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On the outer boundary
conditions for the fluid dynamics
simulation of vertical-axis
turbines

David H. Wood* and Narges Golmirzaee

Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB, Canada

Many computational fluid dynamics simulations of isolated vertical-axis turbines
use a 2D, rectangular computational domain and slip or symmetry boundary
conditions (BCs) along the domain’s lateral outer boundaries or side walls. These
BCs prevent any flux of mass and momentum across the side walls and so can
cause the velocity at the domain inlet to be less than the freestream velocity at
infinity. With further simplification that the flow is steady, an equation for the
difference between these velocities is derived from the impulse form of the
axial momentum equation for a control volume that coincides with the outer
boundaries. The difference depends on the turbine thrust and the distance to
the side walls. Corrections are derived for the power and thrust coefficients for
isolated turbines and estimates provided for the domain size needed to reduce
the correction to a specified level. Whenmultiple turbines are arranged normally
to the flow in close proximity, symmetry or periodic BCs are appropriate, but
the difference between the inlet and freestream velocity can be large enough
to invalidate recent claims that proximity increases the power output. We argue
that both isolated and multiple turbine simulations should use BCs that include
a point vortex for consistency with the turbine side force and a point source for
consistencywith the thrust. Nevertheless, it is not possible to ensure consistency
with the moment equation for the control volume, and this may affect the
accuracy of the calculated power output.
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1 Introduction

Computational fluid dynamics (CFD) has become an essential tool for the study of
vertical-axis turbines (VATs) for wind and water energy extraction. We consider only
URANS simulations for an incompressible flow which is approximately steady if the
number of blades, Nb, is large. Achieving accurate CFD results requires careful choices
of the numerical method, turbulence model, and domain size, paying attention to mesh
generation, and establishing grid and time-step independence, (Balduzzi et al., 2016a,
Balduzzi et al., 2016b, Rezaeiha et al., 2018, Rezaeiha et al., 2019, Bangga et al., 2020).These
andmany other studies assume two-dimensional (2D) flow as this lowers the computational
cost, and they use a computational domain (CD), the rectangular outer boundaries of
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FIGURE 1
Control volume coinciding with the 2D rectangular computational domain for many vertical-axis turbine simulations. The flow is left to right, and the
turbine of diameter D is centered at the origin for x and y. The inlet (I) is distance AID from the turbine, and the top, T, and bottom boundary, B, are
distance SD/2. AI, the distance to the outlet, O, is not analysed here but is assumed to be large. All vorticity leaves the CV through O.

which are shown in Figure 1. A user-specified uniform velocity, UI,
crosses the inlet, I, located at distance AI multiplied by the turbine
diameter D from the turbine at the origin of the Cartesian co-
ordinates. The top, T, and bottom, B, outer boundaries or side walls
are placed at±SD/2 from the x−axis, and it is assumed in the analysis
below that all the vorticity leaves the CD through the outlet O.
AOD, the distance between the turbine and O, is also an important
parameter but is not studied here. AO is assumed to be sufficiently
large for the Neumann boundary condition (BC) to apply to the
velocity components; typically, AO ≫ AI. Furthermore, Figure 1
does not show the rotating subdomain containing the blades that
must be embedded in the outer stationary domain.

Many studies of isolated VATs, such as Balduzzi et al. (2016b),
Balduzzi et al. (2016a), Rezaeiha et al. (2018), and Rezaeiha et al.
(2019), and Tigabu et al. (2022) co-authored by the present first
author, have used symmetric boundary conditions (SBCs) on T and
B. These, in effect, turn the problem of an isolated VAT into one of
an infinite cascade of alternatively counter-rotating, mirror-image
VATs spaced SD apart along the y−axis. It is important, therefore, to
establish appropriate values of S and AI that guarantee a negligible
interaction between the turbines.

Some isolatedVAT simulations have used a “slip” BC alongT and
B (e.g., Bangga et al., 2020; Lam and Peng, 2016). Since slip BCs like
SBCs are “laterally-constrained,” thus preventing any flux of mass
or momentum across T and B, the following analysis applies also
to slip BCs.

In contrast, the interaction between a finite number, Nt, of
turbines placed normal to the flow may be desired as a possible
way of increasing the power extraction (Sun et al., 2021; Jiang et al.,
2024). These studies use smaller values of S than for “isolated”
turbines with either SBCs if the turbines are counter-rotating or

periodic BCs if they are co-rotating. Since the direction of the thrust
is independent of the direction of rotation, the following analysis of
SBCs also applies to periodic BCs. These laterally constrained BCs
are appropriate for turbines in close proximity, but the interpretation
of the results needs to be careful. It is often concluded that proximate
VATs produce a higher power coefficient than isolated ones. We
challenge this conclusion by demonstrating that the increase is more
likely to be due to blockage caused by the BCs. Increases in power for
interacting horizontal-axis turbines have also been claimed but also
discounted for similar reasons to those developed here (Bleeg and
Montavon, 2022). The present 2D geometry is simpler than the flow
models for horizontal-axis turbines and yields specific equations for
blockage effects.

Our study of four sets of BCs for (isolated) airfoil simulations
at low incidence, and hence low drag, found a relation between
the error in the drag and the lift and domain size for slip BCs
(Golmirzaee and Wood, 2024). This was obtained from a curve fit
to the numerical results for a wide range of domain sizes and slip
BCs because no analytical expression for the error could be found.
The most accurate BCs involved a point vortex to represent the
airfoil lift, which corresponds to the side force on a turbine, whose
necessity follows from the Kutta–Joukowsky equation (Thomas and
Salas, 1986; Destarac, 2011). This makes the point vortex BC
consistent with the equation for lift or side force; all other BCs tested
were not. By “consistent with,” we mean that as the CV increases in
size and the vorticity distribution around the airfoil surface shrinks
to a point vortex, the BC should becomemore accurate, even though
the velocity components are not prescribed for O.

We found, nevertheless, that the lift and drag coefficients
obtained from any domain size were made more accurate by using
the point vortex BC. This included domain sizes smaller than those
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used in current CFD practice, which are typically 30 times the
chord. We did not, however, investigate the errors in the equation
for the moment which becomes critical when moving from airfoils
to VATs. Golmirzaee and Wood (2025) extended the airfoil study
to high incidence by making the BCs also consistent with the drag,
which is now significant. This is achieved by adding a point source
BC to satisfy the relation between drag or thrust and source that
was derived for incompressible flow by Lagally (1922) and Filon
(1926). A point-vortex and point-source BC (PVSBC) was used by
Kelmanson (1987) for low-Re studies of flowover a circular cylinder.
Dannenhoffer (1987) applied it to the drag associated with shock
waves in compressible flow. Allmaras et al. (2005) considered PS
and PV components to their BCs for incompressible airfoil flow at
a low α = 12° where the drag is small. The PVSBC was the most
accurate of all those we studied, in that it gives results for any domain
size closer to those for an infinite domain than, say, slip and SBCs.
Golmirzaee and Wood (2025) showed that the impulse form of the
moment equation contains boundary integrals of the velocity, as
in the lift equation, and an outlet integral involving the vorticity,
as in the drag equation. That integral diverges logarithmically with
distance from the airfoil, whereas the boundary integrals sum to
zero for any distance and any location of the point source and
vortex. It seems, therefore, that it ismore difficult to devise boundary
conditions that are consistent with the moment equation. Some of
the consequences of this for VATs are discussed in Section 4. The
airfoil simulations also showed that every BC gave accurate results
for very large domains, and the errors caused by inconsistent BCs
are generally impossible to quantify analytically.

The purpose of this study is to analyse some effects of slip,
symmetry, and periodic BCs for isolated and proximate VAT
simulation. For isolated turbines and airfoils, errors associated with
BCs can be reduced simply by increasing the domain size. However,
to our knowledge there is no available analysis that specifies the size
necessary to achieve a prescribed accuracy. We show in the next
section that current CFD practice for isolated VATs uses domain
sizes that may not be sufficiently large for laterally constrained BCs
to have negligible impact. For VATs in close proximity, laterally
constrainedBCs are appropriate, but our analysis shows that the inlet
user-specified inlet velocity then becomes less than the freestream
velocity, so the power and thrust coefficients are over-estimated.

The aim is to improve CFD accuracy and reduce computational
cost by minimizing the required S and AI for isolated turbine
simulation. For constrained turbines where S is fixed and laterally
constrained BCs are appropriate, we provide corrections to the
power and thrust coefficients and derive an equation for the
minimum value of AI to achieve a specified accuracy. Using the
impulse form of the thrust equation for a control volume (CV) that
coincides with the outer boundaries, we derive in the next section
the appropriate form of the Lagally–Filon equation for the source
strength in steady flow as a function of the thrust, T, as a special
case of the derivation byGolmirzaee andWood (2025).This, in turn,
provides for the first time an analytical expression of the effects of
BCs on the power and thrust coefficients. Depending on the value
of S, any non-zero T makes UI smaller than the freestream velocity
U∞, and the difference can lead to significant over-estimation of
the power and thrust coefficients. We then derive the minimum AI
required to achieve accurate simulations for any S and thrust, T.

The problem under study is the 2D incompressible flow over a
VAT for which

• the CD shown in Figure 1 coincides with the CV;
• the flow is steady, which in practice requires the number of
blades,Nb, to be large enough for any cyclic variations in thrust
and torque to be negligible;
• UI, the user-specified inlet axial velocity, is constant over I;
• the top, T, and bottom, B, BCs are slip, symmetric, or periodic;
• all the vorticity, Ω, exits through outlet O only;
• AO is sufficiently large for the Neumann BC of zero normal
gradient to be applicable for all velocities.

As with all CV analyses, the details of the turbine are not
important. It is important, however, that an impulse analysis does
not involve pressure, the absence of which is particularly useful
in dealing with the thrust and moment. Pressure BCs are not
under study.

There are several reasons to restrict the present study to 2D.The
first two are as follows:

• the analysis of BCs is easier in 2D as the computational
domain has only four outer sides rather than six faces in three
dimensions;
• as noted above, many CFD analyses of VATs use a 2D domain.

The restriction to steady flow, which in practice requires a large
blade count, is done for similar reasons. The unsteady impulse
equations in 2D contain the time-derivative of an integral over the
flow domain as well as a time-derivative of an integral over the body
surface—see Equations (3.55) and (3.56) of Noca (1997). None of
the studies we reviewed provided sufficient information about the
flow field at each time step to evaluate these extra terms. In 3D, these
unsteady integrals become volume integrals and are even harder
to handle. The final reason to analyze 2D steady flow is to provide
the first step in a comprehensive study of the effects of laterally
constrained boundary conditions (BCs) on the computational fluid
dynamics (CFD) analysis of vertical-axis turbines.We plan to extend
the study to 2D unsteady flows followed by 3D unsteady flows but
anticipate that these studies will require detailed results at each time
step over the full domain.

The remainder of this study is organized as follows. The next
section repeats the analysis of Golmirzaee and Wood (2025) to
derive the relationship between UI and U∞ for VATs from a CV
analysis of the thrust when the BCs prevent any flux of mass and
momentum across the side walls. This gives corrections for VAT
thrust and power. Section 3 applies the analysis and corrections to
simulations of isolated and proximate VATs and derives lower limits
on domain size for the former to guarantee a specified accuracy
in the power and thrust. The common claim that stacking VATs
normal to the flow in close proximity increases their power output
is then disputed on the grounds that assuming UI = U∞ causes the
power coefficient to be overestimated when the thrust results inUI <
U∞. Section 4 discusses the CV equation for the moment and shows
that BCs that are consistent with the thrust and side force equations
by including a point source and vortex are still inconsistent with the
moment equation. The significance of this inconsistency for VAT
simulations is unknown. The final section provides a summary and
lists the conclusions.
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2 Boundary conditions and the thrust
equation

The impulse form of the momentum equations for a body such
as a turbine in steady flow is given by Golmirzaee andWood (2024),
who started with the fundamental equations (3.55) and (3.56) of
Noca (1997). Equation 16 of Golmirzaee andWood (2024) gives the
airfoil drag derived using a square CV of sides 2A centered on the
body. If there is no normal velocity, V, in the incoming flow, the
equation is easily modified to give T for the CV in Figure 1 when
slip, symmetry, or periodicity make the contributions from T and B
sum to zero:

T
ρ
= ∫

I
(U∞u+

1
2
u2 − 1

2
v2)dy−∫

O
[U∞u+

1
2
u2 − 1

2
v2 + y(U∞ + u)Ω]dy,

(1)

whereΩ is the vorticity, which replaces the pressure appearing in the
conventional CV equation for thrust. u and v are the perturbation
velocities—that is, the departures from U∞ and zero, respectively.
We decompose the first as u = us + uv where the subscript s denotes
the irrotational “source” contribution for reasons that will soon
become apparent, and v indicates the velocity due to the vorticity in
the turbine wake. uv is non-zero (and generally negative) only in the
wake at O, which is separated from the top and bottom boundaries
by irrotational flow. The Neumann BC allows the approximation
Ω ≈ −∂uv/∂y and the Ω integral in Equation 1 to be evaluated by
parts. We note that the U∞u and U∞uv terms in Equation 1 also
appear in the equation for conservation of mass. Since u = us at I
and u = us + uv at O, we have

−2usS−∫
O
uvdy = 0, (2)

where us, the average value of us, cannot change with distance
from the turbine. If the quadratic terms like v2 are negligible,
Equation 1 reduces to

T
ρ
≈ −(UI + us)∫

O
uvdy (3)

where the differences between us and us can also be ignored. Note
that we have assumed us at I is equal and opposite us at O, otherwise
the mass balance would force zero thrust. The common and key
feature of Equations 2, 3 is the appearance of the outlet integral of
uv in each which connects the equations for conservation of mass
and axial momentum. Note that the connecting terms are all linear
in uv. This suggests that a cyclically varying T for a VAT with finite
Nb, when averaged over one cycle, would have the same relation
with cyclic-average us as in Equation 3. In other words, cycle-
averaging of T and us would not distort the averages by producing
the equivalent of Reynolds stresses which arise from averaging the
nonlinear Navier–Stokes equations.

By Equation 2, the integral common to Equations 2, 3 is
equivalent to the representation of the turbine as a source of fluid
with strength 2usS. Thus, Equation 3 shows that the thrust (divided
by density) is equal to the product of UI + us and the strength of the
source. As far as we know, this relationship between drag or thrust
and an equivalent source in 2D flow was first derived by Lagally
(1922) and can be viewed as a complement of the Kutta–Joukowsky
equation relating to lift and vorticity (Li et al., 2015). The result was

also derived, apparently independently, by Filon (1926) (who did
not cite Lagally) (Liu et al., 2015) and without acknowledgement
by Batchelor (1967)—see his Equation (5.12.15). Batchelor derived
this equation from a CV analysis of a non-lifting body using the
conventional momentum equation that includes pressure. He used
a CV large enough for the quadratic terms to be negligible. His
Figure 5.12.4 illustrates the outflow from the body that balances
the inflow in the wake. Mokry (2016) gave a similar derivation
of the Lagally–Filon drag equation and used it to correct drag
measurements of model trucks in a wind tunnel.

If the velocities are normalized by UI, the combination of
Equations 2 and 3 gives the thrust coefficient C∗T = 2T/(ρU

2
ID) as

C∗T ≈ 4(1+
us
UI
)
usS
UI
. (4)

The positive root of Equation 4 gives

us
UI
≈ 1
2
(√1+

C∗T
S
− 1). (5)

We emphasize that the average value of us(x = −AI,y) across I
is independent of AI because slip, periodic, and SBCs prevent the
spread of the source fluid out of T and B that would occur if a point
source BC was applied at the side walls.

The role of us in VAT simulation does not seem to have been
analysed previously. In all VAT studies we reviewed, including that
by the present first author Tigabu et al. (2022), it was assumed that
UI = U∞. Deriving the thrust equation by allowing flow out of T and
B for an isolated body, however, shows that the integral in Equation 3
is multiplied by U∞ (Golmirzaee and Wood, 2025). Thus,

U∞ = UI + us, (6)

which means, for example, that the conventional thrust coefficient
CT = 2T/(ρU2

∞D) is related to C∗T by

CT = C∗T
U2
I

U2
∞
≈ 4C∗T(1+√1+

C∗T
S
)

−2

= 4S
2

C∗T
[

[
2(1−√1+

C∗T
S
)+

C∗T
S
]

]
(7)

using Equation 6, and, more importantly, that the correct power
coefficient CP is related to that based on UI by

CP = C∗P
U3
I

U3
∞
≈ 8C∗P(1+√1+

C∗T
S
)

−3

. (8)

Golmirzaee andWood (2025) suggested that corrections of the form
of Equations 7, 8 be called “Lagally–Filon” corrections to honour the
discoverers of the relationship between drag or thrust and source.
Since Equation 5 can be evaluated using published values of C∗T,
Equations 7, 8 should be easily evaluated. Before doing that for
some selected studies, two further points should be considered: the
physical significance of non-zero us and the requirements on AI to
ensure that us, and hence UI, can be assumed uniform at the inlet
and outlet.

Consider a wind farm or hydrokinetic array comprising a finite
number of turbines, Nt, along the y−axis, normal to the wind or

Frontiers in Energy Research 04 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1593940
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Wood and Golmirzaee 10.3389/fenrg.2025.1593940

water flowing at U∞ parallel to the x−axis. At distances that are
large compared to NtSD, the array or farm can be approximated
as a single body with a thrust of approximately NtT where T is
the thrust of a turbine in a cascade. In 2D unbounded flow, us
due to NtT will eventually decay at the inverse distance from the
turbines, so thatU∞ is well-defined. A high-fidelity CFD analysis of
all Nt turbines, however, may not be feasible for a large CD using
BCs consistent with the behaviour of us at large distances. As an
alternative for the turbine at the centre of the group at y = 0, the
domain in Figure 1 can be used with periodic or SBCs, provided
that the blockage of the array or farm is accounted for by finding the
difference between UI and U∞. Similar considerations of blockage
apply if the CD of Figure 1 is used with SBCs for a supposedly
isolated turbine.

Even though the average value of us(x,y) is independent of AI,
its value determines the constancy of us(x,y) across I and, therefore,
the constancy of the inlet velocity.Thus, the x−dependence ofus(x,0)
will be used to assess the choice of AI. Each turbine can be replaced
by a point source at (0, iS) where −∞ ≤ i ≤∞ to give

us (x,0)
us
= SD

π

∞

∑
i=−∞

x
x2 + (iSD)2

= coth(π x
SD
) (9)

where we note that a point vortex representation of the turbines
will not contribute to us(x,0). Using a typical value of C∗T = 1.0,
Equation 5 gives us/UI = 0.01 when S = 24.75. For this S, Equation 9
requires AI/S = 0.844 or AI = 20.9 for us(AI,0) = 1.01us. Note that
a constant us(x,0) implies v(x,y) = 0 and a uniform us(x,y). Since
coth (πx/S) → ±1 as x→±∞, Equation 8 provides a consistency
check on the assumption of constantus and the upstreamvalue being
equal and opposite to the downstream one. Furthermore, AO and
AI should be comparable in size to ensure the validity of the outlet
Neumann BC because coth (.) is an odd function. This check does
not apply to uv, so it is possible thatAO must be larger thanAI for the
Neumann outlet condition to hold. Using the values of AI and S that
were just derived, Equation 7 shows that C∗T will differ from CT by
approximately 2%, and C∗P from CP by 3% by Equation 8. Needless
to say, this value of S is larger and that of AI much larger than used
in typical simulations.

Wind or water tunnel side walls can be represented by a slip BC.
Thus, the analysis in this section relates to the assessment of blockage
effects in measurements of VATs or other bodies, such as the truck
models studied by Mokry (2016). These models were long relative
to their cross-section dimensions so that the correction required
placing singularities along the length of the model. As was found
here, the result was a sometimes significant reduction in the drag
coefficient. VAT experiments involve three-dimensional flow, and
this may be the reason why their blockage corrections are more
complex than the 2D results given here (e.g., Ross and Polagye,
2020). It is important to note that the present “correction” does not
necessarily give the correct CT and CP for a VAT in an infinitely
unbounded flow because it does not correct for the proximity of
the side walls on the flow over the blades but only for the difference
between UI and U∞. It is reasonable, however, to assume that CT
and CP are close to their infinite domain values when S is made
large enough for UI to be close to U∞ and a small correction will
be valid. The present analysis suggests that the choice of S and AI
should depend on C∗T.

3 Application of thrust analysis

We consider two separate situations categorized by their
different ranges of S. We start with isolated turbine studies at larger
S that use symmetry or slip-side wall conditions. The second case
is multiple VATs, with emphasis on the performance when S is
lower than the typical values used for isolated VAT simulation. Since
none of the studies of VATs in close proximity have considered the
blockage effects analysed here, they are likely to have more errors
than those for larger S.

3.1 Isolated turbines at larger S

The parameters from a selection of papers in the considerable
literature on 2D simulations of VATs are shown in Table 1. In all
cases, Nb is low enough to cause significant unsteady effects related
to the cyclic motion of the blades. Tigabu et al. (2022), co-authored
by the first author here, studied the starting performance, so no
steady, power-producing simulations were run. What is unexpected
about the remaining entries in the table is the paucity of data on
C∗T, which is critical in assessing the effects of slip and SBCs. As
shown above, if we chooseC∗T = 1.0 as a typical value and neglect the
effects of unsteadiness, then we need S > 25 and AI > 20 for UI to be
within 1% ofU∞. Only Balduzzi et al. (2016a) and the larger domain
studies of Balduzzi et al. (2016b) satisfy these restrictions. Given that
S can alter C∗T as well as make UI ≠ U∞ and that the choice of AI
can have an indirect effect on C∗T, we suggest that future numerical
studies report the behavior of both C∗T and UI for a range of AI and
S before selecting values that do not significantly distort the results.

3.2 Multiple turbines at smaller S

We consider Sun et al. (2021) and Jiang et al. (2024) as examples
of studies of groups of VATs aligned normal to the flow. Table 1 of
Jiang et al. (2024) lists 17 previous studies of groupedVATs, of which
the parameters in Table 2 are typical. SD in the table is the width of
the CD which was held constant in both studies while S was varied.
This makes it possible only to provide a qualitative assessment of
the effects of us. AI and AO for Sun et al. (2021) were taken from
their isolated turbine simulations as the values were not specified
for the grouped turbines, but those in Table 2 appear consistent with
the CD in their Figure 13 andwith their Figure 12 if the velocity field
is shown for the whole CD. In addition, the value of SD is estimated
from Figure 13.

Figure 10 of Sun et al. (2021) shows the computed increase in
C∗P averaged over the four turbines in the array for the range 1.25 ≤
S ≤ 4 for both co- and counter-rotating VATs. There is very little
change in the average value of C∗P with the direction of rotation; at
face value, this agrees with the present analysis. The results for C∗T
were not reported, and their Table 4 shows considerable variation
in the individual turbine power outputs, which is not surprising
for a small Nt. The variation may well be due partly to a change
in the individual C∗T and from the differences in the equation for
SBCs and periodic BCs that are discussed in the next section.
Nevertheless, an estimation of the effects of us is possible if C∗T =
1 is assumed for all turbines and we consider the smallest S = 1.25;
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TABLE 1 Computational domains for 2D simulations of isolated VATs. All distances are in multiples of the turbine diameter. The slip BC for Bangga et al.
(2020) refers to their fluent simulations which used the largest CD.

Study Nb AI AO S T and B BC C∗T

Balduzzi et al. (2016b) 3 5–46 10–94 10–60 Symmetry –

Balduzzi et al. (2016a) 1 40 100 60 Symmetry –

Rezaeiha et al. (2018) 2 5 25 20 Symmetry –

Rezaeiha et al. (2019) 1–3 10 25 20 Symmetry 0.4–1.2

Bangga et al. (2020) 2,3 3.08–15.4 3.08–61.7 3.08 Slip 0.2–1.0

Tigabu et al. (2022) 3 10 25 20 Symmetry –

Lam and Peng (2016) 2 5 11 10 Slip –

Sun et al. (2021) 3 6 18 12 Slip –

TABLE 2 Computational domains for two-dimensional simulations of
multiple VATs. All distances are in multiples of the turbine diameter.

Study Nt Nb AI AO SD S C∗T

Sun et al. (2021) 4 3 6 18 16 1.25–4 –

Jiang et al. (2024) 2 2 7.5 15 15 1.5–5 –

then, us/UI = 0.171 from Equation 5, and Equation 8 gives CP/C∗P =
0.62. In Sun et al. (2021), the increase in power output (given by the
“efficiency” η in the paper, which is equivalent to C∗P) is a factor of
1.33, but we see that this is smaller than the estimated correction
for the effects of us as 1.33× 0.62 = 0.82 < 1. In fact, correcting for us
suggests a conclusion opposite to that of Sun et al. (2021)—turbines
in close proximity produce less power individually than in isolation.

Table 10 of Jiang et al. (2024) shows that C∗T increases with
decreasing S without giving the values. Table 8 shows a maximum
increase in C∗P at S = 1.5 of 21%, whereas assuming C∗T = 1.0 gives
us = 0.145, and so CP is reduced by 33% from C∗P. We reach the same
tentative conclusion that blockage effects actually reduce the power
output of turbines in an array.

Our airfoil simulations with BCs that prevent outflow through
the side walls show that the flow through O has us close to the
value from Equation 5. This result suggests that it should be easy
to tell whether a CFD simulation of a VAT or groups of VATs is
compromised by a large value of us.

4 Boundary conditions and the
moment equation

Using a point vortex BC is consistent with the CV equation
for lift or side force. Thomas and Salas (1986), Destarac (2011),
Golmirzaee and Wood (2024), and Golmirzaee and Wood (2025)
demonstrate that a point-source BC ensures consistency with the
drag or thrust of an isolated turbine or body. We now consider

the equation for the moment, M, or rotor torque which is critical
for VATs. Its impulse form is given by Equation (A.2.7) of Siala
(2019). Applied to the CV in Figure 1 and assuming that UI is
constant, we have

M
ρU∞
= −∫

I
uydy+∫

T
uxdx+∫

O
uydy−∫

B
uxdx −AI∫

I
vdy−AO∫

O
vdy

+ S
2
[∫

T
vdx+∫

B
vdx] + 1

2
∫
O
Ωy2dy (10)

where the quadratic terms, similar to those neglected in
deriving Equation 3, are also neglected here. The contributions
from T and B are included because the integrals multiplying S/2
are both zero for a cascade of counter-rotating turbines but their
sum is not necessarily zero for a co-rotating cascade.This is the only
difference between periodic and SBCs in the equations for axial (T)
and angular momentum (M). This may be important in the further
study of the differences in power output between arrays of co- and
counter-rotating VATs.

If the CD is large enough for the velocities crossing all
boundaries to be determined entirely by the point singularities, apart
from the wake with non-zero Ω and uv, then the integrals in the
first line and the square brackets on the second will sum to zero.
This result holds for any location of the singularities, although it is
reasonable to place both on the axis of rotation. The moment acting
on the rotor or airfoil will then be given entirely by the vorticity term
on the third line. In practice, however, the moment balance is likely
to be more complex, with contributions from all terms, as suggested
by the following analysis.

When the Neumman outlet BC is applicable, the
vorticity term in Equation 10 can be rewritten as

1
2
∫
O
Ωy2dy ≈ ∫

O
uvydy. (11)

There are at least two ways that the vorticity term can be non-zero:
the wake can be asymmetric about the point of minimum uv, or
a symmetric wake can have a trajectory away from the x−axis. To
model an asymmetric and/or deflected wake, we assume

uv = um (1+B(y− ym))exp[−A(y− ym)
2] (12)

Frontiers in Energy Research 06 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1593940
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Wood and Golmirzaee 10.3389/fenrg.2025.1593940

where A and B are scaling factors and um is the value of uv at
ym, which can be of either sign, depending on the direction of
rotation. um is the minimum uv only if the asymmetric factor B =
0. The exponential term is often used for symmetric wakes. It is
the approximate, constant-eddy–viscosity solution to the Reynolds-
averaged momentum equation for the wake, with um and ym
constrained by the constancy of the momentum flux due to T. This
equation was assumed by Ouro and Lazennec (2021) and others for
VAT wakes. Chapter 9 of Townsend (1976), for example, shows that
turbulent flows are very sensitive to streamline curvature, so ymmust
remain small for Equation 12 to remain valid.The close similarity in
behavior between a turbulent and laminar wake suggested the form
of the asymmetric term. The B−term is consistent with the lowest-
order symmetric term in Imai’s 1951 streamfunction for the deflected
laminar wake behind a lifting body; see his Equation (11.3). Note
that a symmetric streamfunction gives an asymmetric u(y). It is also
noted for later consideration that one of the symmetric terms in
Imai’s equation has a coefficient proportional to the product of thrust
and side force.

From Equations 3, 11, T is given by

T
ρ
≈ −U∞∫

O
uvdy = U∞√

π
A
um, (13)

using Equation 12, and so is independent of any asymmetry in
Equation 12. Further analysis of the turbulence structure of the
wake, such as Section 6.4 of Townsend (1976), requires um ∼ x−1/2,
and A ∼ x−1 for the far-wake where um is small and T in Equation
13 is constant. Both variations agree well with data for symmetric
wakes, as shown by the zero pressure gradient data in Thomas and
Liu (2004) and with the simulated airfoil wake in Golmirzaee and
Wood (2025).

The vorticity term in the moment equation is proportional to

−( B
A
+ ym)

T
ρU∞

(14)

where the ym term comes solely from the symmetry and is not
dependent on the particular form assumed in Equation 12. The
width of the wake, δ, will be controlled by the exponential term
in Equation 12 and so δ ∼ x1/2. This implies B ∼ x−1/2, and B/A
increases with x. Golmirzaee and Wood (2025) applied the analysis
of Goldstein (1933) to estimate the contribution to the moment
coefficient from the ym term in Equation 14. ym depends on the
lift or side force generating a circulation in the wake. Denoting the
symmetric component as ΔCM, their estimate is

ΔCM ∼
CTCS

4π
log (x/D) (15)

where CS is the side force coefficient. Thus, the vorticity term will
increase with x. Ouro and Lazennec (2021) used only the symmetric
term in Equation 12, so it is possible that a deflected, symmetric far-
wake is the most common for VATs or that an initially asymmetric
wake becomes symmetric with increasing x. These possibilities are
consistent with the approach to symmetry of the zero pressure
gradient wake inThomas and Liu (2004) and the development of an
approximately symmetric but deflected wake measured out to 10D
along themidplane behind aVAWTbyPeng et al. (2016). In contrast,
Figure 6 of Huang et al. (2023) shows the wake asymmetry being
maintained at least until 10D. It is also noted that the asymmetry

in the wakes measured by Huang et al. (2023) is not accurately
modeled by Equation 12.

Nevertheless, Equation 15 can be used to assess the importance
of ΔCM, which may relate to the BCs needed for the accurate
simulation of the torque. This is done by estimating the value of
x for which the vorticity integral is equal to the moment, using
Equation 15 and the data in Table 3 of Huang et al. (2023) for the
upwind turbine operating at a tip speed ratio of 4.5. For one case,
CM = CP/4.5 = 0.50/4.5, CT = 0.68 and CS = 0.02. This gives a value
of x/D that is so large that the vorticity integral is unlikely to carry
any significant moment out of the CD unless the asymmetry of the
wake becomes dominant. For another case in their Table 3, CM =
0.44/4.5, CT = 0.64, and CS = 0.34. Thus x/D = 280, which is also
large enough to justify the same conclusion for practical simulations.

All possible wakes based on Equation 12 increase themagnitude
of the vorticity term in the moment equation with x. This shows
that the PSVBC is not consistent with a moment-generating VAT
and that it is necessary to investigate changes to the boundary
values of u and v. These changes must not alter the circulation or
the source strength, which would be inconsistent with the force
balances. Golmirzaee andWood (2025) showed the inconsistency of
the PVSBC for an airfoil at 45°, which has significant lift, drag, and
moment, did not have an obvious effect on the computed moment;
the changes in both forces and moment with changing domain
size were very similar. Nevertheless, the critical importance of the
moment for VATs suggests that a detailed study of the effect of
domain size and BCs in the context of the moment equation is
necessary.

5 Summary and conclusions

We have considered some aspects of the outer boundary
conditions for the two-dimensional numerical simulation of
vertical-axis turbines, both isolated and grouped normal to the flow.

For isolated turbines, the commonly used symmetry or slip
conditions on the side walls prevent the outflow of fluid associated
with the thrust on the turbine. This conclusion follows from an
impulse analysis of the thrust in steady, incompressible flow. The
outcome is a form of the Lagally–Filon equation relating drag or
thrust to the strength of the source that represents the body or
turbine. Commonly used boundary conditions for isolated turbines
confine the outflow so that a component of the inlet velocity depends
on the thrust and turbine spacing. This blockage makes the inlet
velocity less than the freestream velocity at infinity. A correction
for the difference in velocities was derived, which can be used to
assess the adequacy of the domain size for a prescribed level of
accuracy if “laterally-constrained” BCs are used. The Lagally–Filon
equation implies that improved outer boundary conditions would
include a point source term to ensure consistency with the thrust.
The Kutta–Joukowsky equation requires a point vortex BC for
consistency with the side force.

For turbines in close proximity, laterally constrained boundary
conditions are appropriate, but the difference between the inlet and
freestreamvelocities remains and is often significantly larger than for
isolated turbines. Corrections are then required for the thrust and
power coefficients based on the freestream velocity. In particular,
it was shown that for closely spaced turbines aligned normally to
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the flow, the blockage correction may be sufficient to reverse the
conclusions drawn in many studies that close proximity increases
power output. In searching for examples with which to investigate
the corrections for isolated and proximate turbines, it became
apparent that the turbine thrust is rarely reported, and this made
it impossible to reach firm conclusions about the blockage effects.

Point singularity boundary conditions that are consistent
with the side force and thrust require the crucially important
moment for a vertical-axis turbine to be balanced entirely by
the vorticity in the wake behind the turbine. A simple model
for the velocity distribution in the wake suggests that this is
unlikely, and so the boundary conditions must be modified. It is
recommended that a detailed study of the effects of domain size in
conjunction with different boundary conditions be undertaken for
an isolated vertical-axis turbine. It would be beneficial to start with a
relatively large number of blades to approximate steady flow before
considering the typical values of two or three.

To simplify its analysis, the study was restricted to two-
dimensional steady flow because the two- and three-dimensional
unsteady form of the impulse equations contain several extra terms,
the evaluation of which was not possible from the published sources
we used. The boundary condition involving the turbine as a source
arises from the linear terms that connect the conservation of axial
momentum to the conservation of mass. Linearity will ensure
that the connection remains the same form when there are cyclic
variations in the torque and flow.Thus, the cycle-average thrust will
have the same relation to the cycle-average induced velocity as that
between the steady thrust and induced velocity in Equations 2 and 3.
Three dimensionality is more complicated, but it is likely that
an application of quasi-two-dimensional impulse analysis will be
useful; this is much like lifting-line theory for aircraft wings, in
which the Kutta–Joukowsky equation is applied to each spanwise
section of the flow.The forces acting in the direction of the rotational
axis for vertical axis turbines are likely to be small, as are the spanwise
forces for lifting-lines, so a similar sectional analysis is likely to be
useful. These considerations suggest that the conclusions reached
here from a two-dimensional, steady analysis have a wider generality
than suggested by their fundamental assumptions.

One important turbine layout has not been considered in this
study: multiple turbines separated in the direction of the flow rather
than normal to it.The total thrust will be increased by axial stacking,
and so a difference betweenUI andU∞ is likely unless a point source
boundary condition is used, but it is more difficult to analyse. It
seems reasonable to place the point sources and vortices at the axis
of each turbine, with the consequence that the induced velocity for
the array (at −∞) will be due to the total thrust of the turbines and,
therefore, very significant in general.
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Nomenclature

A scaling factor, Equation 12

AI distance from the inlet to turbine in multiples of D, Figure 1

AO distance from the turbine to outlet in multiples of D, Figure 1

B bottom of the computational domain, Figure 1

B scaling factor, Equation 12

CM turbine moment coefficient

CP turbine power coefficient

CP∗ turbine power coefficient based on UI

CS turbine side force coefficient

CT turbine thrust coefficient

CT∗ turbine thrust coefficient based on UI

D turbine diameter

I inlet of the computational domain, Figure 1

M turbine moment

Nb number of blades in a vertical-axis turbine

N t number of turbines in a stack

O outlet of the computational domain, Figure 1

S width of the computational domain in multiples of D, Figure 1

SD width of the computational domain for a stack of turbines in

multiples of D, Section 3.2

T top of the computational domain, Figure 1

T turbine thrust

U I streamwise velocity at the inlet

U∞ freestream velocity

u,v perturbation velocities due to the turbine in x− and y−directions

respectively

um value of uv at ym in the wake

us u due to the turbine as a source

uv u due to the vorticity in the wake

x,y streamwise and normal co-ordinates, respectively

ym location of minimum wake velocity

ρ air density

Ω vorticity Overlines denote average values at any x
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