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The stability and economic dispatch efficiency of photovoltaic (PV) microgrids
is influenced by various internal and external factors, and they require a well-
designed optimization plan to enhance their operation and management. This
paper proposes a multi-objective coordinated control and optimization system
for PV microgrids. To address the challenges of slow convergence and local
optima in traditional PV microgrid scheduling methods, this study introduced
an improvedmultiple objective particle swarm optimization (IMOPSO) algorithm
that integrates an adaptive inertia weight adjustment strategy based on optimal
similarity and a multi-directional iterative Pareto solution archive update
mechanism. A tri-objective optimization model is formulated to minimize
operational costs, environmental pollution, and grid output fluctuation variance,
with decision-making supported by the Entropy Weight TOPSIS method. The
proposed algorithm is validated through a practical case study of a PV microgrid
located in Suzhou, China, and the results demonstrate that IMOPSO achieves
a 4.4% reduction in total operational costs under time-of-use pricing (from
50.73 USD to 48.49 USD) and a 4.6% reduction under fixed pricing (from
54.93 USD to 52.38 USD), alongside a maximum safety variance reduction
of 45% (from 22.16 to 12.15). The Pareto front distribution exhibits enhanced
diversity and uniformity compared to the original MOPSO. While single-
objective optimization yields lower costs in isolated scenarios (e.g., 28.50 USD
for economic cost minimization), it significantly compromises environmental
performance (20.44 USD) and grid stability (14.05 variance). In contrast, IMOPSO
ensures coordinated control and effectively balances economic efficiency,
environmental sustainability, and operational safety. This study provides a robust
framework for multi-objective coordinated control and microgrid scheduling,
advancing sustainable energy transition.

KEYWORDS

coordinated control, optimal scheduling, distributed energy sources, photovoltaic
microgrid, improved PSO algorithm, multiple objective functions

1 Introduction

The global energy crisis and escalating environmental concerns have propelled
renewable energy systems to the forefront of sustainable development strategies. This
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urgency has driven governments and industries worldwide to
accelerate the transition from fossil fuel dependency to decentralized
clean energy infrastructure. Among these, photovoltaic (PV)
microgrids have emerged as a promising solution for distributed
power generation due to their scalability and carbon-neutral
attributes. A PV microgrid typically comprises components such
as photovoltaic arrays, energy storage systems, load equipment,
controller and other ancillary devices (He et al., 2023). It functions
as an autonomous power system which is capable of self-
control and management, integrating complete functionalities of
power generation, distribution, and consumption. This enables
effective energy optimization within the grid and represents a
critical component of smart grid systems (Boscaino et al., 2024).
However, the variability in lighting conditions, coupled with the
inherent intermittency of photovoltaic power generation and
random fluctuations influenced by meteorological factors, pose
significant challenges to grid stability and economic dispatch
efficiency (Keisang et al., 2021). Therefore, a well-designed
optimization plan is essential to enhance the management and
operation of PV microgrids.

Extensive research efforts have been dedicated to optimizing PV
microgrid scheduling through advanced computational intelligence.
Various intelligent algorithms, ranging from evolutionary and
metaheuristic computation techniques like genetic algorithms
(GA) (Burhan et al., 2016; Raghavan et al., 2020; Shan et al., 2018;
Torkan et al., 2022), differential evolution (DE) (Hemmati et al.,
2014; Jiie et al., 2024; Qian et al., 2020; Ramli et al., 2018),
and particle swarm optimization (PSO) to machine learning
approaches such as deep reinforcement learning (Jiang et al.,
2023; Liang et al., 2024; Upadhyay et al., 2024), artificial neural
networks (ANN), and others (Keddouda et al., 2023; Indira et al.,
2024; Rezaeimozafar et al., 2024), have been developed to address
the complex multi-objective optimization challenges in microgrid
operation. For instance, Duong et al. (Phuc Duong et al., 2025)
employed the Black Kite algorithm, equilibrium optimizer and the
Secretary Bird Optimization algorithm to optimize the placement of
electric vehicle charging stations, wind turbine stations, photovoltaic
units and capacitor banks in the IEEE 69-node distribution power
grid, achieving the effects of reducing power loss in the grid and
enhancing voltage stability. Recently, multiple objective particle
swarm optimization (MOPSO) algorithm has shown promising
performance in balancing competing objectives, including
operational cost minimization, renewable energy utilization
maximization, and system reliability enhancement. Recent studies
highlight several advancements in this field (Borhanazad et al.,
2014; Aguilar et al., 2024). Gholami et al. (Gholami and Dehnavi,
2019) improved MOPSO to address optimal power sharing among
multiple power grids within the microgrid framework, such as wind
power, photovoltaic power, and combined heat and power plants.
This method optimizes and schedule sources in the microgrid with
the goal of minimizing costs while accounting for uncertainties.
Awad et al. (Awad et al., 2020) adopted the total solar power
generation of the photovoltaic system and the power generation of
each component as objective functions, using the inclination angle
and pitch spacing of photovoltaic components as constraints. They
employed the MOPSO method for optimization and verified the
reliability of the output results through an empirical example. Li et al.
(Multi-objective  Optimization  dispatching  of microgrid based on

improved particle swarm algorithm, 2021) constructed a multi-
objective optimal scheduling model for grid-connected microgrids,
considering operation cost and environmental protection cost as
objectives. The proposed model was solved using the MOPSO
algorithm, effectively reducing electricity costs and environmental
pollution, thereby promoting optimal microgrid operation.
Guo et al. (2025) proposed a three-objective scheduling strategy
for islanded microgrids based on an improved MOPSO algorithm.
By enhancing parameter adjustment strategies and introducing
adaptive and fuzzy identification methods, they achieved optimal
solutions. Compared to single-objective optimization, their method
reduces costs by 11.15% and improved satisfaction by 4.76%.
He et al. (2024) introduced a novelmetaheuristicMOPSO to address
complex multi-objective optimization challenges in microgrids.
Their approach avoids local Pareto frontier concentration through
a random selection strategy, expanding the selection range of
multiple objectives. Additionally, they established a comprehensive
multi-objective optimization dispatch model for microgrids,
considering operating costs and power fluctuations. Parvin et al.
(2023) conducted multi-objective optimization for microgrids
using MOPSO, with objective functions being the loss of power
supply probability and the cost of energy per unit. Results indicated
that high solar irradiation levels significantly reduce grid-provided
power load. Calculated scenarios showed energy costs of 0.266
USD, 0.235 USD, and 0.247 USD per unit, respectively, with
corresponding power outage interruption values of 0.285, 0.3218,
and 0.207. Qu and Ye (2023) considered daily operation costs,
carbon emissions, and primary energy consumption as optimization
goals. They proposed an improved weighted fuzzy method to
transform the multi-objective model into a single-objective one,
solvable by MOPSO. This method enhances comprehensive
coordination among multiple objectives and improves algorithm
robustness, optimizing device outputs.

Existing MOPSO frameworks have been successfully applied
to optimize energy storage coordination and demand response
strategies in hybrid microgrid configurations, demonstrating their
effectiveness in handling medium-scale optimization problems.
However, significant limitations remain when addressing the
high-dimensional optimization spaces characteristic of modern
microgrid systems, particularly those incorporating multiple
renewable energy sources, diverse load profiles, and complex
grid interconnection requirements. Specifically, the convergence
rate of the algorithm deteriorates markedly when dealing with
non-convex Pareto fronts in these complex scenarios, primarily
due to the increased computational complexity and solution
space dimensionality (He et al., 2024). Furthermore, premature
convergence to local optima persists as a critical challenge,
stemming from insufficient maintenance of population diversity
throughout the iterative optimization process, which ultimately
compromises the quality and comprehensiveness of the obtained
solutions.

Keeping in view these limitations, this study proposed an
improved MOPSO algorithm (IMOPSO) for multi-objective
coordinated control and optimization in PV microgrids integrating
an adaptive inertia weight adjustment strategy based on optimal
similarity and a multi-directional iterative Pareto solution archive
update mechanism. Therein, a tri-objective optimization model
is formulated to minimize operational costs, environmental
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pollution, and grid output fluctuation variance, with decision-
making supported by the TOPSIS method. The proposed algorithm
is validated through a practical case study of a photovoltaic
microgrid located in Suzhou, China under both time-of-use and
fixed electricity pricing models, and the results demonstrate its
effectiveness in terms of operational cost, environment friendliness
and grid output stability. Moreover, a comparison with single-
objective optimization strategy and original MOPSO with tri-
objective optimization shows that the proposed improved IMOPSO
algorithm ensures coordinated control and balances economic
efficiency, environmental sustainability, and operational safety more
effectively. This study can help in addressing optimal scheduling
challenges of PV microgrid leading to enhanced utilization of PV
energy, reduced operating cost, enhanced electric grid resilience,
reduced environmental footprint, and effective management.

2 Models

This section deals with modeling details of Improved MOPSO
algorithm (IMOPSO) and photovoltaic microgrid system.

2.1 Improved MOPSO algorithm (IMOPSO)

2.1.1 Improvement measures
The general MOPSO suffers from problems such as slow

convergence speed, random initialization and easy falling into
local optimum (Xingshen et al., 2021). To address these issues, this
paper proposes the following two improvement measures.

2.1.1.1 Adaptive adjustment of inertia weight
This paper adopts an adaptive adjustment strategy of inertia

weight based on the optimal similarity. The inertia weight value
is dynamically adjusted according to the similarity between the
current particle and the optimal particle. When the similarity value
is large, it indicates that the current particle is closer to the optimal
particle, and the inertia weight value is appropriately reduced; when
the optimal similarity exceeds the set value, the MC (Wu et al.,
2014) operation is introduced to enhance the local optimization
and local overflow ability of the particles; when the similarity value
is small, it shows that the current particle is far from the optimal
particle, and the inertia weight value is appropriately increased,
which can enhance the global search ability of the particles. Perform
dimensionless processing on the position of particles. Here, the
original matrix X = [X1, X2, X3.Xd] and the normalized matrix Y
= [Y1, Y2, Y3.Yd] are defined. The processing method is given in
Equation 1.

yij =
xij −min Xj

max Xj −min Xj
(1)

where d is population particle dimension, i is row number, j is
column number,yij represent the elements in matrix Y, xij represent
the elements in matrix X, and X j is column vectors of matrix X. The
dissimilarity between particles is given in Equation 2.

cosi =
Zi · gx′

|Zi| · |gx
′|

(2)

where cosi is the dissimilarity value between particle i and the
optimal particle, within [0, 1], the larger the value is, the higher the
similarity degree will be. Zi is row vectors of matrix Y, and gx’ is
normalized position vector of the global optimal particle.

According to the adaptive adjustment strategy of the inertia
weight, the variation curve is formulated as Equation 3.

Wi =
2(Wup −Wdown)

1+ e6(cosi−1)
+ (2Wdown −Wup) (3)

where W i is intertia weight of particle i, Wup is upper limit of
intertia weight value, 0.9, andWdown is lower limit of intertia weight
value, 0.4.

2.1.1.2 Pareto solution set update strategy
It includes adopting the dynamic update strategy of Pareto

solution set in multiple iterative directions, as shown in Figure 1, by
using the dimension box to determine whether the Pareto solution
set exceeds the scale. If it does, each time, randomly delete one of
the two particles with the smallest value in the vector group of the
minimum particle distance (marked in red), and adjust in this way
continuously until the Pareto solution set conforms to the scale.
Finally, the two particles with the largest values in the vector group
of the minimum particle distance and the two particles with the
largest values in the vector group of the maximum particle distance
(marked in yellow and green) are regarded as the optimal particles.

Before operating on this method, it is necessary to perform
dimensionless processing on the fitness of each particle, and define
and calculate the minimum particle distance vector group and the
maximum particle distance vector group as given in Equations 4–6.

f′ik =
fmax
k − fik

fmax
k − f

min
k

(4)

dmin
i =min√

m

∑
k=1
(( f′ik − f

′
jk)

2
) (5)

dmax
i =max√

m

∑
k=1
(( f′ik − f

′
jk)

2
) (6)

where m is size of the Pareto solution set, f ’ ik is scaled objective
function values, fk

max is absolute positive ideal solutions of the kth

objective function, fik is actual objective function values of particle i
at the kth dimension, fk

min is absolute negative ideal solutions of the
kth objective function, dimin is ith elements of the minimum particle
distance vector group, and di

max is ith elements of the maximum
particle distance vector group.

2.1.2 IMOPSO model workflow
The process of the improved MOPSO (IMOPSO) algorithm

is shown in Figure 2. From initializing the population to
convergence, it includes different steps dealing with pareto solution
set update, personal and global best position update, inertia weight
update and others.

2.1.3 Improved MOPSO (IMOPSO) performance
testing

This paper adopts the numerical experiments comparing the
distances between the solutions obtained by the improved MOPSO
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FIGURE 1
Pareto solution set update strategy diagram.

and the real Pareto front, as well as the distribution of non-
dominated solution sets on the Pareto front, as the evaluation
indicators for the algorithm performance. They are given in
Equations 7, 8.

C(P) =
(∑|P|

i=1
di)

|P|
(7)

di = min
1≤j≤|P|
√

m

∑
k=1
(

fk(Xi) − fk(Xj)

fmax
k − f

min
k

)
2

(8)

In Equations 7, 8, k is number of objective functions, fkmin is
minimum value of objective function, and fk

max is maximum value
of objective function.The smaller C(P) is, the better the convergence
property of the algorithm is.

The main metric for the uniformity of the solution set is to
measure the variance of the distances between adjacent target
vectors. According to the following model (Equations 9, 10),
the calculation is carried out.

SP = √ 1
|P| − 1

|P|

∑
i=1
(d− di)

2
(9)

di = min
1≤j≤|P|
{

m

∑
k=1
| fk(Xi) − fk(Xj)|} (10)

where d is average value of di, and m is the number of
functions. The smaller the value of SP, the better the uniformity
of the solution distribution and the higher the diversity of the
solution set.

The following standard test functions (ZDT-1, ZDT-2,
and ZDT-3) were selected to conduct algorithm performance tests
(Chase et al., 2025), and analyze the performance of Improved
MOPSO (IMOPSO) and MOPSO algorithms.

ZDT-1:

{{{{{{{{{{{{
{{{{{{{{{{{{
{

min f1(x1) = x1

min f2(x) = g(x)(1−√(
f1
g
))

g(x) = 1+ 9
m

∑
i=2

xi
m− 1

s.t. 0 ≤ xi ≤ 1, i = 1,2, ...,30

ZDT-2:

{{{{{{{{{{{
{{{{{{{{{{{
{

min f1(x1) = x1

min f2(x) = g(x)(1−(
f1
g
)

2
)

g(x) = 1+ 9
m

∑
i=2

xi
m− 1

s.t. 0 ≤ xi ≤ 1, i = 1,2, ...,30

ZDT-3:

{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{
{

min f1(x) = cos(
π
2
x1)cos(

π
2
x2)(1+ g(x))

min f2(x) = cos(
π
2
x1) sin(

π
2
x2)(1+ g(x))

min f3(x) = sin(
π
2
x1)(1+ g(x))

g(x) =
m

∑
i=3
(xi − 0.5)

2

s.t. 0 ≤ xi ≤ 1, i = 1,2, ...,12

The parameters are given in Table 1. Since this type of algorithm
is essentially iterative and has relatively high randomness; therefore,
in order to demonstrate the test accuracy, this paper records the
cumulative results of 20 tests. To show the convergence and stability
of the algorithm, the quantitative and qualitative comparison results
are given in Table 2; Figure 3 respectively.

The evaluation of the calculation results is conducted
from both qualitative and quantitative perspectives. The
performance parameters used are: (i) C representing the
distance from the estimated front to the real front found by
the algorithm, (ii) S indicating the uniformity of the algorithm’s
performance, and (iii) T denoting the time for the algorithm to
converge once.

The above comparison results show: (1) Enhancement of
convergence: In the ZDT-1 test, the mean value of C is decreased
from 0.0118 to 0.0010 for IMOPSO (Table 2), a reduction of two
orders of magnitude; in the ZDT-2 test, the mean value of C is
decreased from 0.2939 to 0.0018. The smaller the C value is, the
shorter the average distance between the solution set and the real
Pareto front is, indicating that the convergence of the algorithm
has been significantly improved, and (2) Avoiding local minima:
In the ZDT-1 test, IMOPSO achieved a significant improvement
in the mean value of S (from 0.0079 to 0.0013 in Table 2) and the
standard deviation also decreased significantly (from 8.93E-5 to
7.36E-5 in Table 2), indicating a better uniformity of the solution
set and higher population diversity, thereby reducing the risk of
local optima.

In Table 2, although the running time (T) of IMOPSO is
higher than that of MOPSO. This is because the improved
algorithm incorporates mechanisms such as matrix operations
to enhance the global search ability. Although it sacrifices some
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FIGURE 2
Improved MOPSO (IMOPSO) model workflow.

TABLE 1 Algorithm parameters setting.

Learning
factor

Inertia
weight

Iteration
number

Population Archival
scale

Cmin = 0.5
Cmax = 2.5

W =
0.4∼0.9

500 200 200

computational efficiency, it effectively avoids the problem of local
minima. Secondly, the lower C value and better solution set quality
indicate that this algorithm achieves better convergence effect

within a limited number of iterations (500 times). The improved
convergence characteristics directly reflect the enhancement of
algorithm efficiency.

2.1.4 Construction of the optimization objective
functions

The objective of optimizing scheduling is to achieve
comprehensive efficiency scheduling under the condition of
ensuring stable operation of the system and meeting the load
demand. In this paper, the active power output of distributed power
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TABLE 2 Quantitative Comparison at different testing functions.

Testing functions Parameters Numeric type MOPSO IMOPSO

1: ZDT-1

C
Mean 0.0118 0.0010

Standard Deviation 5.64E-5 4.34E-5

S
Mean 0.0079 0.0013

Standard Deviation 8.93E-5 7.36E-5

T Mean 80.572 225.364

2:ZDT-2

C
Mean 0.2939 0.0018

Standard Deviation 4.32E-4 3.68E-5

S
Mean 0.0091 0.0089

Standard Deviation 5.36E-5 3.75E-5

T Mean 35.072 36.222

3:ZDT-3

C
Mean 0.0602 0.0521

Standard Deviation 4.37E-3 2.34E-3

S
Mean 0.1248 0.0837

Standard Deviation 6.68E-3 3.64E-3

T Mean 21.4063 33.7656

FIGURE 3
Qualitative comparison chart (Left) ZDT-1, (Center) ZDT-2, (Right) ZDT-3.

sources is taken as the optimization variable, and the optimization
objective based on the economic cost, environmental friendliness
and safety of the system operation is established and the target
model is solved.

2.1.4.1 Objective function-I economic cost: minimizing
the operating cost of the microgrid

The general operating costs of a microgrid system include:
operating costs of micro-power sources, bidirectional power
exchange cost of the grid, load compensation cost. This paper
combines the photovoltaic microgrid system. Since this power
station is established based on existing conditions, this paper does

not consider the initial construction cost of system devices for the
time being, only considering maintenance cost, depreciation cost
and grid exchange cost. The operating cost objective function is
established, given in Equation 11.

minN =∑T
t=1
(∑N

i=1
(KOM(i)Pi(t) +

Ci

8760Ki
·
di(1+ di)

ri

(1+ di)
ri − 1
· Pi(t)) + aCgrid(t))

(11)

where T is the scheduling period, N is the number of types of
distributed power sources, KOM(i) is the maintenance coefficient
of distributed power source i, Pi(t) is the active power output
at time t, Ci is the unit capacity installation cost, K i is capacity
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factor, 8700K i is annual power generation, di is annual depreciation
rate, and ri is depreciation period. Then, overall cost for grid
is given in Equation 12.

Cgrid(t) = Cbuy(t)Pbuy(t) −Csell(t)Psell(t) (12)

where Cbuy(t) and Csell(t) represent the purchase and sale prices of
electricity from the power grid by the system in the tth period.
Pbuy(t) andPsell(t) are the power exchanged between the photovoltaic
microgrid and the power grid. a is the operating mode coefficient.
when a= 1, it is the grid-connected state, and electricity is purchased
from the grid at this time;when a=−1, electricity is sold to the grid at
this point; when a = 0, it is the off-grid state, and no power exchange
occurs between the two.

2.1.4.2 Objective function-II environmental friendliness:
minimize the cost of pollutant generation by the
microgrid

Photovoltaic power generation belongs to clean energy.
However, during its operation, it still emits certain pollutants.
Therefore, this paper takes into account the pollution control costs
generated during the operation of photovoltaic power generation,
batteries and the power grid. The main pollutants are CO, CO2, SO2
and NOx. The function expression considering environmental costs
is given in Equation 13.

minC =∑T
t=1
[∑K

k=1
10−3Ck(∑

N
i=1

ri,kPi(t) + rgrid,kPsell(t))] (13)

where C is the total environmental cost over the T period, Ck is the
cost required for controlling each kilogram of k-type pollutants, K
is pollutant category, ri,k is mass of pollutants k produced per unit
of active power, rgrid,k is mass of pollutants k generated by the large
grid when it transmits unit electricity to the photovoltaic microgrid
in the grid-connected mode.

2.1.4.3 Objective function-III safety of the system
operation: minimizing the variance of output fluctuation
of microgrid

Formicrogrids, since both photovoltaic power sources and loads
in the system are predictive in nature, therewill be fluctuation errors.
These errors will have certain impacts on the microgrid’s grid-
connected operation andmay cause certain degrees of impact on the
power grid. Usually, certain energy storage devices are configured
in the system as backups. Therefore, it is necessary to consider
from the perspective of safety and stability and define the safety
formula, given in Equation 14.

minS = 1
T
∑T

t=1
(|Pgrid(t)| − Pgrid)

2 (14)

where S represents the safety variance, and Pgrid is the average
value of the power output of the grid within one T-cycle in the
grid-connected mode.

2.1.5 Operating constraints
Due to the limitations imposed by the physical factors such as

the structure andworking characteristics of themicrogrid system, its
operation must comply with the requirements of the actual working
range. Therefore, for the microgrid system, system constraints must
be established.The following is the analysis of the system constraints
for the photovoltaic microgrid system in this paper. Each constraint
condition is based on the actual photovoltaic power station.

(1) Balance power constraint is given in Equation 15.

Pmin
i ≤ Pi(t) ≤ P

max
i (15)

where Pi
min and Pi

max represent theminimum andmaximum values
of the active power output of distributed power sources respectively.
The power balancing provides Equation 16.

aPgrid(t) + Ppv(t) = Pchu(t) + PL(t) (16)

where a = ±1, it is the grid-connected power balance; when a = 0, it
is the off-grid power balance. Among them, Pchu(t) is the power of
energy storage charging and discharging, Ppv(t) is the active power
output of photovoltaic, and PL(t) is the load power.

(2) Constraints on charging and discharging power of energy
storage batteries and constraints on capacity and state-of-
charge (SOC) of batteries, as given in Equation 17.

Pmin
bat ≤ Pchu(t) ≤ P

max
bat (17)

where Pbat
min、Pbat

max are upper and lower limits for charging and
discharging of the battery respectively, Pchu(t) represents the
charging and discharging power during the t period.

During charging, it can be written as in Equation 18.
Echu(t) = Echu(t− 1) + Pchu(t)ΔTnd,Pchu(t) > 0 (18)

During discharging, it can be written as in Equations 19 and 20.
Echu(t) = Echu(t− 1) + Pchu(t)ΔT/nc,Pchu(t) ≤ 0 (19)

ErongSOCmin ≤ Echu(t) ≤ ErongSOCmax (20)

where Erong represents the rated capacity of the battery, and
SOCmin and SOCmax represent the lower and upper limits of SOC
respectively. Echu(t) is the battery capacity at time t, and Echu(t-1) is
the battery capacity at time t-1, that is, the previous time. If the start
and end of the energy storage capacity within a scheduling period
are equal, then, it provides Equation 21.

Echu(0) = Echu(T) (21)

(3) Power exchange constraint

When a microgrid operates in parallel with the grid, it conducts
power exchange. During this process, it is subject to the power
constraints of the tie lines themselves. It is given in Equation 22.

Pmin
grid ≤ Pgrid(t) ≤ P

max
grid (22)

where Pgrid
min, and Pgrid

max represent the minimum andmaximum values
of the exchanged power respectively.

(4) Slope power constraint

To ensure the smooth operation of the system, it is necessary to
limit the variation range of the output power of distributed power
sources in the system. It is given in Equation 23.

|Pi(t) − Pi(t− 1)| ≤ r (23)

where r represents the constant of the limit value for the variation
amplitude.
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FIGURE 4
PV microgrid system.

2.2 Photovoltaic microgrid system model
with IMOPSO

The composition of the PV microgrid system is shown
in the Figure 4. Based on the aforementioned multi-objective
optimization scheduling function, constraints, operation strategies
and algorithms, the optimization scheduling model of the
photovoltaic microgrid is established as shown in the Figure 4
and workflow of the IMOPSO algorithm for this PV microgrid
is shown in Figure 5.

2.3 Entropy Weight TOPSIS
decision-making framework

This method is actually the result of combining the Entropy
Weight Method and the TOPSIS Method. The Entropy Weight
Method is used for objectively weighting the indicators, and
when the degree of change of a certain object in the tested
system is greater, the amount of information contained behind
it is also greater, and accordingly, a greater weight is assigned.
The TOPSIS Method is used to quantify the comprehensive
scores of each object to be evaluated. The principle is to
determine the optimal solution and the worst solution among
the indicators of each object to be evaluated, and calculate the
Euclidean distance between each object and the optimal solution,

thereby obtaining the relative proximity degree of each object and
sorting them. The introduction of the Entropy Weight Method
compensates for the limitations of the TOPSISMethod that it cannot
highlight important indicators, and can enhance the scientific
nature of the evaluation results (Zhihu, 2025). The analysis steps
are given in Figure 6.

In this study, the selection of the optimal output scheme
for the microgrid is a multi-level decision-making problem. The
method of determining weights based on information entropy
is relatively objective and appropriate. The calculation model
is as follows:

Firstly, the fitness of each particle is normalized to eliminate the
influence of different scales, as given in Equation 24.

f′ik =
fmax
k − fik

fmax
k − f

min
k

(24)

Secondly, the weights of each indicator are determined, as given
in Equations 25–27.

λk =
1−Ek

n−∑n
i=1

Ek
(25)

Ek = −
1

ln(n)
(∑n

i=1
Pij · ln(Pij)) (26)

Pik =
f′ik
∑n

i=1
f′ik

(27)

where EK is information entropy, and λK is attribute weight.
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FIGURE 5
Workflow of the IMOPSO algorithm for PV microgrid.

Then, the distance scale and the degree of fit are calculated, as
given in Equations 28–30.

Si
+ = √

m

∑
k=1
(λk f
′
ik − λk f

′
k+)

2 (28)

Si
− = √

m

∑
k=1
(λk f
′
ik − λk f

′
k−)

2 (29)

Ci =
Si
−

Si
+ − Si−

(30)

where Si
+ and Si

− represent the expected distance values of the
particles, and Ci is the degree of fit. The larger the value is, the better
it is, indicating the optimal output scheme of the current microgrid
optimization scheduling.

The relative closeness degree Ci of each evaluation index
object to the optimal object is calculated according to the above
formula. They are sorted based on the relative closeness degree.
According to the principle of TOPSIS method, the larger the
relative closeness degree is, the closer the object is to the optimal
solution.

3 Case illustration

The proposed IMOPSO algorithm is tested on data
obtained from a PV micro-grid power station. This station
is located in a science and technology park in Suzhou,
Jiangsu Province. Through the mixed power supply of grid
electricity, photovoltaic power and energy storage, it achieves
peak shaving and valley filling, and optimizes the control of
the power load in the park. The first phase of this project
is designed with a photovoltaic installed capacity of 100 kW,
an outdoor container energy storage capacity of 200 kW, and
the installation of AC and DC charging piles. The system can
switch between grid-connected and off-grid operation modes,
and can also realize functions such as system emergency and
peak shaving. The details of the system and data used are given
subsequently.

(1) Load operation status: The typical daily load data graph of this
power station is shown in Figure 7.

(2) PV power generation: The typical daily photovoltaic
power generation of this power station is shown in
Figure 8.
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FIGURE 6
Entropy weight TOPSIS method analysis Route Map.

FIGURE 7
24 h load curve during a typical day.

(3) Electricity prices: The photovoltaic micro-grid can purchase
and sell electricity from the grid. According to the load demand
and the demand for time-of-use electricity prices, the whole
day is divided into three periods: off-peak, peak and flat. The
specific information is shown in Table 3.

(4) Parameters: The parameters related to distributed power
sources, limit values, and emission coefficients are given in
Table 4–6 respectively.

4 Results and discussion

The simulation and analysis of power station optimal
dispatching are carried out using MATLAB-Simulink. In this paper,
the simulation of optimal output of the system under the grid-
connected mode and the solution of the optimal dispatching
function are conducted for time-of-use and fixed electricity prices.
Moreover, a comparison between multi-objective optimization and
single-objective optimization is also carried out for both prices.
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FIGURE 8
Daily active power output of photovoltaic system.

TABLE 3 Electricity Prices (ToU and fixed).

Options Time-of-use electricity price (USD/kWh) Fixed electricity price (USD/kWh)

Off-peak hours Normal business hours Peak hours

Purchase of electricity 0.023 0.067 0.11
0.073

Sale of electricity 0.018 0.052 0.089

Note: Normal business hours: 7:00–10:00, 15:00–18:00; Peak hours: 23:00–24:00, 0:00–7:00; Off-peak hours: 10:00–15:00, 18:00–23:00.

TABLE 4 Parameters related to distributed power sources.

Category Rated power (/kW) Service life (years) Maintenance coefficient (USD/kWh) Capacity factor (%)

PV 100 20 0.0013 29.34

BT 200 10 0.0062 32.67

TABLE 5 Limit values for active power of micro-power sources.

Category Power up limit (kW) Power down limit
(kW)

PV 100 0

BT 50 −50

Grid 150 −150

4.1 System optimal dispatching
considering time-of-use (ToU) electricity
prices

The optimal outputs of the multi-objective system
considering time-of-use (ToU) electricity prices of the
original MOPSO algorithm and improved MOPSO algorithm
(IMOPSO) are shown in Figure 9 respectively. The IMOPSO

algorithm significantly reduces output fluctuations in the
PV and battery systems compared to the original algorithm.
Specifically, the modified algorithm achieves smoother
transitions between charging and discharging phases of the
battery, particularly during peak and off-peak electricity
price periods.

The Pareto front in Figure 10 illustrates the trade-offs between
three objective functions i.e., operational cost, environmental cost,
and system safety. For instance, Figure 10 (Objective function-1
to minimize operational cost) shows aggressive battery utilization
during low-price periods, leading to reduced grid dependency.
However, this strategy increases environmental costs (20.44 USD
vs. 6.12 USD in Objective function-II shown in Table 7) due to
frequent battery cycling, which indirectly raises lifecycle emissions.
In Figure 10 (Objective function-II to minimize the cost of
pollutant) and Figure 10 (Objective function-III to minimize the
variance of output fluctuation), the grid dependency increases.

In Table 7, the operation costs, environmental protection costs
and variance of systemoutput fluctuation for photovoltaicmicrogrid
under different objective functions are presented. From the table,
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TABLE 6 Emission coefficients of pollutants and treatment costs.

Type of pollutant Pollutant coefficient (g/kWh) Administrative expenses (USD/KG)

PV Energy storage Grid

NOx 0.62 4.33 3.6 8.99

CO2 185.32 231.23 23.0 0.029

CO 0.18 2.65 0.5 1.42

SO2 0.09 0.48 4.54 2.04

FIGURE 9
Comparison of Optimization Results for original and improved MOPSO algorithms (ToU price case) (Top) Original MOPSO algorithm, (Bottom)
Improved MOPSO (IMOPSO) algorithm.
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FIGURE 10
Optimal outputs of system for 3 objective functions (ToU price case)
(Left) objective function-I, (Center) objective function-II, (Right)
objective function-III.

it can be seen that the microgrid optimal scheduling under
multi-objective constraints has a total cost of 50.73 USD for
original MOPSO algorithm (before improvement) and 48.49 USD
for IMOPSO (after improvement). Moreover, the grid connection
security is also higher after improvement, indicating that the
improved multi-objective optimization has algorithmic advantages
and proves that the improvement is effective. In the scenario based
on single-objective optimization, the total cost is actually less than

that of multi-objective optimization i.e., the results under multi-
objective constraints are not as good as in case of single-objective
optimization for some target values. However, when compared
comprehensively, multi-objective constraints are more in line with
the actual needs and are more objective.

4.2 System optimal dispatching under fixed
electricity prices

The optimal outputs of the multi-objective system considering
fixed electricity prices of the original MOPSO algorithm and
improved MOPSO algorithm (IMOPSO) are shown in Figure 11
respectively. The IMOPSO algorithm demonstrates enhanced
stability in grid power exchange.

The optimal solutions in Figure 12 illustrates the trade-
offs between three objective functions i.e., operational cost,
environmental cost, and system safety for fixed electricity price case.

The optimization results for fixed price case are
summarized in Table 8. It shows that under Objective 3 (minimizing
grid fluctuation), the safety variance decreases from 14.64 (single-
objective) to 12.15 (improved multi-objective), indicating a 17%
improvement in system stability. However, this comes at the expense
of higher operational costs (50.95USD vs. 37.25USD), as the battery
compensates for grid variability through frequent bidirectional
energy exchange.

It can also be seen from the table that before the improvement of
the microgrid optimal scheduling algorithm under multi-objective
constraints, the total cost was 54.93USD, and after the improvement,
it was 52.38USD.Moreover, the grid connection security was higher,
indicating that the improvedmulti-objective optimization algorithm
has an algorithmic advantage and proves that the improvement
is effective. However, in the scenario based on single-objective
optimization, the total cost is actually less than that of multi-
objective optimization. Butwhen compared comprehensively,multi-
objective constraints are more in line with the actual needs and are
more objective.

4.3 Comparative analysis of both pricing
cases

Under the conditions of fixed electricity price and time-of-use
electricity price, the comparative analysis of the system output under
grid connection conditions can be summarized as:

(1) With the optimization objective function-I (considering the
minimum system operation cost): During the photovoltaic
power generation stage, the battery in the system continuously
charges. When there is no photovoltaic power generation, it
continuously discharges to maintain normal power supply for
the night load, and the grid output is relatively smooth. This
indicates that thebatteryhasplayeda significant role inoffsetting
the purchase cost, but it also caused the battery output burden.

(2) With the optimization objective function-II (considering
environment friendliness of the system operation i.e., low
environmental cost): It can be clearly seen in the system that
in order to reduce the battery output, the grid output is larger.
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TABLE 7 Summary of optimization results for three objective functions (ToU price case).

Functions Operating cost (USD) Environmental protection
cost (USD)

System safety (variance of
output fluctuation)

Objective function-I 28.50 20.44 14.05

Objective function-II 45.35 6.12 25.24

Objective function-III 46.49 21.75 10.03

Original MOPSO (Multi-objective) 34.19 16.54 10.70

Improved MOPSO (Multi-objective) 32.88 15.61 8.56

FIGURE 11
Comparison of Optimization Results for original and improved MOPSO algorithms (fixed price case) (Top) Original MOPSO (Bottom) Improved IMOPSO.
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FIGURE 12
Optimal outputs of the system for three objective functions (fixed price case) (Left) objective function-I, (Center) objective function-II, (Right) objective
function-III.

Because the pollution degree of the grid itself is much lower
than that of the battery. But this also led to large fluctuations in
grid output and reduced system safety.

(3) With the optimization objective function-III (considering the
minimum impact of grid fluctuations during grid connection):
In order to reduce the grid output fluctuations, the battery
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TABLE 8 Summary of optimization results for three objective functions (fixed price case).

Functions Operating cost (USD) Environmental protection
cost (USD)

System safety (variance of
output fluctuation)

Objective function-I 34.50 18.53 24.31

Objective function-II 42.42 11.56 22.46

Objective function-III 50.95 16.23 14.64

Original MOPSO (Multi-objective) 37.25 15.13 22.16

Improved MOPSO (Multi-objective) 36.87 18.06 12.15

charges and discharges to the greatest extent during the
day and night, so as to maintain the load operation. But
this also led to an increase in system operation cost and
environmental cost.

(4) Under the condition of comprehensive multi-objective
optimization (considering the optimization of all objective
functions): In order to balance the multi-objective
optimization purpose, it can be seen that both the
battery and the grid in the system show low-amplitude
fluctuations. Through continuous bidirectional power
exchange with the grid, the load is maintained in normal
operation.

5 Conclusion

This study proposes an improvedmulti-objective particle swarm
optimization (IMOPSO) algorithm for coordinated control and
optimizing photovoltaic microgrid dispatch under grid-connected
mode. The proposed IMOPSO algorithm is based on the inertia
weight adaptive adjustment method of optimal similarity degree
and the Pareto solution archive update strategy of multi-directional
iteration. It is also tested on a practical case that shows its
coordinated control and effectiveness in terms of minimizing
operational cost, environment friendliness and reducing variance
of output fluctuation. The following conclusions are drawn from
this study.

(1) The integration of adaptive inertia weight and dynamic
Pareto solution updating significantly improves convergence
speed and solution diversity. Experimental results
confirm a 3.8%–4.2% reduction in total costs and a
17%–24% improvement in safety metrics compared to the
original MOPSO.

(2) While single-objective optimization achieves lower costs in
isolated scenarios, the improved multi-objective framework
better aligns with real-world requirements by balancing
cost, environmental impact, and grid stability. For instance,
safety variance decreases by 20% under fixed pricing without
substantial cost escalation.

(3) The proposed model enables effective “peak shaving and
valley filling” through coordinated battery-grid interactions,
reducing dependance on fossil-fuel-based grid power during

peak periods. This strategy supports sustainable energy
transitions while maintaining economic viability.

5.1 Limitations and future work

Thecurrent system used for testing is amedium-sizedmicrogrid
system. The installed capacity of photovoltaic power generation
is only 100 kW, and the energy storage capacity is 200 kW. This
microgrid system is relatively simple in its overall structure and
is mainly used for experimental testing purposes. It cannot fully
reflect the complexity and diversity of modern power systems.
During the experimental process, safety and the convenience
of management are the primary important considerations. But,
the application to large-scale microgrid system with thousands
of variables is very important. After building a next-generation
digital twin platform for microgrids in the future, we will
further conduct real-time simulation and hardware testing to
comprehensively explore the feasibility and scalability of this
algorithm.

This study assumes the ideal weather conditions for photovoltaic
output. In subsequent research, random factors of renewable
energy generation and demand uncertainty should be included
to enhance the practicability of the model from the perspectives
of multi-energy synergy, multi-dimensional optimization, and
demand-side randomness. In addition, real-time hardware-in-the-
loop verification should be expanded to enhance the robustness of
the algorithm.
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