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Introduction:Wind energy development faces challenges such as low utilization
of wind resources, underdevelopment of suitable areas, and imbalanced
electricity demand coverage. To address these issues, this study formulates a
multi-objective maximal covering location problem (MO-MCLP) for onshore
wind power station (OWPS) siting, aiming to improve resource utilization,
expand development in promising regions, and balance demand coverage in
spatial planning.

Methods: A MO-MCLP model is developed that simultaneously maximizes
wind energy utilization, promotes development in suitable areas, and balances
electricity demand coverage. To solve this model at large scale, a deep
reinforcement learning (DRL) algorithm is designed and implemented. The DRL
approach is benchmarked against a traditional optimization implementation
using the Gurobi solver. Computational experiments focus on wind-rich coastal
regions of Guangdong Province, evaluating both solution quality (coverage and
utilization metrics) and computational efficiency under varying problem sizes.

Results: The DRL algorithm achieves objective values comparable to or
better than those from the Gurobi-based method, while substantially reducing
computation time for large problem instances. As the number of candidate
sites and demand points increases, DRL demonstrates superior scalability. In the
Guangdong case study, DRL attains similar or improved coverage and utilization
within a fraction of the runtime required by Gurobi, enabling faster iteration for
scenario analysis.

Discussion: The findings indicate that DRL offers an efficient alternative to
traditional solvers for complex spatial optimization in wind farm siting. Faster
computation and better scalability facilitate exploration of multiple planning
scenarios, sensitivity analyses, and rapid decision support under practical
time constraints. Integrating richer environmental and socioeconomic data,
extending to multi-stage planning, or combining DRL with heuristic solvers may
further enhance performance. Overall, the MO-MCLP model with DRL solution
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provides actionable insights for sustainable energy infrastructure planning by
delivering high-quality site allocations efficiently.

KEYWORDS

onshore wind power station, spatial analysis, location problem, deep reinforcement
learning, multi-objective optimization

1 Introduction

Wind energy, as a clean and renewable source of power,
has received considerable attention and application in recent
years, particularly in the context of addressing climate change
and achieving sustainable development (Midilli et al., 2006). The
effective development of wind power can significantly reduce
greenhouse gas emissions, promote a green economy, and enhance
energy security. Furthermore, it has the capacity to reduce reliance
on fossil fuels and contribute to the global transition of the
energy system (Xu et al., 2010; Su et al., 2024). As a result, wind
energy plays an increasingly important role in achieving Sustainable
Development Goals (SDGs) and has become a key component of
global energy policies and environmental strategies.

In the field of wind energy development, the rational site
selection and configuration of wind power infrastructure are
crucial steps in achieving the efficient utilization of renewable
energy (Pourasl et al., 2023; Villanueva and Feijóo, 2010). Due
to the geographical complexity and diverse constraints of wind
power projects, wind power planning must consider multiple
objectives, including economic viability, environmental impact, and
resource utilization efficiency (Yousef et al., 2024; Ricks et al.,
2024). Therefore, the scientific site selection problem for wind
farms focuses on how to maximize power generation while
ensuring cost-effectiveness and effectively addressing the multiple
constraints involved (Beiter et al., 2023).

Current research on the location of wind farm has demonstrated
a trend towards greater diversity and refinement, with a particular
focus on wind resource assessment methods, multi-factor
comprehensive analysis, and the innovative application of location
models (Cencen et al., 2024; Xia and Song, 2009). Wu et al. (2021)
proposed a method combining the entropy weight method with
subjective weights to address the multiple factors involved in wind
farm location. This involved constructing an evaluation system
based on fuzzy reasoning, with the aim of providing a feasible
solution for location decisions (Rediske et al., 2021). However,
this method relies heavily on the subjective judgement of experts,
which may lack objectivity and stability in handling complex and
uncertain factors. This may affect the generalizability of the model
and the scientific validity of the siting solutions (Wang et al.,
2024b; Nielson et al., 2020). Zhou et al. (2023) constructed a
multi-factor comprehensive evaluation model by integrating wind
speed data, terrain features, and road factors, and employed
ArcGIS to perform spatial analysis on the suitability of wind farm
development. This method provides a theoretical basis for wind
farm siting by considering the spatial distribution of wind resources
as well as terrain and infrastructure constraints. However, this
GIS-based comprehensive evaluation has significant limitations
in data acquisition, especially the scarcity of high-precision data
on wind speed and terrain. Additionally, the analysis process

is often complex, requiring substantial computational resources
and data preparation, which limits its practicality in large-scale
regional applications. Li distinguished between macro and micro
phases in the context of wind power location (Li, 2018). They
discussed preliminary wind resource evaluation and detailed wind
turbine layout design as separate topics. Macro location primarily
determines the overall location of the wind farm, whereas micro
location is concerned with optimizing the specific layout of wind
turbines in order to maximize power generation and efficiently
utilize resources (Zhang et al., 2011; Bayer et al., 2013). While this
approach facilitates stepwise optimization from the overall to the
specific level, in practice, it is challenging to ensure coordination
between macro and micro location, particularly in the presence of
various complex environmental constraints.The two-stage approach
tends to result in limitations in their respective optimizations,
thereby lacking overall optimality (Chen, 2011).

The emerging field of geospatial optimization represents a novel
approach that integrates geographic and mathematical optimization
techniques to achieve optimal spatial allocation of facilities
(Costa et al., 2021; Yu et al., 2025). The application of mathematical
modelling techniques to the description of factors such as wind
farm location, capacity configuration, and environmental impact
enables the identification of an optimal solution (Li et al.,
2023). These optimization methods typically encompass linear
programming, heuristic algorithms and metaheuristic algorithms.
Linear programming is an effective method for identifying optimal
solutions when the constraints and conditions are simple and
deterministic (Aneja et al., 2024). Heuristic and metaheuristic
algorithms employ heuristics and random searches to locate near-
optimal solutions in a shorter time, making them particularly well-
suited for nonlinear and complex environments. However, these
traditional methods often encounter limitations when confronted
with intricate multi-objective and multi-constraint geospatial
optimization challenges in wind farm siting (Zhao et al., 2017;
Karayel and Dincer, 2024). Deep reinforcement learning (DRL)
is a data-driven intelligent optimization method that is capable
of adapting dynamically to complex constraints and continuously
optimizing decisions through interaction with the environment
and self-learning (Chu et al., 2024). DRL does not necessitate
the simplification of the problem; rather, through the robust
representation capabilities of deep neural networks, it is able to
capture the non-linear features of complex geographic environments
in wind farm location and perform effective adaptive optimization
in a dynamically changing environment (Shakoor et al., 2016).
Furthermore, DRL is capable of learning the optimal strategy
through repeated trial and error, which makes it particularly
advantageous in handlingmulti-objective optimization and complex
constraint problems (Rediske et al., 2021).

Therefore, this study models the wind farm location problem
as a mathematical optimization problem and explores the use of
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DRL algorithms to solve this problem, applying it to the onshore
wind power siting layout inGuangdongProvince to provide decision
support for current wind farm construction and wind energy
utilization in the province.

The main contributions of this study are as follows:

• Proposing a multi-objective optimization model that
comprehensively considers wind energy resource utilization
efficiency and demand coverage.

• Designing an innovation DRL method for model optimization.
• Applying the proposed framework to optimize the siting layout

of onshore wind power in Guangdong Province.

The remainder of this study is organized as follows: Section 2
reviews the related works on the location models for wind power
stations and deep learning methods for location optimization.
Section 3 describes the proposed multi-objective optimization
model and methods used. Section 4 presents the experimental
setup and results, along with a comparative analysis. Section 5
discusses the research findings and their implications. The last
section summarizes the main findings of this study and proposes
future research directions.

2 Related works

2.1 Multi-objective location optimization
problems for wind power stations

The optimization of wind power station siting necessitates
balancing competing objectives such as energy yield maximization,
cost minimization, and environmental compatibility, driving the
adoption ofmulti-objective optimization (MOO) frameworks. Early
studies predominantly employed single-objective models, with
linear programming and heuristic algorithms addressing factors
like infrastructure proximity and terrain constraints (Mosetti et al.,
1994; Cortez and Dorrego, 2020). For instance, meta-heuristic
algorithms incorporating improved charged particle optimization
were developed to integrate topographic effects into layout designs
(Hidayat et al., 2024; Asaah et al., 2021; Díaz et al., 2022),
while the Jensen model and its variants addressed wake losses
in onshore and offshore farms (Shakoor et al., 2016; Feng and
Shen, 2014; Feng et al., 2018). However, the inherent complexity
of wind farm planning—requiring simultaneous consideration of
resource availability, land-use conflicts, and economic viability—has
shifted research toward MOO methods capable of generating
Pareto-optimal solutions.

A cornerstone in MOO is the Non-dominated Sorting Genetic
Algorithm II (NSGA-II), renowned for its efficiency in handling
non-convex objectives. Mytilinou and Kolios (2017) demonstrated
NSGA-II’s superiority over SPEA2 and NSGA-III in optimizing
offshore wind layouts by simultaneously minimizing lifecycle
costs and maximizing energy output. Recent adaptations integrate
spatial constraints, such as turbine wake effects and cable routing,
enhancing its applicability to real-world scenarios (Manikowski
et al., 2021). Alternative approaches, including Multi-Objective
Random Search (MORS), leverage stochastic adjustments to refine
turbine placement iteratively. Feng and Shen (2016) reported that

MORS outperformed NSGA-II in high-dimensional problems,
reducing cable lengths by 15% while maintaining power output
in offshore farms. Bayesian optimization methods further address
uncertainties in wind resource modeling; Chugh and Ymeraj
(2022) utilized Gaussian processes with Expected Hypervolume
Improvement to achieve a 4.6% power increase and 84% fatigue
load reduction, highlighting MOO’s potential in stochastic
environments.

Classical facility location models, such as p-Median and
p-Center, have been adapted to optimize energy transmission
efficiency and grid connectivity (Berman and Krass, 2002). These
models minimize total or maximum distances between turbines and
demand nodes, aligning with Hakimi’s foundational work (Hakimi,
1964; Hakimi, 1965). The Maximum Covering Location Problem
(MCLP) and Location Set Covering Problem (LSCP) further address
spatial coverage, with studies integratingGIS to prioritize high-wind
zones while avoiding ecologically sensitive areas (Pamučar et al.,
2017; Church and ReVelle, 1974; ReVelle et al., 2008; ReVelle and
Swain, 1970; Pirkul and Schilling, 1989). For example, Chen et al.
(2021) combined LSCP with NSGA-II to reduce infrastructure
redundancy by 20% in offshore farms, illustrating the synergy
between operations research and MOO.

Emerging hybrid frameworks merge evolutionary algorithms
with probabilistic methods to address scalability and uncertainty.
Kirchner-Bossi and Porte-Agel (2021) coupledNSGA-II withMonte
Carlo simulations to optimize both turbine layouts and farm
shapes, achieving a 12% energy yield increase in Denmark’s Horns
Rev I farm. However, challenges persist in scaling these methods
for large-scale farms (>100 turbines) and standardizing objective
weighting schemes across diverse geographical contexts (Emami and
Noghreh, 2010; Gao et al., 2016). Future research should prioritize
hybrid algorithms and open-source tools to enhance reproducibility,
alongside probabilistic lifecycle cost models to quantify long-term
uncertainties (Kaynia et al., 2025).

2.2 Deep learning methods for
multi-objective location problems

The integration of deep learning (DL) into multi-objective
optimization (MOO) has introduced transformative capabilities
for balancing competing objectives in spatial allocation problems,
overcoming limitations of traditional rule-based and heuristic
approaches. While classical MOO algorithms (e.g., NSGA-II) excel
in deterministic scenarios, DL excels in extracting latent patterns
from high-dimensional data and addressing stochastic or dynamic
environments, making it indispensable for complex location
problems (Mecheter et al., 2022; Hou et al., 2016; Hou et al., 2017).

Early attempts, such as Hopfield networks for the p-
Median problem, were constrained by scalability and retraining
requirements (Domínguez and Muñoz, 2008). Recent advances
leverage graph neural networks (GNNs) to encode spatial
dependencies and demand-facility interactions. For instance,
Liang et al. (2024b) fused graph convolutional networks (GCNs)
with facility location models, achieving a 40% reduction in
computational time for the p-Center problem compared to
exact solvers, while generalizing across problem scales without
retraining. Similarly, Zhang et al. (2023) proposed a multi-task
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GNN framework that simultaneously optimizes coverage, cost, and
equity in healthcare facility placement, demonstrating superior
Pareto front diversity over genetic algorithms.

Deep reinforcement learning (DRL) has emerged as a
dominant paradigm for sequential decision-making in MOO.
Unlike supervised learning, DRL agents learn policies through
environment interactions, enabling adaptive solutions under
uncertainty. Wang et al. (2023a) designed a DRL model with a
transformer-based policy network to solve the uncapacitated p-
Median problem, reducing solution gaps by 12% compared to
heuristic baselines. Extending this, Zhong et al. (2024) developed
ReCovNet, which integrates attention mechanisms with reward
shaping to balance coverage and budget constraints in billboard
placement, achieving 98% coverage efficiency with 30% fewer
resources. However, challenges persist in reward design for
conflicting objectives; Chen L et al. (2023), Chen X et al. (2023)
addressed this by introducing a dynamic weight adjustmentmodule,
enabling automatic trade-off calibration between cost and service
accessibility in real-time logistics optimization.

Hybrid DL-MOO frameworks further bridge the gap between
data-driven learning and classical optimization. The Sponet
framework (Liang et al., 2024a; Liang et al., 2022; Wang et al.,
2023b) combines DRL with metaheuristics, using a deep Q-
network to guide simulated annealing for solving p-Median, p-
Center, and MCLP problems. This approach reduced optimality
gaps by 18% in large-scale urban facility allocation compared to
pure DRL methods. Despite progress, critical limitations remain:
most DL-MOO methods rely on synthetic training data, raising
concerns about real-world robustness (Shadman Abid et al., 2025).
Additionally, the “black-box” nature of DL models complicates
interpretability, hindering adoption in policy-sensitive domains like
environmental planning.

3 Materials and methods

3.1 Study area

Guangdong Province, located in southern coastal area of
China (20°13′–25°31′N, 109°40′–117°18′E), experiences a climate
characterized by the mid-subtropical, southern subtropical, and
tropical zones, boasting abundant wind energy resources (Figure 1).
The region is subject to the influence of a monsoon climate, which
provides conditions conducive to the location and construction of
wind farms. Concurrently, the Pearl River Delta represents one
of the most economically developed areas in China, exhibiting a
high demand for electricity and a well-established infrastructure
that facilitates the efficient utilization of wind energy resources.
Furthermore, the coastal region of Guangdong is characterized
by a diverse and complex terrain, comprising plains, hills, and
mountains, which gives rise to considerable spatial variations in
wind speed and geographical conditions. The diversity of the
region provides a representative and rich setting for conducting
optimization research on wind farm location. Consequently, this
study selects the coastal area of Guangdong Province as the
research area, with the objective of exploring how to scientifically
conduct wind farm location and optimization of allocation in the
context of an economically developed, geographically complex, and

wind resource-rich environment. Ultimately, the aim is to provide
decision support for regional energy transition and sustainable
development.

3.2 Data acquisition and preprocessing

This study uses a dataset of OWPS in Guangdong Province
for the year 2021, consisting of POI data with a total of 79
onshore wind power stations. The data, sourced from the National
Energy Administration of China, includes attributes such as name,
latitude and longitude coordinates, and installed capacity, and will
serve as facility point inputs for the optimization of onshore wind
power station site selection. For the demand calculation in site
optimization, this study selects three types of data as sources for
multi-dimensional demand calculation: GDP, population density,
and nighttime light data. The GDP data comes from the Resources
and Environmental Science Data Platform of the Institute of
Geographic Sciences and Natural Resources Research, Chinese
Academy of Sciences. It is raster data with a spatial resolution
of 1 km × 1 km, collected in 2020. Population density data is
sourced from the WorldPop website, from which we obtained
the 2020 population density dataset of China and extracted data
based on the study area, with a spatial resolution of 100 m
× 100 m. Nighttime light data is used to reflect the region’s
socioeconomic development level and human activity intensity,
which has been verified in multiple studies as being related to
electricity demand. The nighttime light data was obtained from
the NPP-VIIRS cloud-free DNB monthly composite product, and
we extracted and summed the NPP-VIIRS nighttime light data for
January to December 2021 to obtain the annual nighttime light
intensity. Regarding natural environment constraints, this study
uses indicators such as annual average wind speed, DEM, NDVI,
and temperature for demand calculation. Annual average wind
speed and temperature are important factors affecting wind energy
reserves and onshore wind power station site selection. We obtained
meteorological station data for the study area in 2021 from the
National Meteorological Information Center of China and used
the Kriging interpolation method based on the annual average
wind speed and temperature attributes of these stations to generate
continuous grid data for wind speed and temperature across the
study area. DEMandNDVI, which influencewind power station site
selection from the perspectives of topography and vegetation cover,
were obtained from the ASTER GDEM V2 and MODIS MOD13Q1
data products, with spatial resolutions of 30 m and 250 m,
respectively. Detailed information about the data sources is shown
in Table 1.

3.3 Methods

In this study, the research area was subdivided into grid cells
of 7000 m × 7000 m. The centroid of each grid cell was then
utilized as the point of calculation for suitability. Indicators from
both environmental and socioeconomic viewpoints were selected
to assess the suitability of OWPS locations. These indicators
encompassed environmental suitability indicators, such as elevation,
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FIGURE 1
Location of study area.

TABLE 1 The overview of the datasets.

Data Sources Time Types Resolution

POI of OWPS National energy administration 2021 Shapefile -

GDP Resource and environmental science data platform 2021 Raster 1 km

DEM ASTER GDEM V2 - Raster 30 m

NDVI MODIS MOD13Q1 2021 Raster 250 m

Population density WorldPop 2021 Raster 1 km

Nighttime light NPP-VIIRS cloud-free DNB monthly composite 2021 Raster 500 m

Annual average wind speed by station National meteorological information center 2021 Shapefile -

Air temperature National meteorological information center 2021 Shapefile -

wind speed, vegetation coverage, and temperature, as well as socio-
economic suitability indicators, including population density, GDP,
and nighttime light intensity. The spatial relationship between
these indicators and OWPS locations was investigated through
kernel density analysis and entropy weight method. Furthermore,

a multi-objective maximum coverage location optimization
problem model (MO-MCLP) was proposed for the location of
OWPS, and a novel deep reinforcement learning method was
designed for solving the location problems. The workflow is shown
in Figure 2.
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FIGURE 2
Overall workflow of MO-MCLP model for OWPS.

First, we obtained the basic data for the study area based on the
selected environmental and socioeconomic suitability indicators,
includingDEM, annual averagewind speed and temperature,NDVI,
population density, GDP, and nighttime light intensity. The annual
average wind speed data was converted into wind energy potential.
The entropy weight method was employed to determine the weights
of the suitability indicators. The suitability of OWPS location
in the study area was determined through weighted summation,
with values assigned to the center points of each grid cell. These
values were used in solving the location problems. During the
weight calculation process, all indicator values were normalized.
The OWPS location problem was then modeled as a Mixed-Integer
Linear Program (MILP), employing a deep reinforcement learning
(DRL) algorithm to input the gridded suitability values and the
candidate locations of OWPS. This approach yielded an optimal
set of OWPS locations that balance suitability and maximum
demand coverage. Furthermore, a comparison was made between
the location optimization results obtained through DRL and those
obtained from the commercial solver Gurobi. This comparison was
undertaken to demonstrate the performance ofDRL in solving siting
scenarios that account for both suitability and demand.

3.3.1 Environmental and socioeconomic
suitability evaluation

The location of OWPS is usually influenced by both
environmental and socioeconomic factors. On the one hand, OWPS

are highly dependent on the wind energy potential of the location,
which is closely related to factors such as wind speed, air density,
and temperature. Additionally, as large infrastructure projects, the
layout of OWPS is also affected by terrain and vegetation cover,
with flat and open terrain reducing wind energy fluctuations, while
the construction of OWPS can impact the ecological environment,
especially vegetation coverage. Therefore, environmental factors
are the primary influences on the layout of OWPS. On the other
hand, the location of OWPS must also consider socio-economic
factors, such as population, GDP, and overall urban development.
Regions with higher values for these indicators usually have greater
electricity demand, though urban core areas are not suitable for
wind turbine placement.

Existing studies on urban infrastructure location, especially
wind power facility siting, often focus more on regional
electricity demand or wind energy potential, while fewer studies
comprehensively consider multiple suitability indicators from
both natural environmental and socio-economic perspectives.
Therefore, before optimizing the locations for OWPS in Guangdong
Province, we selected environmental suitability indicators such
as elevation, wind speed, vegetation coverage, and temperature,
along with socioeconomic suitability indicators such as population
density, GDP, and nighttime light intensity, to construct a suitability
evaluation system for OWPS location. We used the entropy weight
method to calculate the weights of the indicators in the assessment
system. After performing a weighted summation of the indicators,
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TABLE 2 Data sources and calculation methods for each indicator in the suitability evaluation system.

Indicators Data Data type Calculation methods

Environmental suitability

Elevation DEM Raster -

Wind energy Annual average wind speed Raster E = 1
2
ρv3, where E,ρ,v

represent wind energy, air
density, win speed, respectively

Vegetation coverage NDVI Raster -

Temperature Annual average temperature Raster -

Socioeconomic suitability

Population density Gridded population density Raster -

GDP Gridded GDP Raster -

Urban development level Nighttime light data Raster UDL = NTL−NTLmin

NTLmin−NTLmax
, where

NTL represents pixel value of
nighttime light data

the resulting suitability value was used as an input for the siting
model to optimize the siting solution. The entropy weight method
expression is shown in the following equations, and the sources of
the indicators are listed in Table 2.

dij = 1+
1

lnm

m

∑
i=1

pij lnpij

wj =
dj
∑n

j=1
dj

pij =
xnorm_ij

∑m
j=1

xnorm_ij

In the above equations, m,n are the total numbers of evaluation
objects and indicators, xnorm_ij represents the normalized value of the
i-th evaluation object on the j-th indicator, wj is the weight value for
the j-th indicator.

3.3.2 The multi-objective maximum coverage
location problem

In order to maximize the socio-economic benefits of OWPS
location, it is necessary to consider optimization objectives across
different dimensions during the layout optimization process. First,
Guangdong Province has abundant wind energy reserves. To meet
the needs of economic activity and electricity consumption in the
province, it is important to maximize wind energy utilization.
This can be achieved by harnessing wind resources in areas with
rich potential wind energy reserves, playing a leading role in
transforming the energy supply and consumption structure. On
the other hand, there are still available spaces in suitable areas for
OWPS siting in Guangdong Province. Maximizing the layout of
OWPS in these suitable areas helps to further tap into wind energy
resources while considering environmental suitability, providing
more solutions for the siting decisions of OWPS in Guangdong
Province. Lastly, the location of OWPS in Guangdong needs to
maximize electricity demand coverage to ensure wind power supply
efficiency and socio-economic benefits. Based on the analysis of the
location optimization objectives in these three dimensions, we set

up three objective functions for the OWPS location optimization
model, with the expressions as follows:

maxZ1 =∑
j∈J

Ejxj

minZ2 = A−∑
j∈J

Ajxj

maxZ3 =∑
i∈I

diyi

Objective function Z1 represents maximizing wind energy
utilization, where Ej denotes the wind energy utilization rate of wind
power station j. Objective function Z2 represents minimizing the
waste of suitable areas for OWPS layout, where A and Aj represent
the total area of suitable regions for wind power station layout
within the study area and the coverage area of wind power station
j, respectively. Objective function Z3 represents maximizing the
coverage of electricity demand, where di denotes the demand level at
demand point i. xj and yi are binary decision variables.When facility
point j is selected, xj = 1; otherwise, xj = 0. When demand point i is
covered by at least one facility point, yi = 1; otherwise, yi = 0.

The formulation of the three optimization objectives is based on
the “energy–land–demand” triple-coupling theoretical framework
for wind-farm spatial planning, taking into particular consideration
the unique resource and environmental conditions of Guangdong
Province. First, the objective of minimizing the waste of suitable
areas (Z2) is proposed to address the stringent constraints on
regional land resources: Guangdong Province has a total land area
of approximately 179,700 km2, yet undermultiple conditions—slope
< 15°, NDVI < 0.3, and exclusion of ecological protection red
lines—the theoretically suitable area accounts for only 12.7% (about
22,800 km2), and existing wind farms have already occupied 38%
of this suitable area. Based on this, if one only pursues maximizing
installed capacity or revenue, it can easily lead to overdevelopment
of certain high-suitability grids while leaving many other areas
with equally favorable conditions idle, resulting in serious waste
of land resources. Therefore, we adopt the retention rate of the
“high-suitability grid set” as the second objective—namely, based
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on a comprehensive consideration of the environmental and socio-
economic indicator evaluation results in Table 2, to minimize the
proportion of high-suitability grids that are not selected, thereby
maximizing the effective development density to promote spatial
agglomeration effects. Empirical studies have shown that when
the cluster spacing of wind farms is less than 10 km, grid-
connection costs can be reduced by 18%–22% (Irawan et al.,
2022). Therefore, the establishment of this objective function
not only promotes intensive development but also significantly
reduces the cost of associated infrastructure, thereby embedding
an ecological protection mechanism while reducing the waste
of suitable areas—directly responding to the ecological-red-line
requirements under the context of “carbon peaking and carbon
neutrality” and the core principle of “maximizing energy output
while minimizing land footprint” in the IRENA Onshore Wind
Energy Land Use Guidelines. Meanwhile, the first objective—
“maximizing wind energy utilization” (Z1)—introduces an air-
density model corrected for elevation to accurately quantify wind-
speed differences between mountainous and coastal areas, enabling
the wind-energy potential of plateau, hilly, and coastal regions to
be compared fairly within a single indicator system. The third
objective— “maximizing demand coverage” (Z3)—uses principal-
component analysis to integrate multi-source data such as regional
GDP, population density, and nighttime light, accurately capturing
the spatiotemporal heterogeneity of electricity load in the Pearl
River Delta urban agglomeration. This ensures that the wind-
farm layout not only considers resource endowment and spatial
efficiency but also achieves a balance in energy equity and social
sustainability.

We combine the three objective functions using a
weighted approach to form a composite objective function,
and apply the constraints of the maximum coverage model
to construct a multi-objective maximum coverage location
optimization problem model (MO-MCLP) for the location of
OWPS. The formulation is as follows:

maxZ = w1Z1 −w2Z2 +w3Z3

subject to ∑
j∈J

xj ≤ p,∀j

 yi ≤ ∑
j∈Si

xj,∀i

∑
j∈Si

xj ≥ yi,∀i

xj ∈ {0,1},yi ∈ {0,1},∀i,∀j

where w1, w2, w3 are the weights of the objective functions.
Since this study does not involve determining the weights of the
objective functions, w1, w2, w3 are all assigned a value of 1/3. J
is the set of candidate facility locations, and p is the maximum
number of sites that can be selected. Si is the set of demand
points within the coverage area of facility point j. xj and yi are
binary decision variables, taking a value of 1 when facility point
j is selected or demand point i is covered. The equation led by
max represents the composite objective function. The equations
led by subject to and below represent the constraints of the
maximum coverage model, 4 of them in total, from top to bottom.

The 4 constraints represent the facility siting quantity constraint,
the facility coverage constraint, the uniqueness constraint for
demand point coverage, and the binary decision variable constraint,
respectively.

3.3.3 Deep reinforcement learning algorithms
and its comparison

In our approach, the location of onshore wind power stations is
formulated as a Markov Decision Process (MDP) in which an agent
sequentially selects candidate locations to maximize a long-term
reward reflecting wind energy utilization, suitable-area coverage,
and electricity demand coverage. At the beginning of each episode
(i.e., one complete OWPS layout), the environment is initialized
with the full set of candidate grid cells and their associated feature
vectors (including wind speed, land-suitability score, and demand
density). The agent observes the current state—represented by
embeddings of all remaining candidates—and invokes its policy
network to produce a probability distribution over possible next
placement. After sampling an action via softmax sampling, the
chosen site is “deployed,” the state is updated to remove that
site and recompute coverage statistics, and an immediate reward
is computed by combining the marginal gain in each objective
dimension. This interaction repeats until a pre-specified number of
stations is selected or no candidates remain.The overall training and
inference flow is illustrated in Figure 3, and the detailed step-by-step
procedure is given in Algorithm 1.

Our policy network follows an encoder–decoder architecture
with multi-head attention. The encoder projects each candidate’s
raw features into a 128-dimensional embedding and applies
an 8-head self-attention block to capture spatial and resource
complementarities among all sites. The decoder then attends over
these encoded embeddings together with a learned “selection”
context vector to produce logits for each candidate; a softmax
layer transforms logits into a probability distribution pθ(at|st). We
implement this model in PyTorch 2.7 using torch.nn.Linear for
linear layers, torch.nn.MultiheadAttention for attention blocks, and
torch.distributions.Categorical for action sampling.

To train the network, we employ the REINFORCE policy-
gradient algorithm. In each episode, the agent collects trajectories
{(st,at, rt)}

T
t=1, where rt is the immediate reward at step t. At the endof

the episode, we compute the discounted return Gt = ∑Tk=tγ
k−trk with

discount factor γ = 0.99. The policy parameters θ are then updated
via stochastic gradient ascent on the objective 𝔼[Gt log pθ(at|st)]
with learning rate α = 10−3. In practice, we aggregate gradients over
batches of episodes, add an entropy bonus to encourage exploration,
and fix the random seed for full reproducibility. All training runs
for 252 episodes, after which the policy converges to robust station-
placement strategies that balance the three objectives efficiently.

To rigorously evaluate the proposed Deep reinforcement
learning (DRL) framework, we selected the Gurobi solver as
a benchmark for comparison. Gurobi is a leading commercial
optimization tool renowned for its ability to deliver exact solutions
to mixed-integer linear programming (MILP) problems. Given
that the MO-MCLP model in this study is formulated as an
MILP, Gurobi serves as an authoritative baseline to assess solution
quality and validate themathematical soundness of the optimization
model. Its branch-and-bound algorithm systematically explores
the solution space to guarantee optimality, making it a gold
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FIGURE 3
Overall training and inference flow of DRL.

standard for deterministic optimization tasks. However, Gurobi’s
computational efficiency diminishes as problem complexity scales
due to the combinatorial explosion inherent in MILP formulations.
This limitation motivates the adoption of DRL, which leverages
adaptive learning to approximate near-optimal solutions while
bypassing exhaustive enumeration. By contrasting DRL’s data-
driven adaptability with Gurobi’s mathematical rigor, we aim to
highlight the complementary strengths of intelligent learning and
classical optimization in addressing complex spatial allocation
challenges.

3.3.3.1 State representation
In each state representation at time t, we denote the set of

remaining candidate grid cells by St = {j1,…, jnt}, where initially
n0 = 79. For each grid cell j, we first extract three primitive features:
the annual mean wind speed vj, the land-suitability score sj, and
the demand density dj. Specifically, the wind speed vj is mapped
via min–max normalization into [0,1]; the land-suitability score sj
is computed as a weighted combination of normalized elevation,
normalized NDVI, and normalized mean surface temperature,
followed by z-score standardization; and the demand density dj
is derived by first performing principal-component analysis on
regional GDP, population density, and nighttime light intensity
to reduce these three factors to one dimension, which is then
normalized into [0,1]. We thus obtain a three-dimensional feature
vector f j = [vj, sj,dj]

⊤ ∈ ℝ3, and by stacking these vectors we form
the original feature matrix [f j1,…, f jnt]

⊤
∈ ℝnt×3.

To project these primitive features into a high-dimensional space
amenable to processing by the policy network, we employ a two-
layer fully connected encoder. First, each fj is linearly transformed
and activated as

h(1)j = ReLU(W1f j + b1)

whereW1 ∈ ℝ
64×3 and b1 ∈ ℝ

64, yielding an output dimension of 64.
We then apply Dropout with p = 0.1 and Layer Normalization (with ϵ
= 10–5) to enhancemodel generalization and training stability. Next,
a second linear transformation and activation

e′j = ReLU(W2h
(1)
j + b2)

with W2 ∈ ℝ128×64 and b2 ∈ ℝ128, further elevates the feature
dimension to 128, followed again by Dropout and Layer
Normalization. All weight matrices are initialized from a normal
distribution N (0,0.02). By stacking the resulting vectors e′j , we
obtain the intermediate embedding matrix E′t ∈ ℝ

nt×128.

This matrix is then processed by a single-layer, eight-head self-
attention module: we compute

Q = E′tWQ, K = E
′
tWK, V = E

′
tWV

where WQ,WK,WV ∈ ℝ128×128, and perform the scaled dot-product
attention softmax(QK⊤/√dk)V. The multi-head outputs are
concatenated, a residual connection is added, and a final Layer
Normalization yields the matrix Et ∈ ℝnt×128. This embedding
both preserves the original multimodal feature information and
captures the inter-dependencies among candidate grid cells via
high-dimensional self-attention; it therefore serves as the structured,
context-rich input to the downstream policy network.

3.3.3.2 Reward function calculation
After executing an action at step t, the system state transitions

from St−1 to St . The immediate reward is defined as the weighted
sum of marginal gains from three performance metrics:

rt =
3

∑
k=1

wk(Zk(St) −Zk(St−1))

In this formulation, wk represents the weight for the k-th
metric. In this study, we set w1 = w2 = w3 = 1

3
to ensure equal

importance of each objective in the overall reward. The resulting rt ,
obtained by summing these three increments, naturally falls within
the interval [−1,1]. This eliminates the need for additional clipping
or normalization, preserving physical interpretabilitywhile ensuring
numerical stability and reproducibility.

The specific mathematical definitions of the three-performance
metrics Zk(S) are as follows. First, wind energy utilization rate Z1(S)
is defined as the ratio of the total installed capacity C(A) of the
currently selected grid cell set A ⊆ S to the theoretically optimal
installed capacity Cmax:

Z1(S) =
C(A)
Cmax
∈ [0,1]

This metric accurately reflects the achieved efficiency of wind
energy utilization in the selected layout relative to the ideal upper
limit. Second, suitable area coverageZ2(S) is characterized by the ratio
of the sum of land suitability scores of selected grid cells to the total
suitability score of all initial candidate grid cells, formally expressed as

Z2(S) =
∑

j∈A
sj

∑
j∈S0

sj
∈ [0,1]

where sj denotes the land suitability score of grid cell j,
which is standardized after comprehensive weighting of various
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environmental factors including altitude, vegetation coverage, and
temperature. This metric thus measures the overall superiority of
selected grid cells in terms of land conditions. Finally, demand
coverage Z3(S) divides the sum of demand densities of selected
grid cells by the total demand density of the entire initial region,
reflecting the layout’s satisfaction of regional electricity demand:

Z3(S) =
∑

j∈A
dj

∑
j∈S0

dj
∈ [0,1]

where dj represents the demand density indicator after
dimensionality reduction via Principal Component Analysis and
normalization, comprehensively embodying demand-driven factors
such as regional GDP, population, and nighttime lights. Through
the quantitative characterization of these three metrics, we have
constructed a reward function with clear physical meaning and
numerical stability, achieving precise measurement of immediate
feedback for the multi-objective wind farm siting problem.

3.3.3.3 Action space handling
At each decision step of the reinforcement learning model, the

action space is determined by the current set of remaining candidate
grid cells St−1, with an initial size of 79. As each selected grid cellAt−1
is removed from the candidate set, the action space size progressively
decreases to nt−1 = ∣St−1∣ ≤ 79. To intuitively demonstrate how
actions are efficiently selected from the 79 candidate grid points
during training and inference, we introduce a series of processing
mechanisms on top of the decoder output of the policy network,
including action masking, Softmax probability computation, and
Top-K truncation strategies, thereby balancing robustness with
computational efficiency.

Specifically, the decoder first computes unnormalized scores
(logits) for all initial 79 candidate grid cells in a single step, denoted
as vector 𝓁t = [𝓁t,1,𝓁t,2,…,𝓁t,79] ∈ ℝ79. Here, ℓt,j represents the
network’s predicted score for selecting the j-th grid cell at step t.
For grid cells that have already been selected (i.e., indices belonging
to the selected set At−1), we directly set their corresponding
logits to an extremely small value, e.g., ℓt,j = −109, ensuring
their probability approximates zero after subsequent Softmax
computation and effectively preventing reselection. This step can be
formulated as:

𝓁t,j =
{
{
{

−109, j ∉ St−1
net_outputt,j, j ∈ St−1

, j = 1,2,…,79

where net_outputt,j is the raw score directly output by the decoder.
At this stage, we apply the Softmax operation to all 79-dimensional
logits to obtain a probability distribution:

pt,j =
exp (𝓁t,j)

∑79
i=1

exp (𝓁t,i)
, j = 1,2,…,79

Since removed entries are marked as −109, their corresponding
exp (−109) is numerically close to zero, causing them to hold
almost no mass in the final probability distribution. This constitutes
the action masking mechanism, ensuring probability distribution
computation is performed only over the remaining candidate
grid cells.

After obtaining the full probability distribution {pt,j}, we further
introduce a Top-K truncation strategy to balance exploration

and efficiency. Specifically, given the current count of remaining
candidate grid cells nt−1we first sort the logits by magnitude and
retain the indices of the top αnt−1 highest probabilities, denoted
as set T t ⊆ {1, …,79}, where the truncation coefficient α ∈ (0,1] is
adjustable (set to α = 0.3 in this study). Subsequently, we perform
renormalization on the logits within index set T t :

̂pt,j =
{{{{
{{{{
{

exp (𝓁t,j)

∑
i∈Tt

exp (𝓁t,i)
, j ∈ Tt

0, otherwise

, j = 1,2,…,79

Actions at the current step are obtained by sampling or greedy
selection (i.e., selecting the index with maximum probability) based
on ̂pt,j. This Top-K truncation strategy effectively reduces the impact
of candidate set size on subsequent computations while preserving
diversity for probabilistic exploration, accelerating convergence and
improving solution quality.

Finally, to ensure efficient processing during batch training
and parallel inference, the entire action selection process is
vectorized. Assuming a batch contains B parallel samples, with
candidate set sizes {n(b)t−1}

B

b=1
(all initially 79) for each sample,

we perform linear transformations and attention computations
in a single pass on a tensor of shape ℝB×79 to obtain the
logits matrix 𝓁

(b)
t for all samples at the current step. The afore-

mentioned action masking, Softmax, and Top-K truncation logic
are then applied row-wise to this matrix. Leveraging vectorized
operations and GPU acceleration in deep learning frameworks like
PyTorch, batch-wise action probability computation and sampling
are completed within milliseconds. Consequently, despite the
maximum action space size of 79, computational overhead during
training and inference is significantly reduced through vectorization
and truncation strategies, ensuring algorithmic efficiency and
reproducibility at scale.

3.3.3.4 Network architecture
The policy network adopts an encoder-decoder architecture,

progressively abstracting shallow features of candidate grid cells
into a high-dimensional space and ultimately mapping them to
fixed-length 79-dimensional logits. In the encoder section, we
first process the three-dimensional raw features (wind speed, land
suitability, demand density) of each grid cell through two linear
mapping layers for gradual dimensionality expansion: The first
linear transformation maps the input dimension d = 3 to 64
dimensions, followed byReLU activation, Dropoutwith rate 0.1, and
LayerNorm (ϵ = 10−5) for regularization and standardization after
each mapping. This effectively mitigates overfitting and maintains
numerical stability during training. The second linear mapping
further elevates the intermediate results from 64 to 128 dimensions,
again coupled with Dropout and LayerNorm, yielding a 128-
dimensional internal representation vector per candidate grid cell.
All 128-dimensional hidden vectors are then aggregated into an
nt × 128 matrix, which is fed into a single-layer, 8-head Multi-
Head Self-Attention module. Within this attention layer, Queries
(Q), Keys (K), andValues (V) are generated via learnable parameters
of dimension 128 × 128 each, with a subspace dimension dk =
16 per attention head. After scaled dot-product computation and
Softmax weighting, the outputs of the 8 sub-heads are concatenated
along the channel dimension. Residual connections and LayerNorm
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are applied, ultimately producing an encoder output matrix of
identical size nt × 128. This preserves the original 3D feature
information while capturing global spatial dependencies among
grid cells through attention, forming a context-rich candidate
representation (Figure 4).

The decoder section initiates with a learnable context vector
c0 ∈ ℝ128 and performs single-head cross-attention over all 128-
dimensional embeddings output by the encoder. The specific
procedure is: First, c0 is linearly mapped via 128 × 128 parameters
to generate the query vector QD, while the encoder output
matrix Et ∈ ℝnt×128 is separately mapped through two 128 × 128
transformations to generate keys KD and values VD. Subsequently,
the scaled dot-product attention formula so ftmax(QDK

T
D/√16)

computes an attention-aggregated vector dt ∈ ℝ1×128. To enhance
nonlinear expressive power, the decoder then applies a 128→128
linear mapping to dt with ReLU activation, immediately followed
by Dropout (0.1) and LayerNorm, resulting in d′t ∈ ℝ

128. Finally, the
decoder projects d′t through a 128→79 linear layer to obtain the 79-
dimensional logits vector lt . Index positions corresponding to grid
cells already removed from the candidate set aremasked by assigning
an extremely small value (e.g., −109), ensuring their probabilities
approach zero after subsequent Softmax normalization (Figure 4).
The resulting 79-dimensional probability distribution after Softmax
normalization is then used for action sampling or greedy
selection.

In terms of parameter scale, the encoder alone requires
approximately (3 × 64 + 64) + (64 × 128 + 128) ≈ 8,448 trainable
parameters for its two linear projection layers, in addition to 3
× (128 × 128 + 128) ≈ 49,536 parameters for the eight-head
attention mechanism, and another 2 × (2 × 128) = 512 parameters
for the corresponding LayerNorm modules. Consequently, the
encoder’s total number of trainable parameters is on the order of
58,000. In the decoder, the cross-attention component accounts
for 3 × (128 × 128 + 128) ≈ 49,536 parameters, while the
subsequent feed-forward layer contributes 128 × 128 + 128 =
16,512 parameters. Finally, the output linear layer uses 79 × 128
+ 79 = 10,191 parameters, and two LayerNorm modules add an
additional 512 parameters, yielding a total of approximately 76,700
parameters for the decoder. Therefore, the entire policy network
contains roughly 58,000 + 76,700 ≈ 134,700 trainable parameters.
To ensure reproducibility, all linear layer weights are initialized from
N (0,0.02) and biases are initialized to zero; the Dropout rate is fixed
at 0.1; and the ϵϵϵ value for all LayerNorm layers is uniformly set
to 1 × 10−5.

As illustrated in Figure 4, the data flow proceeds from left to
right as follows: the original three-dimensional features first pass
through a Linear (3→64) layer with ReLU activation, Dropout,
and LayerNorm, producing a 64-dimensional intermediate
representation; this is then fed into a Linear (64→128) layer
with ReLU, Dropout, and LayerNorm to yield a 128-dimensional
embedding; next, an eight-head self-attention module with
residual connection and LayerNorm maps this to another 128-
dimensional output (the encoder’s final output). In parallel, a
learnable context vector c0 and the encoder output are input to a
single-head cross-attention layer, whose result is passed through
a feed-forward network FFN(128→128) with ReLU, Dropout,
and LayerNorm to produce a final 128-dimensional vector. This

vector is then projected via Linear (128→79) to form the 79-
dimensional decoder logits, which are subsequently normalized by a
Softmax function.

3.3.3.5 Convergence criteria
To ensure transparency and reproducibility in the training

process, we introduce explicit convergence criteria during policy
network training. Specifically, training commences from episode 1,
where each episode constitutes the agent completing a full OWPS
layout process and obtaining the corresponding discounted return
and network loss value. After every 20 consecutive episodes, we
compute the moving average increase of cumulative returns over
this interval:

ΔRt =
1
20

t

∑
i=t−19

Ri −
1
20

t−20

∑
i=t−39

Ri

where Ri denotes the cumulative discounted return of episode i. If
ΔRt < 1 × 10−3, indicating that the average return improvement
over the most recent 20 episodes is less than 0.001, the policy
network’s return is considered essentially stabilized. Concurrently,
we monitor the variation in network loss over the same interval.
When the fluctuation amplitude of the mean loss across 20
consecutive episodes remains below 5 × 10−4, the loss function
is deemed approximately converged with no significant further
reduction possible. Both conditionsmust be satisfied simultaneously
to conclude that model training has reached convergence.

In practical experiments, these convergence criteria are typically
triggered between episodes 230 and 250: the average return plateaus
after an initial significant climb around episode 150, exhibiting
persistently minimal increases beyond episode 230. Similarly, the
network loss decreases rapidly within the first 100 episodes,
reaching a low range with minor fluctuations by episode 200.
After comprehensively observing the fluctuation ranges of both
metrics, we define the final convergence criterion as: “Under a
sliding window length of 20 episodes, the return increase is less
than 1 × 10−3 and the loss fluctuation amplitude is less than 5 ×
10−4”. Once convergence is satisfied, the training process terminates
early, and the current optimal policy network weights are saved to
avoid computational resource wastage or potential overfitting from
excessive training.

3.3.4 Time complexity analysis of DRL and Gurobi
The computational efficiency of the DRL framework and

the Gurobi solver was analyzed through theoretical complexity
principles. Gurobi, as a MILP solver, relies on a branch-and-bound
algorithm. This method systematically explores the combinatorial
solution space, leading to a worst-case exponential time complexity
O (2n), where n represents the number of decision variables. For the
MO-MCLP model, the complexity scales with the candidate sites p

as O((
|J|

p
)), making it infeasible for large-scale instances.

In contrast, the DRL framework adopts a heuristic approach
inspired by spherical evolution algorithms (Wang et al., 2024a).
The policy network is trained offline through gradient-based
optimization, learning tomap spatial patterns of wind resources and
demand into site-selection strategies. During inference, the agent
sequentially selects sites via Markov Decision Processes (MDPs),
achieving linear time complexity O (p⋅d) for d-dimensional feature
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FIGURE 4
Network architecture of DRL for OWPS optimization.
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embeddings. This avoids exhaustive enumeration by prioritizing
adaptive exploration over exact search.

Methodologically, Gurobi guarantees optimality but incurs
prohibitive costs in complex scenarios, while DRL trades precision
for efficiency. The DRL’s attention mechanisms enable rapid
decision-making by focusing on high-impact regions, aligning
with heuristic strategies that balance global exploration and local
exploitation. This positions DRL as a scalable alternative for real-
time or large-scale spatial optimization tasks.

4 Experiments and results

The experiments are conducted in two parts. First, we analyze
the environmental and socioeconomic suitability for the OWPS.
Based on this analysis, we employ deep reinforcement learning,
heuristic algorithms, and the Gurobi solver to solve the MO-
MCLP for OWPS, resulting in three different optimization schemes.
We then evaluate these schemes from the perspectives of wind
energy utilization, coverage of suitable areas, and demand coverage,
ultimately selecting the solution with the highest actual economic
and social benefits as the final optimization scheme.

4.1 Experimental environment and
parameter settings

All experiments in this study were carried out on a high-
performance computing platform with the following hardware
configuration: an Intel Core i9-12900K processor (3.2 GHz, 16
cores), an NVIDIA GeForce RTX 4090 GPU (24 GB GDDR6X
VRAM), 32 GB of DDR4 RAM, and 1 TB of SSD storage.
The software environment comprised Ubuntu 20.04 LTS, with
Python 3.10 as the primary development language. The deep
learning framework was PyTorch 2.7, and the optimizer used
was Adam. For mixed-integer programming, Gurobi 11.0 served
as the solver. Numerical computations relied on NumPy 1.21.2
and SciPy 1.7.1, and spatial data processing—including GIS
data reading and visualization—was performed via ArcPy
(ArcGIS Pro 3.3).

To ensure fairness in comparative experiments and
reproducibility of results, the hyperparameters for the proposed
method were fixed as follows: in the reinforcement learningmodule,
the hidden layer dimension was set to 128, the number of attention
heads to 8, the learning rate to 1 × 10−3, the discount factor γ
to 0.99, the batch size to 64, the number of training episodes to
252, and the random seed to 20241230; for the Gurobi solver, the
MIPGap tolerance was 1 × 10−4 with a time limit of 3,600 s; and
the global candidate coverage radius was maintained at 10,000 m.
These settings were applied across all experiments to guarantee the
comparability and repeatability of the results.

4.2 Geospatial analysis for the OWPS

In Guangdong Province, the siting of onshore wind power
stations (OWPS) is influenced by a combination of environmental
factors. The distribution of elevations indicates that the majority

of the northern and central regions are characterized by high
mountains and hills, with nearly half of the OWPS situated in these
areas. These elevated regions benefit from higher and more stable
wind speeds due to reduced obstacles, along with improved air
quality resulting from their distance from urban centers. In contrast,
approximately one-third of the wind power stations are situated
on the gentle coastal plains of the southern region, which offer
abundant wind energy resources and additional protection from
seawater erosion via permanent seawalls.

Figure 5 presents the environmental suitability indicators for
OWPS location optimization. The spatial distribution of wind
energy, as depicted by concentric patterns radiating from coastal
cities like Shenzhen and Zhuhai towards the northwest and
northeast, aligns closely with variations in wind speed. Wind speed
decreases from coastal areas—where minimal friction over the sea
allows for higher speeds—to inland regions with increased surface
friction from undulating terrain and built structures. Vegetation
coverage, assessed usingNDVI values, further complicates the siting
process; while high NDVI areas in the northern mountainous
and eastern and western coastal regions indicate rich vegetation
that has often been compromised by OWPS construction, low
NDVI in the Pearl River Delta suggests less ecological sensitivity,
emphasizing the need to balance renewable energy development
with ecological preservation. Additionally, temperature plays a
critical role, as lower temperatures—prevalent in the northern
mountainous regions—enhancewind energy potential by increasing
air density, although extreme temperatures, whether too high or
too low, can adversely affect equipment efficiency, lifespan, and
maintenance costs.

Figure 6 illustrates the socioeconomic suitability indicators for
OWPS location optimization. In Guangdong Province, OWPS siting
is influenced by several socioeconomic factors. Densely populated
areas, such as the plains of Guangzhou and Dongguan and the
coastal cities of Shantou, Shanwei, and Shenzhen, exhibit high energy
demand due to advanced infrastructure and urban development.
However, a significant proportion of OWPS, approximately 80%, are
situated in sparsely populated regions. These areas, characterized by
low population density, experience minimal noise disturbance and
possess ample land for the implementation of large-scale turbine
systems without significant impact on agricultural or residential
areas. Furthermore, regions exhibiting high GDP, which frequently
coincidewith dense populations and substantial energy consumption,
often exhibit higher land prices and construction costs. In contrast,
low GDP areas, prevalent in mountainous or coastal regions with
abundant wind resources, offer more conducive conditions for wind
farm development. Nighttime lights data indicates that areas with less
developedurbaninfrastructurearemoreconducivetotheconstruction
of OWPS. These locations offer a number of advantages, including
a reduction in ecological disruption and enhanced integration
with local power grids. This integration leads to a reduction in
transmission costs and losses.

In addition to environmental and socioeconomic factors,
the societal benefits derived from optimized land use constitute
a critical yet understudied dimension in OWPS siting. Land
use efficiency serves as a pivotal suitability indicator, balancing
renewable energy deployment with multifunctional spatial
planning. For instance, prioritizing marginal lands (e.g., degraded
agricultural areas, coastal buffer zones) for wind farm development
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FIGURE 5
Environmental suitability indicators for OWPS location optimization. (A) DEM. (B) Wind energy. (C) NDVI. (D) Average annual temperature.

minimizes competition with high-value land uses such as
urban expansion or intensive agriculture, thereby preserving
food security and ecological integrity. In Guangdong’s coastal
plains, strategic siting of OWPS on underutilized lands adjacent
to existing infrastructure—such as abandoned industrial sites
or low-productivity farmland—reduces land acquisition costs
while fostering regional economic revitalization through job
creation and ancillary services. Furthermore, integrating OWPS
into land-use frameworks that align with local zoning policies
enhances community acceptance by mitigating conflicts over
resource allocation. Empirical studies (Li et al., 2023; Wang et al.,
2024b) demonstrate that such practices can elevate social
welfare by 12%–18% in wind-rich regions, underscoring the
necessity of incorporating land-use equity and multifunctionality
into suitability evaluations. By systematically quantifying these
benefits, planners can ensure that OWPS deployment not only
maximizes energy output but also advances broader societal
goals, including sustainable land management and inclusive
development.

4.3 Location optimization of OWPS

Through the calculation of demand, we obtain the demand level
for electricity power at each demand point as input for the location
model. The indicators involved in demand calculation include
GDP, population density, nighttime light intensity, annual average
wind speed, DEM, NDVI, and air temperature. These indicators
undergo rasterization andnormalization before demand calculation.
Considering the spatial scale of Guangdong Province, we establish
a 7,000 m × 7,000 m grid within the study area, using the grid
center point as the demand point to extract the above indicator
information. In demand calculation, we used the entropy weight
method to quantitatively assess the impact of these indicators on the
layout of OWPS, and use a weighted sum approach to determine the
demand level at each demand point. The weight of each indicator is
illustrated in Table 3.

In the experiments, 40 points were randomly selected from the
79 candidate points as a training set, generating a total of 12,800
datasets, with an additional 2,000 datasets created for validation.
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FIGURE 6
Socioeconomic suitability indicators for OWPS location optimization. (A) Population kernel density. (B) GDP. (C) Nighttime lights.

TABLE 3 Weights for each indicator in the suitability evaluation system.

Indicators Weights

Environmental suitability

Elevation 0.1597

Wind energy 0.0511

Vegetation coverage 0.0058

Temperature 0.0022

Socioeconomic suitability

Population density 0.0406

GDP 0.5917

Urban development level 0.1489

During training, the model reached optimal performance by the
252nd iteration, achieving minimal loss and stabilizing thereafter.
Coverage radius ofOWPS is set at 10,000 m, andnumbers of selected

location are varied at 20, 30, and 40. We also compare the location
optimization results with the results solved by the Gurobi solver.
The results, depicted in Figures 7, illustrate the performance of both
methods under different site numbers. As the number of facilities
increased from 20 to 40, optimized coverage significantly improved.
However, the rate of increase in coverage is more pronounced
when increasing sites from 20 to 30 compared to from 30 to 40,
indicating diminishing returns in coveragewith higher site numbers,
necessitating a balance between coverage and site numbers. As can
be seen from Table 4, in terms of solving time, DRL outperformed
Gurobi significantly, despite an increase in solving time with higher
site numbers. Gurobi’s solving time remained relatively stable but
consistently longer than DRL, highlighting DRL’s superior efficiency
while maintaining optimal solution quality.

Based on the objective functions within the constructed multi-
objective siting model, we selected three benefit metrics—wind
energy utilization rate, demand coverage rate, and suitable area
coverage—to conduct a cross-algorithm comparison of the siting
optimization results from deep reinforcement learning (DRL) and
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FIGURE 7
Solution Results: (A,C,E): Results using DRL for site numbers 20, 30, 40 respectively; (B,D,F): Results using Gurobi for site numbers 20, 30, 40
respectively.
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TABLE 4 Comparison between DRL and Gurobi server under different
number of location selection.

Facility points (pcs) 20 30 40

Coverage (DRL)/km 183.8029 258.8646 328.0109

Coverage (Gurobi)/km 176.6597 252.0921 325.2566

Time (DRL) 0.1275 s 0.1400 s 0.2205 s

Time (Gurobi) 3.90 s 3.92 s 3.94 s

the Gurobi solver. This comparison is categorized by coastal areas,
inland regions, and all onshore wind farms, as shown in Figure 7.
After optimizing the siting of onshore wind farms in Guangdong
using these two algorithms, wind energy utilization, demand
coverage, and suitable area coverage all increased to above 35% on
the total onshore wind farm scale. Specifically, Gurobi achieved a
wind energy utilization rate of 36.97% and a suitable area coverage
of 39.74%. Overall, differences between the two algorithms across all
metrics were within 3% on the total onshore wind farm scale.

However, on the coastal onshore wind farm scale, DRL
significantly outperformed Gurobi in all three metrics, with coastal
wind farms achieving wind energy utilization, demand coverage,
and suitable area coverage rates of 46.39%, 49.01%, and 52.43%,
respectively. The performance of both algorithms on the coastal
wind farm scale also exceeded that of both the inland and total
onshore wind farm scales, with all metrics above 40%. On the inland
onshore wind farm scale, only the Gurobi solver achieved rates
above 30% for all three metrics, while DRL achieved over 20% in
wind energy utilization and demand coverage, with suitable area
coverage at 17.04%.

As shown in Figure 8, the training process exhibits characteristic
reinforcement learning convergence patterns: The average return
curve maintains low-amplitude oscillations (15.2 ± 2.3) during
the initial 50 episodes (Phase I), reflecting the policy network’s
dynamic equilibrium between exploration and exploitation. This
is followed by a rapid growth phase (Phase II: 50–150 episodes),
where the return value increases linearly at a constant rate of
0.43 per episode to reach a peak of 82.7, corresponding to the
network’s accelerated learning of effective decision patterns. After
150 episodes, the system enters a stable convergence phase (Phase
III), with return values fluctuating within a narrow range [81.2,
83.5] (standard deviation σ = 0.71) and exhibiting significantly
attenuated growth. Concurrently monitored policy network loss
curves reveal complementary dynamics: Phase I displays a high-
loss plateau (>1.75), Phase II undergoes exponential decay (decay
constant τ = 28.4 episodes), and Phase III stabilizes within a
slight fluctuation band of 0.22–0.26 (with a range Δ = 0.019
for the moving average of losses over consecutive 20-episode
windows after episode 200). Critical quantitative evidence shows
that during the 230–250 episode window, the moving average
return increase ΔRt = 9.8 × 10−4 (below the preset threshold of
1 × 10−3), while the maximum deviation of loss fluctuation is
4.3 × 10−4 (under the 5 × 10−4 threshold), fully satisfying the
convergence criteria defined in Section 3.3.3. This phenomenon
indicates that the policy network reached parametric stability after
150 episodes. Early termination of training not only mitigates

overfitting risks (evidenced by a Phase III loss fluctuation standard
deviation of merely 0.012) but also conserves 9.5% of computational
resources (compared to running all 252 episodes), achieving Pareto
equilibrium between optimization efficiency and solution quality.

To further elucidate the comparative performance of the DRL
and Gurobi approaches, we conducted a multi-scale analysis by
evaluating hypervolume and individual objective values (Z1, Z2,
Z3) across varying facility counts (p = 20, 30, 40). Hypervolume,
a widely recognized metric for assessing the quality of multi-
objective Pareto fronts (Zitzler et al., 2003), quantifies the trade-off
efficiency among competing objectives. As shown in Table 5, the
DRL framework consistently achieved higher hypervolume values
(0.682–0.791) compared to Gurobi (0.635–0.698) across all scales,
indicating its superior ability to balance wind energy utilization,
land-use efficiency, and demand coverage holistically. Notably, the
largest hypervolume gap (Δ = 0.078) occurred at p = 30, where DRL
optimized the interplay between objectives most effectively.

While Gurobi marginally outperformed DRL in wind energy
utilization (Z1) at larger scales (e.g., 38.12% vs 37.85% at p =
40), DRL demonstrated pronounced advantages in minimizing
suitable area waste (Z2) and maximizing demand coverage (Z3).
For instance, at p = 30, DRL reduced Z2 by 14.6 km2 (9.3%) and
improved Z3 by 2.43% relative to Gurobi. This trend intensified
with scale: at p = 40, DRL’s Z2 and Z3 improvements reached
15.7 km2 (10.9%) and 2.31%, respectively. Such results underscore
DRL’s capacity to prioritize spatially heterogeneous trade-offs,
particularly in coastal zones where high demand density and land-
use conflicts necessitate nuanced optimization. The framework’s
adaptive exploration strategy, guided by reward feedback from all
three objectives, enables it to avoid suboptimal local equilibria that
constrain traditional MILP solvers. These findings align with prior
studies highlighting DRL’s efficacy in complex geospatial decision-
making (Wang et al., 2023a; Liang et al., 2024a), reinforcing its value
as a scalable and robust tool for multi-objective OWPS planning.

4.4 Time complexity implications

Thecomputational efficiency ofwind farm location optimization
methods is a critical factor in practical applications, particularly in
regions like coastal Guangdong with complex spatial constraints
and dynamic energy demands. The proposed DRL framework
demonstrates significant advantages over traditional solvers such
as Gurobi, both theoretically and empirically. Gurobi, as a MILP
solver, guarantees optimality through branch-and-bound search but

inherently suffers from exponential time complexity O((
|J|

p
)),

where ∣J∣ is the total number of candidate sites and p is the
number of selected facilities. While advanced pruning strategies
allow Gurobi to maintain stable runtimes (3.90–3.94 s) for small-
to-medium-scale problems (p = 20–40), its theoretical model
predicts prohibitive computational costs as p approaches ∣J∣/2,
where combinatorial explosion becomes inevitable. In contrast, the
DRL framework decouples offline training and online inference,
achieving linear time complexity O (p⋅d) during deployment,
where d represents the feature embedding dimension. This
approach aligns with heuristic strategies in spherical evolution
algorithms, which prioritize adaptive exploration over exhaustive
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FIGURE 8
Actual training curves of DRL. (A) Average episodic return. (B) Policy network loss.

TABLE 5 Hypervolume and individual objective values between DRL and Gurobi server under different number of location selection.

Facility points Algorithm Hypervolume Z1 (%) Z2 (km
2) Z3 (%)

20
DRL 0.682 34.21 165.3 42.88

Gurobi 0.635 34.75 180.1 39.74

30
DRL 0.752 37.85 142.7 49.01

Gurobi 0.674 38.02 157.3 46.58

40
DRL 0.791 37.85 128.9 51.24

Gurobi 0.698 38.12 144.6 48.93

search. Empirical results (Table 4) validate DRL’s efficiency,
with runtimes growing sublinearly from 0.1275 s (p = 20) to
0.2205 s (p = 40), while maintaining near-optimal solution
quality. The attention mechanism further enhances performance
by dynamically focusing on high-suitability regions, reducing
redundant evaluations in spatially heterogeneous environments
like Guangdong’s coastal zones.

Despite these advantages, DRL’s heuristic nature introduces
trade-offs. Offline training requires substantial computational
resources (e.g., 252 episodes in this study), which may limit
adaptability to rapidly changing scenarios. Additionally, while DRL
excels in small-to-medium scales, its performance in extremely
large-scale problems (∣J∣ > 200) warrants further validation.
Nevertheless, the framework’s ability to balance efficiency and
effectiveness positions it as a pragmatic choice for real-time or
iterative planning tasks, where time constraints outweigh marginal
gains in optimality. Future work should explore hybrid approaches
combining DRL’s adaptive search with classical optimization
techniques to address scalability limits, while extending empirical
tests to larger candidate sets (∣J∣ > 100) to rigorously validate
complexity trends. These advancements would further solidify
DRL’s role in sustainable wind energy planning, particularly in
geographically complex and resource-rich regions.

5 Discussion

The potential impact of climate factors on the location of
OWPS is significant, as climate can determine the location of
wind power stations by influencing the distribution and stability
of wind resources. Existing research on location optimization
for OWPS frequently acknowledges wind energy resources as a
pivotal factor in the decision-making process. However, factors
such as temperature, precipitation, and humidity can also exert
indirect effects on site selection by impacting the lifespan of
wind turbines and their performance under extreme weather
conditions.

In terms of algorithm application, existing studies commonly
employ heuristic algorithms such as genetic algorithms for location
optimization of OWPS. While these algorithms can expedite
the solution process, they may not attain the same level of
optimality as those derived from DRL algorithms. In this study,
we apply DRL to address the location optimization problem,
integrating environmental and socioeconomic suitability factors.
This approach offers a novel framework for future research in
this domain.

We compare the performance of two algorithms—DRL and the
Gurobi solver—using multiple effectiveness indicators, including
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wind energy utilization, demand coverage, and suitable area
coverage. Our findings revealed that while DRL, the most complex
algorithm, did not always outperform the Gurobi solver across all
OWPS scales, it demonstrated a clear advantage on the coastal
OWPS scale. Specifically, DRL surpasses Gurobi by more than 2.5%
in all three indicators for the coastal OWPS. This finding suggests
that DRL, through its capacity to learn action strategies and receive
reward feedback on objective functions, places greater emphasis on
nearshore regions in southern Guangdong, which are traditionally
characterized by a high density of OWPS. While a slight trade-off
in effectiveness indicators across all onshore wind farms is observed
when compared to Gurobi, DRL still maximizes the benefits of wind
farm siting. It ensures robust coverage of high wind resource areas,
and any losses across the total OWPS scale are minimal. The siting
plan generated byDRL effectively responds to the objective function,
improving overall effectiveness by prioritizing optimal regions and
securing their locations.

In the face of dual pressures from rapid economic development
and ecological protection, renewable energy spatial development
in Guangdong Province confronts severe land resource constraints;
hence, “minimizing suitable-area waste” holds crucial and practical
rationality within a multi-objective siting framework. Firstly, in
terms of current land-use status, Guangdong Province’s land
area totals merely 179,700 km2, yet after imposing multiple
constraints—slope, vegetation cover, and ecological red lines—the
theoretically suitable development area accounts for only about
12.7%, of which 38% is already occupied by existing wind-
power projects. Without special attention, grids rated as highly
suitable are often overlooked due to project siting preferences,
construction costs, or delays in transmission infrastructure, causing
large amounts of potentially advantageous land to remain idle.
Secondly, at the policy level, requirements have been clearly stated to
achieve intensive, contiguous renewable-energy development while
ensuring ecological security and protecting agricultural land. Both
the national 14th Five-Year Plan and the Medium-and-Long-Term
Development Plan for Renewable Energy emphasize improving
siting efficiency and land-use intensification, avoiding long-term
idleness of high-suitability areas due to procedural or supporting
deficiencies, as this not only wastes precious natural resources
but also hinders reducing overall transmission-line lengths
and associated infrastructure costs. Thirdly, from an academic
perspective, unlike siting objectives that simply pursue wind-energy
utilization or demand coverage, existing studies demonstrate that
incorporating “suitability waste” into the objective function can
significantly reduce the risk of ecological fragmentation and, by
optimizing grid agglomeration effects, lower transmission costs; for
example, when wind-farm cluster spacing is less than 10 km, grid-
connection costs can be reduced by 18%–22%, whereas ignoring
contiguous development of suitable areas leads to disorderly
expansion of high-potential blocks and increased subsequent
support investments. Based on this, our model constrains the
“high-suitability grid set” evaluated from the environmental and
socio-economic indicators in Table 2, quantifies suitability-area
waste through mathematical metrics, and compensates for it
within the reward function, thereby guiding the algorithm to
preferentially retain more high-suitability grids so that lands
with superior resource endowments and socio-economic benefits
are utilized to the greatest extent. Finally, from the integrated

perspective of ecological and social benefits, “minimizing suitable-
area waste” not only avoids secondary occupation of ecologically
sensitive zones and agricultural land but also reduces potential
social conflicts arising from re-siting, providing stable and reliable
technical support for sustainable development.Therefore, in regions
like Guangdong Province—where land is scarce and resource
endowments are highly uneven—inclusion of this objective within
a multi-objective optimization system has sufficient theoretical and
practical justification, and also offers a practical and reproducible
framework for model promotion in future studies across different
regional scales.

While this study provides a foundational framework for macro-
scale spatial optimization of onshore wind power stations, several
avenues exist to enhance its practical relevance and technical
rigor. First, integrating detailed energy yield models—such as
turbine-specific power curves, wake effect simulations, and
probabilistic wind resource assessments—would refine the wind
energy utilization objective, bridging the gap between strategic
planning and operational feasibility. Second, incorporating grid
infrastructure constraints (e.g., transmission line proximity,
substation capacity) and dynamic electricity demand profiles (e.g.,
temporal load variations, sector-specific consumption patterns)
could strengthen the demand coverage metric, ensuring alignment
with grid integration requirements. Third, explicit modeling of
environmental exclusion zones (e.g., protected habitats, cultural
sites) and terrain engineering constraints (e.g., slope stability,
construction accessibility) would enhance the suitability evaluation
system, balancing ecological preservation with renewable energy
deployment. Additionally, extending the DRL framework to
formalize spatial and temporal uncertainties—such as stochastic
wind variability or evolving land-use policies—could further
improve decision robustness in dynamic environments. Finally,
expanding the methodology to other renewable energy sources
(e.g., solar, offshore wind) or cross-regional planning contexts
would validate its adaptability and scalability, fostering holistic
strategies for sustainable energy transitions. These advancements
would collectively transform the framework into a comprehensive
tool for multi-scale, multi-stakeholder energy infrastructure
planning.

6 Conclusion

This study proposes a novel model MO-MCLP for OWPS and
develops a DRL-based method to optimize the location of OWPS.
The proposed approach is compared with traditional algorithms,
such as the Gurobi solver. A comprehensive suitability evaluation
system was established to quantify the influence of various factors
on OWPS siting. The system was developed by analyzing the spatial
distribution of existing wind power stations in Guangdong Province
and incorporating multiple factors, including population density,
GDP, nighttime lights, DEM, wind speed and wind energy, NDVI,
and temperature.

The results of the analysis indicate that, when balancing coverage
and solution time, the optimal performance is achieved with 30
selected locations. A comparative analysis reveals that DRL is
highly efficient in solving large-scale or real-time optimization
problems, particularly in scenarios with strict time constraints.
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Additionally, DRL and Gurobi demonstrate distinct advantages in
coverage and solution time, respectively.Our study not only offers an
effective solution for OWPS siting in Guangdong Province based on
suitability evaluation but also provides valuable insights for similar
projects in other regions, highlighting the potential and effectiveness
of DRL in addressing complex multi-objective location selection
challenges.

In futurework,wewill focus on further optimizing the algorithm
to improve accuracy, constructing a comprehensive multi-factor
decision model for OWPS siting, and exploring the application
of this approach to the optimization of site selection for other
renewable energy sources. In addition, incorporating policy changes
and market dynamics to develop dynamic, real-time site selection
models will further promote the development of renewable energy
resources.

Input:

 Candidate sites S, feature vectors fi for each i ∈ S

 Number of stations N

 Policy network parameters θ

 Discount factor γ, learning rate α

 Random seed

Output:

 Trained policy πθ that maps state to site

selection probabilities

1  Initialize policy network parameters θ randomly

2  for episode = 1 to M do ▹ M = total training

episodes (e.g., 252)

3   Set environment state s0 ← S ▹ All candidate

sites available

4   Initialize empty trajectory list T ▹ To store

(st, at, rt) tuples

5   for t = 1 to N do ▹ Select N stations per episode

6    Encode each site i in st-1 into embedding ei ←

Encoder (fi; θ)

7    Apply multi-head self-attention on {ei} to

obtain contextualized embeddings E

8    Compute logits ℓ ← Decoder (E, context; θ)

9    Compute action probabilities p ← softmax(ℓ)

10    Sample action at ∼ Categorical(p) ▹ Choose

next site index

11    Deploy site at; update state st ← st-1 {at}

12    Compute immediate reward rt based on marginal

gains in three objectives

13    Append (st-1, at, rt) to T

14   end for

15   Compute discounted returns Gt =
T

∑
k=t

γk−trk for all

t in 1…N

16   Compute policy gradient:

∇θJ(θ) ≈
N

∑
t=1

Gt∇θlogpθ(at|st−1)

17   Update θ ← θ + α ∇θJ(θ) ▹ Optionally add

entropy bonus

18  end for

19  return πθ

Algorithm 1. DRL-based OWPS location optimization.

Data availability statement

Theoriginal contributions presented in the study are included in
the article/supplementarymaterial, further inquiries can be directed
to the corresponding author.

Author contributions

YaG: Writing – original draft, Methodology, Conceptualization.
HD:Writing – review and editing, Conceptualization,Methodology.
LH: Writing – original draft, Visualization, Methodology. FZ:
Methodology, Visualization, Writing – original draft. YuG:
Writing – review and editing, Investigation, Visualization.
ZH: Investigation, Writing – review and editing, Writing –
original draft. SW: Supervision, Writing – review and editing,
Methodology.

Funding

The author(s) declare that financial support was received
for the research and/or publication of this article. This research
was funded by Science and Technology Project of Guangzhou
Power Supply Bureau of Guangdong Power Grid, grant number:
GDKJXM20222457 (037700KK52222011); the National Key
R&D Program of China, grant number: 2023YFF0805904,
Talent introduction Program Youth Project of the Chinese
Academy of Sciences, grant number: E43302020D, E2Z105010F;
Deployment Program of AIRCAS, grant Number: E4Z202021F;
and the Guangzhou Energy Institute Project, grant number:
E4C1020301.

Conflict of interest

Authors YaG, HD, LH, FZ, and YuG were employed by
Guangdong Power Grid Co. Ltd.

The remaining authors declare that the research was
conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of
interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Frontiers in Energy Research 20 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1596471
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Gao et al. 10.3389/fenrg.2025.1596471

References

Aneja, R., Yadav, M., and Gupta, S. (2024). The dynamic impact assessment of clean
energy and green innovation in realizing environmental sustainability of G-20. Sustain.
Dev. 32 (3), 2454–2473. doi:10.1002/sd.2797

Asaah, P., Hao, L., and Ji, J. (2021). Optimal placement of wind turbines in wind
farm layout using particle swarm optimization. J. Mod. Power. Syst. Clean. Energy 9 (2),
367–375. doi:10.35833/MPCE.2019.000087

Bayer, P., Rybach, L., Blum, P., and Brauchler, R. (2013). Review on life cycle
environmental effects of geothermal power generation. Renew. Sustain. Energy. Rev. 26,
446–463. doi:10.1016/j.rser.2013.05.039

Beiter, P., Mai, T., Mowers, M., and Bistline, J. (2023). Expanded modelling scenarios
to understand the role of offshore wind in decarbonizing the United States.Nat. Energy.
8 (11), 1240–1249. doi:10.1038/s41560-023-01364-y

Berman, O., and Krass, D. (2002). The generalized maximal covering location
problem. Comput. Oper. Res. 29 (6), 563–581. doi:10.1016/S0305-0548(01)00079-X

Cencen, H., Kai, Z., and Nan, L. (2024). What are the best alternatives for
sustainability? A rationalization theme for natural resource depletion and technical
innovation. Resour. Policy. 95, 105099. doi:10.1016/j.resourpol.2024.105099

Chen, J. (2011). Development of offshore wind power in China. Renew. Sustain.
Energy. Rev. 15 (9), 5013–5020. doi:10.1016/j.rser.2011.07.053

Chen, L.,Wang, Q., andYang, X. (2023). Dynamic reward shaping formulti-objective
deep reinforcement learning in logistics optimization. Expert. Syst. Appl. 225, 120113.
doi:10.1016/j.eswa.2023.120118

Chen, X., Li, F., and Zhang, Y. (2021). Integrating location set covering problem with
NSGA-II for offshore wind farm optimization. Energy. Convers. Manag. 228, 113766.
doi:10.1016/j.enconman.2020.113765

Chen, X., Wang, S., Li, H., Liang, H., Li, Z., and Lu, H. (2023). An attention model
with multiple decoders for solving p-Center problems. Int. J. Appl. Earth. Obs. Geoinf.
125, 103526. doi:10.1016/j.jag.2023.103526

Chu, X., Fei, Z., Chu, Z., and Huang, W. C. (2024). Decarbonizing the sludge
treatment industry: assessing the feasibility of achieving carbon reduction
from carbon peaking to carbon neutrality. J. Clean. Prod. 434, 140023.
doi:10.1016/j.jclepro.2023.140023

Chugh, T., and Ymeraj, E. (2022). Bayesian multi-objective optimization
for wind farm layout design under uncertainty. Appl. Energy 306, 118014.
doi:10.1016/j.apenergy.2021.118016

Church, R., and ReVelle, C. S. (1974). The maximal covering location problem. Pap.
Reg. Sci. 32 (1), 101–118. doi:10.1111/j.1435-5597.1974.tb00902.x

Cortez, R., and Dorrego, P. J. (2020). Analysis of the wake effect in the distribution of
wind turbines. IEEE Lat. Am. Trans. 18, 668. doi:10.1109/TLA.2020.9082209

Costa, Á. M., Orosa, J. A., Vergara, D., and Fernández-Arias, P. (2021). New
tendencies in wind energy operation and maintenance. Appl. Sci. 11 (4), 1386.
doi:10.3390/app11041386

Díaz, H., Teixeira, A. P., and Soares, C. G. (2022). Application of Monte Carlo and
Fuzzy Analytic Hierarchy Processes for ranking floating wind farm locations. Ocean.
Eng. 245, 110453. doi:10.1016/j.oceaneng.2021.110453

Domínguez, E., and Muñoz, J. (2008). A neural model for the p-median problem.
Comput. Oper. Res. 35 (2), 404–416. doi:10.1016/j.cor.2006.03.005

Emami, A., and Noghreh, P. (2010). New approach on optimization in placement
of wind turbines within wind farm by genetic algorithms. Renew. Energy 35 (7),
1559–1564. doi:10.1016/j.renene.2009.11.026

Feng, J., and Shen, W. Z. (2014). Wind farm layout optimization in complex
terrain: a preliminary study on a Gaussian hill. J. Phys. 524, 012146. doi:10.1088/1742-
6596/524/1/012146

Feng, J., and Shen, W. Z. (2016). Multi-objective random search
algorithm for wind farm layout optimization. Renew. Energy 85, 1226–1233.
doi:10.1016/j.renene.2015.07.098

Feng, J., Shen, W. Z., and Li, Y. (2018). An optimization framework for wind farm
design in complex terrain. Appl. Sci. 8, 2053. doi:10.3390/app8112053

Gao, X., Yang, H. X., and Lu, L. (2016). Optimization of wind turbine layout position
in a wind farm using a newly-developed two-dimensional wake model. Appl. Energy
174, 192–200. doi:10.1016/j.apenergy.2016.04.098

Hakimi, S. L. (1964).Optimum locations of switching centers and the absolute centers
and medians of a graph. Oper. Res. 12 (3), 450–459. doi:10.1287/opre.12.3.450

Hakimi, S. L. (1965). Optimumdistribution of switching centers in a communication
network and some related graph theoretic problems. Oper. Res. 13 (3), 462–475.
doi:10.1287/opre.13.3.462

Hidayat, T., Ramli, M. A. M., and Alqahtani, M. M. (2024). Optimization of
non-uniform onshore wind farm layout using modified electric charged particles
optimization algorithm considering different terrain characteristics. Sustainability 16,
2611. doi:10.3390/su16072611

Hou, P., Hu, W. H., Chen, C., Soltani, M., and Chen, Z. (2016). Optimization
of offshore wind farm layout in restricted zones. Energy 113, 487–496.
doi:10.1016/j.energy.2016.07.062

Hou, P., Hu,W. H., Soltani, M., Chen, C., Zhang, B. H., and Chen, Z. (2017). Offshore
wind farm layout design considering optimized power dispatch strategy. IEEE Trans.
Sustain. Energy 8 (2), 638–647. doi:10.1109/TSTE.2016.2614266

Irawan, C. A., Salhi, S., and Chan, H. K. (2022). A continuous location
and maintenance routing problem for offshore wind farms: mathematical
models and hybrid methods. Comput. Oper. Res. 144, 105825. doi:10.1016/j.cor.
2022.105825

Karayel, G. K., and Dincer, I. (2024). Green hydrogen production potential
of Canada with solar energy. Renew. Energy 221, 119766. doi:10.1016/j.renene.
2023.119766

Kaynia, A. M., Pedersen, D. M., Askheim, H., and Romero-Sanchez, C.
(2025). Implementation of seismic soil-structure interaction in OpenFAST and
application to an offshore wind turbine on jacket structure. Mar. Struct. 103, 103832.
doi:10.1016/j.marstruc.2025.103832

Kirchner-Bossi, N., and Porte-Agel, F. (2021). Wind farm area shape optimization
using newly developed multi-objective evolutionary algorithms. Energies 14 (14), 4185.
doi:10.3390/en14144185

Li, B. (2018). Innovative application of refined microcosmic site selection of wind
farm. Distrib. Energy 3 (5), 59–64. doi:10.16513/j.cnki.10-1427/tk.2018.05.010

Li, Q., Duan, H., Liu, G., Xie, M., Lei, G., Cheng, J., et al. (2023). Optimizing China’s
onshore wind farm layout crucial for carbon neutrality. Environ. Impact Assess. Rev. 101,
107159. doi:10.1016/j.eiar.2023.107159

Liang, H., Wang, S., Li, H., Ye, H., and Zhong, Y. (2022). A trade-off algorithm for
solving p-center problems with a graph convolutional network. ISPRS. Int. J. Geo-Inf.
11 (5), 270. doi:10.3390/ijgi11050270

Liang, H. J., Wang, S. H., Li, H. L., Zhou, L., Chen, H. C., Zhang, X. Y.,
et al. (2024a). Sponet: solve spatial optimization problem using deep reinforcement
learning for urban spatial decision analysis. Int. J. Digit. Earth 17 (1), 2299211.
doi:10.1080/17538947.2023.2299211

Liang, H. J., Wang, S. H., Li, H. L., Zhou, L., Zhang, X. Y., and Wang, S. W. (2024b).
BiGNN: bipartite graph neural network with attention mechanism for solving multiple
traveling salesman problems in urban logistics. Int. J. Appl. Earth. Obs. Geoinf. 129,
103863. doi:10.1016/j.jag.2024.103863

Manikowski, P. L., Walker, D. J., and Craven, M. J. (2021). Multi-objective
optimisation of the benchmark wind farm layout problem. J. Mar. Sci. Eng. 9 (12), 1376.
doi:10.3390/jmse9121376

Mecheter, I., Abbod, M., Amira, A., and Zaidi, H. (2022). Deep learning with
multiresolution handcrafted features for brainMRI segmentation.Artif. Intell.Med. 131,
102365. doi:10.1016/j.artmed.2022.102365

Midilli, A., Dincer, I., and Ay, M. (2006). Green energy strategies for
sustainable development. Energy Policy 34 (18), 3623–3633. doi:10.1016/j.enpol.
2005.08.003

Mosetti, G., Poloni, C., and Diviacco, B. (1994). Optimization of wind turbine
positioning in large wind farms by means of a genetic algorithm. J. Wind. Eng. Ind.
Aerodyn. 51, 105–116. doi:10.1016/0167-6105(94)90080-9

Mytilinou, V., and Kolios, A. J. (2017). A multi-objective optimisation approach
applied to offshore wind farm location selection. J. Environ. Manag. 199, 52–62.
doi:10.1016/j.jenvman.2017.05.023

Nielson, J., Bhaganagar, K., Meka, R., and Alaeddini, A. (2020). Using atmospheric
inputs for Artificial Neural Networks to improvewind turbine power prediction. Energy
190, 116273. doi:10.1016/j.energy.2019.116273

Pamučar, D., Gigović, L., Bajić, Z., and Janošević, M. (2017). GIS-MCDA based
spatial optimization of wind farm siting: a case study in Serbia. Energy 127, 291–305.
doi:10.1016/j.energy.2017.03.128

Pirkul, H., and Schilling, D. (1989). The capacitated maximal covering location
problem with backup service. Ann. Oper. Res. 18 (1), 141–154. doi:10.1007/
BF02097800

Pourasl, H., Barenji, R., and Khojastehnezhad, V. (2023). Solar energy
status in the world: a comprehensive review. Energy Rep. 10, 3474–3493.
doi:10.1016/j.egyr.2023.10.022

Rediske, G., Burin, H. P., Rigo, P. D., Rosa, C. B.,Michels, L., and Siluk, J. C.M. (2021).
Wind power plant site selection: a systematic review. Renew. Sustain. Energy Rev. 148,
111293. doi:10.1016/j.rser.2021.111293

ReVelle, C. S., Scholssberg,M., andWilliams, J. (2008). Solving themaximal covering
location problem with heuristic concentration. Comput. Oper. Res. 35 (2), 427–435.
doi:10.1016/j.cor.2006.03.007

ReVelle, C. S., and Swain, R. W. (1970). Central facilities location. Geogr. Anal. 2 (1),
30–42. doi:10.1111/j.1538-4632.1970.tb00142.x

Frontiers in Energy Research 21 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1596471
https://doi.org/10.1002/sd.2797
https://doi.org/10.35833/MPCE.2019.000087
https://doi.org/10.1016/j.rser.2013.05.039
https://doi.org/10.1038/s41560-023-01364-y
https://doi.org/10.1016/S0305-0548(01)00079-X
https://doi.org/10.1016/j.resourpol.2024.105099
https://doi.org/10.1016/j.rser.2011.07.053
https://doi.org/10.1016/j.eswa.2023.120118
https://doi.org/10.1016/j.enconman.2020.113765
https://doi.org/10.1016/j.jag.2023.103526
https://doi.org/10.1016/j.jclepro.2023.140023
https://doi.org/10.1016/j.apenergy.2021.118016
https://doi.org/10.1111/j.1435-5597.1974.tb00902.x
https://doi.org/10.1109/TLA.2020.9082209
https://doi.org/10.3390/app11041386
https://doi.org/10.1016/j.oceaneng.2021.110453
https://doi.org/10.1016/j.cor.2006.03.005
https://doi.org/10.1016/j.renene.2009.11.026
https://doi.org/10.1088/1742-6596/524/1/012146
https://doi.org/10.1088/1742-6596/524/1/012146
https://doi.org/10.1016/j.renene.2015.07.098
https://doi.org/10.3390/app8112053
https://doi.org/10.1016/j.apenergy.2016.04.098
https://doi.org/10.1287/opre.12.3.450
https://doi.org/10.1287/opre.13.3.462
https://doi.org/10.3390/su16072611
https://doi.org/10.1016/j.energy.2016.07.062
https://doi.org/10.1109/TSTE.2016.2614266
https://doi.org/10.1016/j.cor.2022.105825
https://doi.org/10.1016/j.cor.2022.105825
https://doi.org/10.1016/j.renene.2023.119766
https://doi.org/10.1016/j.renene.2023.119766
https://doi.org/10.1016/j.marstruc.2025.103832
https://doi.org/10.3390/en14144185
https://doi.org/10.16513/j.cnki.10-1427/tk.2018.05.010
https://doi.org/10.1016/j.eiar.2023.107159
https://doi.org/10.3390/ijgi11050270
https://doi.org/10.1080/17538947.2023.2299211
https://doi.org/10.1016/j.jag.2024.103863
https://doi.org/10.3390/jmse9121376
https://doi.org/10.1016/j.artmed.2022.102365
https://doi.org/10.1016/j.enpol.2005.08.003
https://doi.org/10.1016/j.enpol.2005.08.003
https://doi.org/10.1016/0167-6105(94)90080-9
https://doi.org/10.1016/j.jenvman.2017.05.023
https://doi.org/10.1016/j.energy.2019.116273
https://doi.org/10.1016/j.energy.2017.03.128
https://doi.org/10.1007/BF02097800
https://doi.org/10.1007/BF02097800
https://doi.org/10.1016/j.egyr.2023.10.022
https://doi.org/10.1016/j.rser.2021.111293
https://doi.org/10.1016/j.cor.2006.03.007
https://doi.org/10.1111/j.1538-4632.1970.tb00142.x
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Gao et al. 10.3389/fenrg.2025.1596471

Ricks, W., Voller, K., Galban, G., Norbeck, J. H., and Jenkins, J. D. (2024). The role of
flexible geothermal power in decarbonized electricity systems. Nat. Energy 10, 28–40.
doi:10.1038/s41560-023-01437-y

Shadman Abid, M., Ahshan, R., Al-Abri, M., and Al Abri, R. (2025).
Spatiotemporal forecasting of solar and wind energy production: a robust deep
learning model with attention framework. Energy Convers. Manag. 26, 100919.
doi:10.1016/j.ecmx.2025.100919

Shakoor, R., Hassan, M. Y., Raheem, A., and Wu, Y. (2016). Wake effect modeling: a
review of wind farm layout optimization using Jensen’s model. Renew. Sustain. Energy
Rev. 58, 1048–1059. doi:10.1016/j.rser.2015.12.229

Su, J., Xie, Y., Zhao,H., Xu, Y., Lin, X., Shi, C., et al. (2024).High-performanceChinese
ink flower-shaped evaporator: intensified heat through light concentration to achieve
water-energy balance. Chem. Eng. J. 496, 153764. doi:10.1016/j.cej.2024.153764

Villanueva, D., and Feijóo, A. (2010). Wind power distributions: a
review of their applications. Renew. Sustain. Energy Rev. 14 (5), 1490–1495.
doi:10.1016/j.rser.2010.01.005

Wang, C., Han, C., Guo, T., and Ding, M. (2023a). Solving uncapacitated P-Median
problem with reinforcement learning assisted by graph attention networks. Appl. Intell.
53 (2), 2010–2025. doi:10.1007/s10489-022-03453-z

Wang, S., Liang, H., Zhong, Y., Zhang, X., and Su, C. (2023b). DeepMCLP: solving
the MCLP with deep reinforcement learning for urban facility location analytics. SDSS.
doi:10.25436/E2KK5V

Wang, S., Wu, J., Xiang, M., Wang, S., Xie, X., Lv, L., et al. (2024b). Multi-objective
optimisation model of a low-cost path to peaking carbon dioxide emissions and carbon
neutrality inChina. Sci. Total Environ. 912, 169386. doi:10.1016/j.scitotenv.2023.169386

Wang, Y., Cai, Z., Guo, L., Li, G., Yu, Y., and Gao, S. (2024a). A spherical evolution
algorithm with two-stage search for global optimization and real-world problems. Inf.
Sci. 665, 120424. doi:10.1016/j.ins.2024.120424

Wu, M. C., Sun, Y., and Liu, Q. (2021). Research on wind farm site selection based on
entropy modified G2 weighting-Mamdani fuzzy inference. Renew. Energy Res. 39 (10),
1347–1353. doi:10.13941/j.cnki.21-1469/tk.2021.10.011

Xia, C. L., and Song, Z. F. (2009). Wind energy in China: current
scenario and future perspectives. Renew. Sustain. Energy Rev. 13 (8), 1966–1974.
doi:10.1016/j.rser.2009.01.004

Xu, J., He, D., and Zhao, X. (2010). Status and prospects of Chinese wind energy.
Energy 35 (11), 4439–4444. doi:10.1016/j.energy.2009.06.058

Yousef, B. A., Obaideen, K., AlMallahi, M. N., Alajmi, N., Radwan, A., Al-Shihabi, S.,
et al. (2024). On the contribution of concentrated solar power (CSP) to the sustainable
development goals (SDGs): a bibliometric analysis. Energy Strateg. Rev. 52, 101356.
doi:10.1016/j.esr.2024.101356

Yu, K., Song, Y., Lin, J., and Qu, S. (2025). Evaluating complementaries among urban
water, energy, infrastructure, and social Sustainable Development Goals in China. J.
Environ. Sci. 149, 585–597. doi:10.1016/j.jes.2024.01.051

Zhang, D., Zhang, X. L., He, J. K., and Chai, Q. M. (2011). Offshore wind energy
development in China: current status and future perspective. Renew. Sustain. Energy
Rev. 15 (9), 4673–4684. doi:10.1016/j.rser.2011.07.084

Zhang, Y., Li, Z., and Liu, H. (2023). Multi-task graph neural networks for equitable
healthcare facility placement. IEEE Trans. Neural Netw. Learn. Syst. 34 (5), 2102–2112.
doi:10.1109/TNNLS.2023.1012345

Zhao, X., Cai, Q., Zhang, S., and Luo, K. (2017). The substitution of wind power for
coal-fired power to realize China’s CO2 emissions reduction targets in 2020 and 2030.
Energy 120, 164–178. doi:10.1016/j.energy.2016.12.109

Zhong, Y., Wang, S. H., Liang, H. J., Wang, Z. B., Zhang, X. Y., Chen, X., et al. (2024).
ReCovNet: reinforcement learning with covering information for solving maximal
coverage billboards location problem. Int. J. Appl. Earth Obs. Geoinf. 128, 103710.
doi:10.1016/j.jag.2024.103710

Zhou, Y. S., Zhang, Y., Wang, H. J., Tang, R. L., and Yuan, C. Q. (2023). Site selection
assessment of wind farmbased onArcGIS andmulti-factormodel.Acta Energiae Solaris
Sin. 44 (12), 251–259. doi:10.19912/j.0254-0096.tynxb.2022-1291

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M., and da Fonseca, V. G. (2003).
Performance assessment of multiobjective optimizers: an analysis and review. IEEE
Trans. Evol. Comput. 7 (2), 117–132. doi:10.1109/TEVC.2003.810758

Frontiers in Energy Research 22 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1596471
https://doi.org/10.1038/s41560-023-01437-y
https://doi.org/10.1016/j.ecmx.2025.100919
https://doi.org/10.1016/j.rser.2015.12.229
https://doi.org/10.1016/j.cej.2024.153764
https://doi.org/10.1016/j.rser.2010.01.005
https://doi.org/10.1007/s10489-022-03453-z
https://doi.org/10.25436/E2KK5V
https://doi.org/10.1016/j.scitotenv.2023.169386
https://doi.org/10.1016/j.ins.2024.120424
https://doi.org/10.13941/j.cnki.21-1469/tk.2021.10.011
https://doi.org/10.1016/j.rser.2009.01.004
https://doi.org/10.1016/j.energy.2009.06.058
https://doi.org/10.1016/j.esr.2024.101356
https://doi.org/10.1016/j.jes.2024.01.051
https://doi.org/10.1016/j.rser.2011.07.084
https://doi.org/10.1109/TNNLS.2023.1012345
https://doi.org/10.1016/j.energy.2016.12.109
https://doi.org/10.1016/j.jag.2024.103710
https://doi.org/10.19912/j.0254-0096.tynxb.2022-1291
https://doi.org/10.1109/TEVC.2003.810758
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org

	1 Introduction
	2 Related works
	2.1 Multi-objective location optimization problems for wind power stations
	2.2 Deep learning methods for multi-objective location problems

	3 Materials and methods
	3.1 Study area
	3.2 Data acquisition and preprocessing
	3.3 Methods
	3.3.1 Environmental and socioeconomic suitability evaluation
	3.3.2 The multi-objective maximum coverage location problem
	3.3.3 Deep reinforcement learning algorithms and its comparison
	3.3.3.1 State representation
	3.3.3.2 Reward function calculation
	3.3.3.3 Action space handling
	3.3.3.4 Network architecture
	3.3.3.5 Convergence criteria

	3.3.4 Time complexity analysis of DRL and Gurobi


	4 Experiments and results
	4.1 Experimental environment and parameter settings
	4.2 Geospatial analysis for the OWPS
	4.3 Location optimization of OWPS
	4.4 Time complexity implications

	5 Discussion
	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

