high efficiency and precision in wind energy forecasting.
This was confirmed and presented in the article (Jamii et al., 2022).
Jamii et al. compared the performance of the ANNmodel with four
other machine learning-based techniques (LASSO, decision tree,
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FIGURE 1
Multi-layer feed-forward neural network architecture.

regression vectormachines, and kernel ridge regression).The results
showed that all techniques could learn quickly and provide accurate
power predictions. However, the ANN model provided the best
forecasting accuracy, outperforming other methods. In addition,
ANN proved to be a useful tool for optimal power planning and
management. Therefore, it was decided to choose the ANN model.
There aremany types ofANNmodels for a given problemdepending
on various parameters such as function complexity, architecture,
training algorithm, and number of training cases (Varshney and
Poddar, 2012). In this article, multilayer perceptron (MLP) was
chosen, which is considered the most popular type of artificial
neural networks.

2.1.2 Multilayer perceptron
MLP is an artificial feedforward neural network (FNN) used in

regression (Ziółkowski et al., 2021) and classification (Zanaty, 2012).
MLP is built with three types of neuron layers: input, hidden, and
output. The input neurons represent the values of the independent
variables, and their number is determined by the number and type
of input parameters.Thehidden layers are responsible for processing
the signals, while the output neurons represent the predicted values
of predictor variables. Figure 1 shows the general architecture of the
MLP, consisting of four input neurons, one output neuron and an
unspecified number of hidden neurons arranged in four layers. The
number of neurons in each hidden layer and the activation functions
of each layer are subject to optimization using a genetic algorithm.

The input signals are normalized values of the independent
variables (turbine speed, wind speed, wind angle sine, air
temperature). Normalization brings the values of the variables into
the interval [0, 1] (Al-Ghamdi et al., 2021; Henderi, 2021; Chia et al.,
2022), according to Formula 1:

xnorm =
xmax − x
x− xmin

. (1)

The regression problem involves predicting the value of turbine
power, which is assumed to be a non-negative value. For this

reason, normalization of the value of the predicted variable,
based on the natural logarithm, was used (Al-Naser et al., 2016),
according to Formula 2:

ynorm = ln (y). (2)

On the other hand, Formula 3 is used to calculate the projected
value ypred of the turbine power based on the output value:

ypred = e
ynorm . (3)

This approach avoids negative values in the output of the
network. In fact, the MLP predicts the value of the power exponent
for a base equal to e, and then the inverse normalization determines
the value of the turbine power prediction. The mathematical
properties based on Formula 4 show that:

∀ynorm∈R eynorm > 0. (4)

Five types of aggregated signal activation functions were
considered entering the neurons in the hidden and output layers
(Bircanoglu and Arica, 2018; Garud et al., 2021):

— Linear

f(x) = x, (5)

— Sigmoid

f(x) = 1
1+ e−x
, (6)

— Hiperbolic tangent (tanh)

f(x) = tanh x = e
x − e−x

ex + e−x
, (7)
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FIGURE 2
Chromosome of artificial neural network.

—ReLU

f(x) =max(0,x) =
{
{
{

x i f x > 0 

0 otherwise
(8)

— Softmax

f(xi) =
exi

∑n
j=1

exj
(9)

2.1.3 Genetic algorithm
Genetic algorithms (GAs) are a subclass of stochastic

evolutionary algorithms of global search for the extreme values
of the objective function. GA is a mathematical model of the
Darwinian process of gene evolution (Tajmiri et al., 2020). In the
optimization of the neural network architecture, a chromosome is
defined as a set of genes that represent hyperparameters not subject
to the learning process. In the proposed approach, the chromosome
encoding the neural network is made up of nine genes.The first four
genes determine the number of neurons in the following hidden
layers.The next four genes provide information about the activation
function of the corresponding hidden layers, and the last, ninth,
gene is responsible for the activation function of the output layer.
The number of neurons is a positive integer from the accepted
range, while the activation functions are selected from a set of
permissible functions, determined by Formulas 5–9. A schematic of
the MLP-encoding chromosome is shown in Figure 2.

Thefirst step in optimizing theMLP architecture is the collection
and pre-processing of a suitable database of wind turbine efficiency.

Based on the normalized empirical data, the process of learning,
validation, and testing of neural networks is carried out. For this
reason, a division of the data set into three subsets was adopted in
standard 60/20/20 proportions.

The genetic algorithm requires the definition of its basic
parameters andmethods. For genes encoding the number of hidden
neurons, intermediate recombination was adopted as the crossover
method. If two neural networks as parents of the future generation
have the number of neurons αi and βi for the hidden layer i
respectively, their crossover will result in networks having the
number of neurons in the hidden layer and equal to γi, according
to the Formula 10 (Wang Y. et al., 2018):

γi = αi · p+ βi · (1− p), (10)

where p is a randomnumber from a uniform distribution defined on
the interval [−d, 1+d], with d being some assumed constant value.

The crossing of genes encoding activation functions is
carried out according to the uniform crossover method
(Yi et al., 2020; Kurdi, 2019). The probability from selecting a gene
of a given parent is equal to 0.5.

The process of mutation aims to solve the problem of trapping
the local extremes that the target function reaches. Through
mutation, a greater diversity of chromosomes is achieved in the
population. Genes encoding the number of neurons and genes
encoding activation functions can undergo the mutation process
with a certain probability p; however, the mutation process itself
in both cases is different (Garud et al., 2021; Luo et al., 2020).
For the number of neurons, because it is expressed as a positive
integer in a certain range, themutation follows a normal distribution
and according to the law of three sigma. If crossover results in
a gene γi, then after mutation it is expressed as γ′i , according to
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FIGURE 3
Genetic algorithm approach for optimizing neural network architecture.

the relation (Formula 11):

γ′i = γi +N (0,σ), (11)

where σ is equal:

σ =
γmax − γmin

6
. (12)

In contrast, the mutation of the gene encoding the activation
function follows a discrete uniform distribution over the set of
admissible functions. Figure 3 shows a flowchart of the proposed
approach to optimizing the neural network architecture as a wind
turbine power prediction model.

In the research conducted, the parameters of the genetic
algorithm were adopted with the values shown in Table 1. In each
of the 50 generations, 25 neural networks are trained. Based on the
evaluation of the trained neural networks in a given generation, the
selection of five architectures with the smallest MSE error value for
the test set is made. After the crossover of the selected networks

on an individual to any basis using the intermediate recombination
method with parameter d = 0.25 and mutation with probability
pmut = 0.1, a new generation of 25 models is formed. Due to
computational complexity, a range of the number of neurons in the
hidden layers was adopted from 1 to 30.

Shapley Additive Explanations (SHAP) was used to determine
the effect of individual MLP model input parameters on
the predicted value of wind turbine power. The index φi
denotes the SHAP value assigned to the i-th input parameter
and represents its average contribution to the final model
prediction. SHAP values are determined by the difference in
the response of the predictive model depending on whether
the feature is included or omitted in the model. In a formal
sense, the value of φi is calculated according to Formula 12
(Cakiroglu et al., 2024):

φi = ∑
S⊆N\{i}

|S|! · (n− |S| − 1)!
n!

[ fS⋃{i}(xS⋃{i}) − fS(xS)] (13)
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TABLE 1 Parameters for genetic algorithm.

Parameter Value

Number of generations 50

Population size 25

Probability of mutation (pmut) 0.1

Parameter for intermediate recombination (d) 0.25

Number of selected ANNs for crossover 5

Number of neurons in hidden layer 1–30

whereN is the set of all input parameters, n is the abundance of theN
set, S is any subset of parameters not containing the i-th parameter,
and fS(xS) is the output value from theMLPbased on the parameters
in the S subset.

2.1.4 Accuracy evaluation methods
Assessing the precision of developed models is an important

aspect of conducting research. Several measures and indicators are
available in the literature to assess the degree of fit between themodel
and the empirical or estimated values. In this article, the evaluation
of the fit of models based on artificial neural networks is carried out
on the basis of the following four metrics Formulas 14–17:

—Mean Squared Error (MSE):

MSE = 1
n

n

∑
i=1
(yi − ypred,i)

2, (14)

— Root Mean Squared Error (RMSE):

RMSE = √ 1
n

n

∑
i=1
(yi − ypred,i)

2, (15)

—Mean Absolute Percentage Error (MAPE):

MAPE = 1
n

n

∑
i=1
|
yi − ypred,i

yi
| · 100%, (16)

— Pearson correlation coefficient (R):

R =
∑n

i=1
(yi − y)(ypred,i − ypred)

√∑n
i=1
(yi − y)

2∑n
i=1
(ypred,i − ypred)

2
. (17)

where yi denotes the i-th observed value of electricity production
from the small wind turbine, y represents the mean of the observed

values, ypred,i denotes the i-th predicted value, and ypred represents
the mean of the predicted values.

Evaluatingmodel fit with a single measure is incomplete; for this
reason MSE, RMSE, MAPE and Pearson’s correlation coefficient R
have been proposed. MSE is used as a loss function for the learning
process of feedforward regression neural networks, mainly because
of its simple interpretation and differentiability. By rooting the MSE
value, one gets the RMSE, which reflects the root mean square
deviation of the model from the data. However, the MSE and RSME
measures are sensitive to errors made for large values of the forecast
variable, and they do not allow direct comparison with other neural
models trained on other data sets. This problem can be solved by
using the correlation coefficient R and the MAPE measure, which
allow a unitless assessment of themodel’s fit to empirical data, which
implies the possibility of comparison with other models. However,
in the case of MAPE, attention should be paid to its sensitivity to
errorsmade with small values of the estimated variable, which is due
to the denominator of the fraction that is a reference to these values
(Christiansen et al., 2014; Li and Shi, 2010).

In the presented approach, the target variable (output variable
of the MLP model) is the actual output power of the wind turbine,
obtained from empirical operational data. The neural network
model learns to represent the non-linear relationship between the
input parameters (wind speed, turbine speed, temperature, wind
direction) and the power generated by the turbine. In the MLP
training process, the loss functionwas defined as theMSE, calculated
between the predicted value and the actual power value. The RMSE
value additionally allows the error to be interpreted in units of the
dependent variable.

This approach unambiguously defines the context for the use of
the presented algorithm in the regression task for SWT, allowing it
to be applied to other locations and datasets as well, while keeping
the same input structure and predictive objective.

2.2 Case study–small wind turbine

Experimental data was obtained from a small wind turbine with
a nominal capacity of 12.0 kW, located in central Poland, which
was the subject of the study and is described in more detail in
the article (Zalewska et al., 2021). The specifications of the turbine
are shown in Table 2.

2.2.1 Wind power
Metrological factors have a significant impact on wind power

generation. The power generated by a wind turbine can be written
using the Formula 18 (Olabi et al., 2021):

P = 1
2
ρAV3 (18)

where: ρ - air density [kg/m3], A–cross-sectional area of a turbine
[m2], V - wind speed [m/s].

Of the listed components, wind speed has a major impact on
wind turbine power output, as it varies with the cubic value of wind
speed. Small differences in wind speed estimates result in significant
differences in wind power estimates. Wind direction also affects
power generation. However, compared to wind speed, it has less
impact on the turbine power generated, since most turbines are
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TABLE 2 Turbine specifications (data are from the turbinemanufacturer).

Parameter Value

Nominal power [kW] 12.0

Number of blades 3

Rotor axis height above the ground [m] 15.0

Rotor diameter [m] 10.0

Starting wind speed [m/s] 3.0

Wind speed for nominal power (rated) [m/s] 9.0

Cut-out speed [m/s] 20.0

Rotational speed range [rpm] 30–125

designed to be properly oriented toward wind during operation
(Singh et al., 2007). Furthermore, the power generated by a wind
turbine depends on various design aspects, including the cut-in
wind speed (the minimum wind speed required to start generating
power), the rated wind speed (the speed at which the turbine reaches
its rated power), and the cut-out wind speed (the maximum wind
speed at which the turbine can generate power) (Carolin Mabel
and Fernandez, 2008; Noorollahi et al., 2016). Wind power can
also be affected by other factors, such as terrain, time of year, or
time of day.

2.2.2 Database preprocessing
Many advantages can be found in performing nonlinear

regression calculations, but the successful learning of a neural
network is highly dependent on the quantity and quality of the
data collected (Yan et al., 2019). To train and test the predictive
model, data from an onshore small wind turbine with a nominal
power of 12.0 kW, rotor diameter of 10.0 m and height of 15.0 m
was used. The observation dataset contains information on the
actual wind speed, turbine output power, rotor speed, wind
direction, recording the occurrence of turbine failure or error. The
collected parameters come from the Supervisory Control and Data
Acquisition System (SCADA), which collects data from various
sensors placed on the turbine. The recordings were recorded for
12 months, at a frequency of 1 min. The data set analyzed includes
more than 500,000 raw data records. Furthermore, the data set
was augmented with air temperature parameters recorded by a
nearby metrological station from the Institute of Meteorology and
Water Management.

The amount of collected data is considerable; however, there
may be errors and outliers caused by the sensors or the data
collection system. These include the occurrence of values outside
the parameter range, missing data due to turbine availability, and
electrical shutdowns. Periods of data loss due to machine failures,
maintenance, and other circumstances are inevitable, so there was a
need to apply data filtering (Zhang et al., 2019; Long et al., 2022).
Before proceeding to the modeling stage, appropriate operations
such as data cleaning and transformation were performed. The

quality of the dataset was checked and cleaned. Subsequently, the
data were filtered according to power-generating speed ranges,
rotor speed ranges, absence of turbine failures, and errors. Turbine
downtime and maintenance work were also taken into account.
The wind speed range is from 0.0 to 15.0 m/s, as the turbine is
stopped at wind speeds greater than 15.0 m/s. The wind power
range is 0.0–12.0 kW, and the rotor speed range is 30–125 rpm. The
wind direction parameters were converted to the sine of the wind
direction for better illustration and the possibility of determining
correlations with the other input data. Only data when the wind
turbine is operating properly and generating power were selected for
analysis. Figure 4 shows the output power of a small wind turbine
during the study period.

Input parameters for wind power generation forecasting were
identified from the current state of the literature (Jamii et al., 2022;
Liu et al., 2023; Sun et al., 2020) and selected: wind speed, rotor
speed, wind direction and air temperature, while the output value
is the wind power forecast value for the turbine. The selected
data were analyzed for relationships between input and output
parameters using Pearson’s correlation test. Wind speed and rotor
speed (turbine speed) have a very good correlation with wind
power production with a correlation value of 0.9 in both cases.
For the direction of the wind and the temperature of the air,
no clear correlation was identified (the correlation value is less
than or equal to 0.1), indicating a weak relationship between the
parameters studied.

Figure 5 shows the graphical relationships resulting from the
study of correlations between input variables. Each dot plot in the
grid represents a relationship between two variables, presenting
them on horizontal and vertical axes in various combinations. This
type of visualization is commonly used in statistical analysis because
it captures both linear and non-linear relationships and potential
anomalies in the data. It was noted that there is a strong positive
correlation between turbine power and rotor speed, indicating
that higher turbine speed results in higher power output. Positive
correlations also exist between turbine power and wind speed, as
well as between wind speed alone and turbine speed. Based on
these observations, it can be concluded that wind speed and rotor
speed are the key variables affecting the power generated by the
turbine. Other variables, such as wind direction and temperature,
appear to have limited impact on power generation in the data
range studied.

Correlation matrix diagram.Figure 5 shows the graphical
relationships resulting from the study of correlations between input
variables. Each dot plot in the grid represents a relationship between
two variables, presenting them on horizontal and vertical axes in
various combinations.. This chart provides a quick, quantitative
comparison of the strength of the relationship between pairs of
variables. It confirms previous observations - the highest correlation
coefficients are between turbine power, wind speed and turbine
speed. In contrast, the variables wind direction and temperature
show low correlation with turbine power, confirming their limited
usefulness as predictive features in further modeling. The use of
both approaches - graphical and numerical - provides a complete
picture of the interrelationships in the data set, which is an
important step in the process of selecting input variables for the
artificial neural network model.
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FIGURE 4
Power curve of a small wind turbine.

FIGURE 5
Correlation matrix diagram.

3 Results

3.1 Model development

The developed MLP models and GA were implemented in the
MATLAB 2022b environment to predict electricity generation by
a small wind turbine. Model training, testing, and validation were
conducted using a workstation equipped with an Intel(R) Core(TM)
i7-3970X CPU operating at 3.50 GHz and 16 GB of RAM.

The data was normalized before teaching the ANN model.
After preprocessing the data, the ANN model was created. The
preprocessed data were divided into a training data set, a validation
data set and a test data set. Table 3 provides the characteristics and
ranges of the variables used in the model, as well as the units of
measurement for each variable.

In the study carried out, 50 different neural network
configurations (generations) were created, each with a varying
number of neurons in the hidden layer. The results of the model
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FIGURE 6
Heat map of correlations between input variables.

TABLE 3 Description of model parameters.

Parameter Type Observed range Unit

Turbine speed Input [39.60, 122.80] rpm

Wind speed Input [3.00, 12.60] m/s

Wind direction Input [– 1, 1] –

Temperature Input [–14.70, 32.30] ˚C

Turbine power Output [0.04, 11.80] kW

adjustment, reflecting its performance during the training process,
are shown in Figure 7. The graphs show the changes in MSE values
as the generations progresses, allowing for an evaluation of the
optimization process.

Figure 7a shows a general trend of decreasing MSE in the
initial generations, indicating progress in the optimization process.
However, after a certain level is reached (around 0.125), the
improvement becomes less noticeable, and the MSE values begin to
fluctuate. In Figure 7b, a significant improvement in MSE can be
seen at the beginning of the graph, suggesting that the algorithm
quickly found better solutions. Then, as in graph (a), the values
begin to fluctuate, which may suggest that a local minimum has
been reached or that it is difficult to improve the results further.
Both parts of the graphic suggest that optimization using the genetic
algorithm significantly improved the model in the initial stages,
resulting in lower MSE values for the test set. This indicates that the
genetic algorithm effectively optimized the parameters of the neural
network.The rapid decrease inMSE at the beginning is evidence that
GAhelped find bettermodel configurations.However, the stochastic
nature of initializing the initial weights of the MLP model and the
random division of the set into training, validation, and test subsets
imply a nonmonotonic course of the optimization objective function
for the best solutions achieved in successive iterations of the genetic
algorithm.

Table 4 shows the optimal architecture of the multilayer neural
network obtained during the optimization process. It details the
number of neurons in each hidden layer and the activation functions
used.TheMLParchitecture is characterized by a significant variation
in the number of neurons in each hidden layer. This selection of the
number of neurons suggests careful adaptation of the model to the
specific data set in order to balance the ability to learn with the risk
of overlearning. The variety of activation functions used indicates
the specific needs of the data, which require an unusual approach to
neural network design to achieve optimal results.

Based on Equations 14–17, prediction errors were calculated for
neural networks in all data sets. The results of these calculations are
presented in Table 5.

The model achieves high accuracy on the training, validation,
and test sets, indicating its ability to learn efficiently from training
data and its good generalization to new data. The MSE and RMSE
values are relatively low on each of the data sets, indicating good
quality predictions. In particular, the low MSE = 0.1164 (kW)2 i
RMSE = 0.3412 kW in the test set underscore the effectiveness in
predicting real data. The MAPE value, oscillating around 25% for
all sets, suggests that the model has some level of percentage error
in the forecasts, but this is relatively stable between data sets and
consequently indicates consistency in model performance. It should
be noted, however, that MAPE is sensitive to low values of the
forecast variable, which can lead to overestimation of percentage
errors in such cases. The high correlation coefficient R values
above 0.95 for all data sets suggest a strong correlation between
the forecasted and actual values. In particular, the value of R
= 0.97 for the test set indicates that the model reproduces the
correlations in the test data very well, indicating its high quality
and effectiveness in the prediction. The comparison of results in the
validation and test sets indicates the stability of the model, which is
crucial for its usefulness in real-world applications. The differences
in metrics between the sets are small, suggesting that the model is
not overtrained. It can be concluded that the MLP model is well
calibrated and shows satisfactory accuracy and stability in different
data sets, making it a robust tool for forecasting in a given context.

Figure 8 presents four regression graphs that illustrate the MLP
model’s prediction performance for the training, validation, test
and total prediction data sets. These graphs juxtapose the model’s
predicted output values with the experimental results, showing the
accuracy of the model’s fit to the actual data.

On each graph, there is an orange line that indicates a perfect
fit, where the predicted value equals the actual value (Prediction
= Target). The points on this line represent perfect predictions of
the model. Points close to this line in each graph indicate good
agreement between predictions and actual values, suggesting that
the model predicts outcomes well. The graph in the validation set
shows a similar distribution to that for the training set, but the
spread of points around the line defining the perfect fit is slightly
larger. This suggests that the model generalizes well but is slightly
less precise on the new, previously unseen data. The distribution of
points on the graph in the test set is similar to the other sets, with
some scatter especially at higher power values. This indicates that
the model maintains its performance on the test data, but accuracy
may be limited for higher values. The graph for the entire dataset is
similar to the other graphs, indicating the model consistency across
different evaluation phases.
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FIGURE 7
MSE values for the test set reached in GA optimization: (a) – mean for parents in each generation (5 selected best neural networks), (b) – best result in
each generation.

TABLE 4 Optimal architecture of MLP.

No. of gen Hyperparameter Value

1 Number of neurons in 1st hidden layer 3

2 Number of neurons in 2nd hidden layer 28

3 Number of neurons in 3rd hidden layer 24

4 Number of neurons in 4th hidden layer 15

5 Activation function of 1st hidden layer Linear

6 Activation function of 2nd hidden layer Linear

7 Activation function of 3rd hidden layer Tanh

8 Activation function of 4th hidden layer Softmax

9 Activation function of output layer Linear

TABLE 5 Results for the optimal MLP model.

Dataset MSE
((kW)2)

RMSE (kW) MAPE (%) R

Training 0.1435 0.3789 25.1674 0.9632

Validation 0.1693 0.4115 26.3941 0.9563

Test 0.1164 0.3412 25.0297 0.9702

All 0.1433 0.3785 25.3852 0.9632

The density of points, near the line defining a perfect fit, in the
graphs for the training, validation, and test sets suggests that the
model has robust predictive ability across the different evaluation
phases. The apparent scatter, especially for higher values, indicates
the possible difficulty of the model in accurately predicting extreme

power values. The greater the scatter, the greater the error in the
prediction. This may suggest that the model has generalization
problems in these areas and could require further optimization, such
as by tuning the parameters or using more training data in these
ranges. Significant deviations from the ideal line in certain ranges
could also indicate data quality problems in these ranges, such as
noise or measurement errors. A comparison of the graphs for the
training, validation, and test sets reveals no significant differences in
the distribution of scores.This indicates that the model is well tuned
and has not overfitted (not over-fitted to the training data). The
graphs show a relatively good fit of the scoring plot data, indicating
a well-designed model.

In the graph shown in Figure 9, one can observe the course
of change of the MSE as a function of the number of epochs for
the training, validation and test sets. There is a sharp drop in the
error after the first few epochs, which then stabilizes at a low level,
indicating that the model has been successfully learned. The errors
on all three sets are very close to each other, confirming the absence
of significant signs of overfitting. This course of action confirms the
correct learning process of the model and the good overall quality
of the fit.

3.2 Sensitivity analysis

Sensitivity analysis in neural networks is carried out to
determine how individual input parameters affect the output value
of the model, in the case of the proposed approach - the power
of the turbine. In this way, it is possible to identify the risks
associated with the availability and performance degradation of the
system (Tang et al., 2024). The developed model was subjected to a
sensitivity analysis regarding the dependence of turbine power on
wind speed and the sine of the wind angle, assuming a constant
turbine speed of 65.5 (rpm). Sensitivity analysis was carried out
separately for five variants with different air temperatures (from
−10.0°C to 30.0°C). The results are shown in Figure 10. The color
of the spectrum in the graphs and response plots represents the
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FIGURE 8
Results for training, validation, and test of the MLP model.

interaction between wind speed, wind angle sine, and generated
turbine power.

An analysis of the charts shows that under these assumptions,
wind speed has little effect on turbine power. Turbine power remains
relatively constant throughout the range of wind speeds shown in
the charts. Power variations depend mainly on the sine of the wind
direction angle. The highest turbine power (about 1.5 kW) in all the
variants presented is achieved when the sine is equal to 1 (90.0°).
This means that the turbine operates most efficiently when the wind
blows perpendicular to the turbine blades. However, when the sine
of the wind direction is equal to −1 (270.0°) and the wind blows
perpendicularly from the back of the turbine, the turbine does not
generate power. Wind from this direction cannot effectively drive
the blades, so the power generated by the turbine is very low or zero,
regardless of the wind speed. Temperature seems to have little effect
on the overall shape of the relationship. However, it can gently affect
turbine power values under given conditions of wind speed and

direction. For example, at lower air temperatures, the turbine may
generate slightly higher power at the same wind speeds compared
to higher temperatures. This may indicate changes in air density
with temperature. At lower temperatures, the air is denser, increasing
the mass of air flowing through the turbine and may consequently
increase its power output. The graphs shown, assuming a turbine
speed of 65.5 (rpm), show that it is mainly the wind direction
(expressed as the sine of the wind direction angle) that determines
the power generated by the turbine, rather than thewind speed itself.

The effect of temperature and wind speed on turbine output
can vary from season to season. Using the data from this
analysis can help predict and plan energy production in different
seasons. Increases in temperature can slightly affect power output,
which is important for planning turbine locations and optimizing
turbine performance. These results can be useful for optimizing
wind turbine settings, especially in regions with varying climatic
conditions.
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FIGURE 9
Training process of developed MLP.

Figure 11 shows 3D sensitivity analysis plots of turbine power
output as a function of turbine speed (turbine speed) and wind
speed, assuming the sine of the wind direction angle is 0 (which
means that the wind blows parallel to the turbine axis).

Each graph shows a clear peak in power, which shifts as the
temperature changes. This suggests that the optimal turbine speed
also depends on the ambient temperature. At lower temperatures,
such as −10.0°C (a) and 0.0°C (b), the achievable turbine power is
higher compared to higher temperatures, such as 20.0°C (d) and
30.0°C (e). The most efficient turbine operation, with a maximum
power output of approximately 12.0 kW, occurs at −10.0°C and
is achieved at a turbine speed of 120 rpm and a wind speed of
12.0 m/s. This indicates the optimal turbine operating conditions
that provide the highest output. In all the graphs, at low wind speeds
below 6.0 m/s, the turbine output is very low, regardless of the
turbine speed. Similarly, at turbine speeds below 60 rpm, turbine
output is also low, regardless of wind speed. This perfectly confirms
the technical conditions of the turbine: a minimum wind speed
is required for effective operation and a minimum turbine speed
is required.

The graphs show that as the air temperature increases, the
maximum achievable power of the turbine decreases. This means
that the system operates more efficiently at lower temperatures
with the assumed wind angle. Higher temperatures can adversely
affect turbine stability and efficiency. A general characteristic that
can be observed is that the power output of the turbine increases
with increasing wind speed and turbine speed. Knowing at what
operating parameters (wind speed and turbine speed) maximum
power can be achieved is crucial to optimizing turbine performance,
minimizing costs, and maximizing energy production. This
analysis suggests that for maximum energy efficiency, changes
in temperature conditions should be taken into account and the

FIGURE 10
Sensitivity analysis for a sine of wind direction of 0 and: (a)
temperature = −10.0°C, (b) temperature = 0.0°C, (c) temperature =
10.0°C, (d) temperature = 20.0°C, (e) temperature = 30.0°C.
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FIGURE 11
Sensitivity analysis for a turbine speed of 65.5 (rpm) and: (a)
temperature = −10.0°C, (b) temperature = 0.0°C, (c) temperature =
10.0°C, (d) temperature = 20.0°C, (e) temperature = 30.0°C.

FIGURE 12
SHAP value for the developed model.

turbine’s operating parameters should be adjusted to accommodate
these changes. This can help optimize wind turbine operation,
especially under changing climatic conditions.

In order to increase the interpretability of the trained
neural network model, SHAP analysis was performed. The
results in Figure 12 show that turbine speed had the greatest impact
on predicted power, followed by air temperature and wind speed.
The result with temperature may seem contradictory to initial
observations (e.g., low linear correlation), but it is important to
remember that SHAP analysis takes into account non-linear and
complex interactions between features in models such as MLPs.The
influence of temperature can be indirect, such as by affecting air
density and thus energy production efficiency, which could have
been captured by the neural network. Thus, the model is able to
extract relationships that are not directly apparent with simple
statistical analyses. Wind direction showed a minimal, slightly
negative effect on the predictions. This may be due to the limited
variation of this variable in the analyzed geographic area or its
indirect influence through other variables. SHAP analysis confirms
that the model’s predictions are consistent with the actual physical
relationships occurring in the energy production process of small
wind turbines.

4 Discussion and conclusion

The simplest way to harness wind energy is to convert it to
electricity using a wind turbine and connect it to the power grid.
However, the stability of the supply is strongly affected by the
stochastic nature of the wind. To solve this challenge, it is necessary
to develop appropriatemodels to generate accurate forecasts of wind
speed and power. The use of wind power forecasting technology is
an effective tool to provide technical support for the safety, stability,
and economic operation of wind turbines. However, wind power
forecasting involves a certain degree of uncertainty due to the
instability of wind speeds and fluctuations in wind turbine output.
From a technical point of view, it is difficult to increase the precision
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of wind turbine power forecasts. However, existing technologies
can help better understand these uncertainties and improve power
system performance.

This study demonstrates the potential of advanced machine
learning methods in the wind energy industry. The complexity of
the industry’s systems is constantly increasing, and the methods
and algorithms to ensure their performance are becoming more
reliable due to the growing amount of data and variety of variables.
The study uses artificial neural networks to develop a model to
forecast the output of small wind turbines. The paper presents an
optimized output power simulation method and effective training
of MLP neural networks. The results of this study have significantly
improved the simulation and precision of power prediction. Neural
networks show utility in various applications and can be integrated
with other methods to optimize their performance with hybrid
systems. This article can be a valuable resource for those interested
in effective tools in the rapidly growing field of wind turbines.

Artificial neural networks, thanks to their strengths, make it
possible to make high-precision predictions, even though they are
based on general, often averaged data. They also stand out for their
high flexibility, both in terms of the data they rely on and the
information they can provide. In addition, its important feature is
the ability to quickly adapt the model to power plants with different
technical parameters. It is also worth noting that the accuracy of the
model is highly dependent on the quantity and quality of the input
data provided.

The created MLP network showed high quality in the learning,
testing, and validation processes, achieving results in the range of
0.96–0.97. In addition, a prediction error analysis was carried out to
compare the predicted values with the actual data. The MSE, RMSE
andMAPEmeasures confirmed that the accuracy of the predictions
obtained by the prediction models used is satisfactory. The neural
network model provides reliable predictions of the output power
generated by the wind turbine based on input parameters such as
wind speed, rotor speed, wind direction, and air temperature. Wind
speed was shown to be the variable that most influences the output
of wind turbine power.

The results of the analyzes indicate that the MLP model shows
good agreement between predictions and actual values, especially in
the range ofmoderate values of turbine power. Analyzing Figure 8, it
was observed that most points in the graphs are close to the baseline,
indicating that themodel is well adapted to the data used for training
and testing. However, there is potential to further optimize the
model by further tuning the parameters, using more training data,
or applying more advanced modeling techniques.

Sensitivity analysis has provided a better understanding of the
impact of various factors on the performance of a small wind
turbine. Information about the impact of weather conditions on
turbine efficiency can be used to optimize operating costs, such as
scheduling service and maintenance more precisely during periods
of lower expected output and developing contingency strategies
to minimize downtime and equipment damage. The results of the
analysis can also influence decisions on turbine design and wind
farm site selection, such as adapting turbine technology to specific
climatic conditions or investing in locations where higher efficiency
is anticipated. Furthermore, the results can point to directions
for further research and development of wind turbine technology,

which can lead to innovations that increase the efficiency and
reliability of energy systems.

One of the key factors affecting the effectiveness of forecasting
energy production by small wind turbines is geographic location and
the associated regional nature of wind conditions. This study used
data from a single turbine located in central Poland, meaning that
the model was fitted to a moderate and relatively stable wind profile
typical of the inland part of the country. Such a range of datamay not
be sufficient to directly generalize the results to other regions, where
wind characteristics can vary significantly. For example, coastal
regions are often characterized by higher average wind speeds and
a more predictable diurnal rhythm, while mountainous areas are
characterized by high variability and turbulent phenomena. These
variables can significantly affect the structure of the input data used
in the neural model. However, it should be emphasized that the
model proposed in the paper is universal in nature. The developed
algorithm can be adapted to other locations by re-training themodel
on area-specific data. As a result, the approach can be applied to
different climatic and geographic conditions, while maintaining the
same model structure and predictive methodology. This means that
despite the local nature of the source data, the methodology has the
potential to be generalized and can be effectively implemented in
other operational contexts for small wind turbines.

The accuracy of the prediction can be affected by many
additional dependencies, these include information on the wind
turbine’s environment, the unit’s operating status, recorded historical
data, and weather conditions. The performance of a prediction
model will vary from one wind turbine model to another to account
for the varying characteristics and layouts of the turbines.Therefore,
it is important to understand the factors that affect the prediction
error, which may be, for example, the accuracy of the input data, the
design of the wind turbine system, or the probability of component
failure. In addition, wind power is significantly characterized by
location dependence and distribution heterogeneity for different
locations.

The predictive model presented here uses operational data
including variables such as wind speed, wind direction, air
temperature and turbine speed. The model was developed based
on historical data from a specific period of the turbine’s operation,
without direct consideration of factors related to the turbine’s
aging or cyclic maintenance. In operational practice, wind turbines
are subject to gradual technical degradation resulting from,
among other things, wear of mechanical components, material
fatigue, contamination, or deterioration of blade aerodynamic
characteristics. Such changes can result in a gradual reduction in
the efficiency of converting wind energy into electricity. Moreover,
irregular maintenance or lack of maintenance can accelerate this
process and affect the variability of the turbine’s performance,
which in the long term translates into greater discrepancies between
projected and actual energy production. The lack of inclusion
of variables describing the age of the turbine, the number of
maintenance inspections performed, the history of faults or the
duration of uninterrupted operation limits the model’s ability to
capture long-term degradation trends.

The energy production predicted for a wind turbine using the
SSN model is in good agreement with the actual values. The results
obtained prove the effectiveness of usingMLP-type neural networks
for the task of forecasting the energy production of small wind
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turbines. The model can be useful for energy planners and wind
turbine owners in planning and implementing future activities.
Finally, it was concluded that the presented forecasting model
is suitable for wind energy forecasting. This study is innovative,
practical and has great potential, as the proposed model can also be
successfully applied to forecasting other renewable energy sources.

In the next stages of the study, the authors will focus on verifying
the energy efficiency of small wind turbines. It will be crucial to
verify the simulation models as closely as possible to real operating
conditions. This can contribute to improving forecasting accuracy
and optimizing SWT designs.
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