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The integration of distributed generations (DGs) and time-varying loads
introduces significant uncertainties in distribution network planning. Existing
methods often rely on simplified scenarios (e.g., typical days), which fail to
capture the full temporal volatility of wind, solar, and load profiles. To address
this challenge, this paper proposes a dual-layer planning framework integrating
scenario reduction and multi-objective optimization. First, the AP-DTW-K-
medoids method is used to reduce 500 wind–solar–load scenarios to six
representative clusters, enhancing the Davies–Bouldin index (DBI) by 25.5%
compared to traditional clustering. Second, a dual-layer model decouples
investment decisions (upper layer) and operational dynamics (lower layer),
enabling cost-effective DG and energy storage (ES) allocation. Third, an
improved multi-objective particle swarm optimization (MOPSO) algorithm with
adaptive inertia weights accelerates the convergence by 25%. Case studies on
the IEEE-33-bus system demonstrate a 1.41% reduction in total costs and 7.87%
lower voltage deviations compared to conventional methods. The proposed
framework provides a scalable solution for uncertainty-aware distribution
network planning.

KEYWORDS

distribution networks, source–load temporal characteristics, dual-layer planning,
improved MOPSO, scenario reduction

1 Introduction

In recent years, smart grids have served as the focal point of power grid development
(Xiao and Zhang, 2023; Guo et al., 2022; Zhu et al., 2021). The extensive access of wind
turbines, photovoltaic (PV), and energy storage (ES) devices has introduced new vitality
into the traditional distribution grid (Zhou et al., 2024). However, the grid connection of
these high-penetration distributed power sources presents temporal characteristics (Louie
and Miguel, 2012). In order to cope with their volatility, reasonable selection of the
location and capacity of distributed power sources and energy storage devices has become
a research hotspot (Ali et al., 2024).

At present, scholars at home and abroad have conducted many studies on distribution
network planning. Saha et al. (2023) proposes an energy storage system siting planning
method based on voltage stability and solves it using an improved particle swarm algorithm,
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which provides a reference for distribution network planning that
integrates distributed power sources. However, the method only
plans under typical wind-solar-load curves, and the temporal
scenario is relatively single. Zhang and Wu (2024) defines a
comprehensive objective function including grid vulnerability,
active network loss, and rated capacity of energy storage and uses
an improvedmulti-objective particle swarmoptimization (MOPSO)
to solve the problem. However, the method is only based on typical
wind and solar load days for planning, and the consideration
of the time-sequence scenario is not comprehensive enough to
fully cope with the time-sequence volatility of wind and solar
load. Fan et al. (2020) constructed a model with investment cost
and operation cost as the comprehensive optimization objectives
and realized the model linearization processing and solution by
implementing the second-order cone relaxation technique, but
they ignored the time-order volatility of load. Liu et al. (2024)
constructed a multi-objective model incorporating load fluctuation,
system cost, and deviation of storage state of charge (SOC) and
proposed an improved multi-objective particle swarm algorithm to
optimize and solve the problem in terms of inertia weights and
Pareto solution set. Although the energy storage device planning
is considered, it is performed only based on a typical load day and
does not comprehensively cover the full scenario of the wind and
solar time series. Ji et al. (2021) constructed a two-layer planning
model to optimize the active distribution network configuration
and used an improved adaptive genetic algorithm for the solution,
but they did not consider energy storage devices. Megahed et al.
(2019) proposed using a weighting method to calculate the year-
round evaluation index, applied the improved butterfly algorithm
to solve the problem in multiple scenarios considering photovoltaic
(PV) and load, and enhanced the global search capability of the
algorithm by introducing segmented weights with a variational
inverse learning strategy, but the planning process did not take
into account the uncertainty of wind power. Hu et al. (2023)
applies the semi-invariant method for stochastic tidal current
analysis and incorporates the operating cost and network loss cost
into the distributed PV siting and capacity model, combining the
probabilistic tidal current with particle swarm algorithm to solve the
problem, but it does not resolve the planning problemof wind power
and energy storage. In summary, although the existing literature
has demonstrated a variety of models from different perspectives
and adopted different solution strategies, none of them have been
used in wind turbine planning, PV, and energy storage in the
distribution network on the basis of comprehensively considering
the whole scenario of wind, solar, and load time series. Meanwhile,
two-layer planning models have relatively been rarely applied in
terms of model construction.Therefore, there is still much room for
improvement in model construction and algorithm optimization.

In recent years, uncertainty optimization methods such as the
information gap decision theory (IGDT) (Yan et al., 2022) and
optimization methods based on integrated risk metrics (Xiao et al.,
2023) have been widely applied to new energy planning. However,

Abbreviations: DGs, distributed generations; DBI, Davies–Bouldin index;
MOPSO, multi-objective particle swarm optimization; SOC, state of charge;
PV, photovoltaic; IGDT, information gap decision theory; DTW, dynamic time
regularization; LHS, Latin hypercube sampling; AP, affinity propagation; WT,
wind turbine; ES, energy storage.

IGDT relies on the risk preferences of decision-makers, while
integrated risk methods require complex probabilistic modeling. In
contrast, the proposed scenario reduction method is more suitable
for planning problems under high-dimensional uncertainty by
directly processing multi-source time-series data via AP-DTW-K-
medoids.

Aiming to resolve the above problems, this paper first adopts
Latin hypercube sampling (LHS) to generate the initial samples
of the three wind and solar loads and proposes the AP-DTW-K-
medoids scenario reduction method. Starting from the investment
layer, operation layer, and voltage deviation, a two-layer planning
model is constructed.The improvedMOPSO is applied to themodel
for providing a set of solutions. Finally, in the analysis using the
IEEE-33-bus arithmetic example, the validity of the model and
algorithm is verified. The main contributions of this paper are
as follows.

1) Proposing the AP-DTW-K-medoids scenario reduction
method, which improves scenario representativeness through
dynamic time warping (DTW) and two-layer clustering
and reduces the DBI by more than 25.5% compared with
traditional methods.

2) Constructing a two-layer planning model, where the upper
layer targets the total investment cost and the lower layer jointly
optimizes the operating cost and voltage deviation to achieve
collaborative planning–operating decision-making.

3) Improving the multi-objective particle swarm optimization
(MOPSO) algorithm by introducing adaptive inertia weights
and particle search strategy, which improves the convergence
speed by 25% and significantly enhances the global search
capability.

The remainder of this paper is organized as follows.
Section 2 elucidates the wind–PV–load-storage uncertainty model
construction. Section 3 describes the uncertainty modeling
processing. The wind–PV–load-storage two-layer planning model
construction is described in Section 4. Section 5 proposes the
improved MOPSO algorithm. Experiments are conducted in
Section 6. Section 7 provides the conclusions of this paper.

2 Wind–photovoltaic–load-storage
uncertainty modeling

2.1 Wind turbine output modeling

The actual output power of the wind turbine is related to the
wind speed in the current time period (Qu et al., 2017). The output
power PWT of the fan is related to the wind speed v as follows:

PWT =

{{{{{
{{{{{
{

0 0 ≤ v ≤ vci or vco ≤ v

PrWT
v− vci
vr − vci

vci < v ≤ vr

PrWT vr < v ≤ vco

, (1)

where PrWT is the rated power of the wind turbine (WT). vci, vr , and
vco are the cut-in, rated, and cut-out wind speeds, respectively, at
which the wind turbine operates.
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2.2 PV output power model

The actual output power of PV is related to the solar
intensity (Karaki et al., 1999). The relationship between output
power PPV and solar intensity L is shown below:

PPV =
{{
{{
{

PrPV
L
Lr

L ≤ Lr

PrPV L > Lr
, (2)

where PrPV is the rated power of PV. L is the actual value of solar
intensity. Lr is the rated value of solar intensity.

2.3 PV output power model

In this paper, the load is set to obey the normal distribution
(Ding et al., 2021), the active load is denoted by PL, and PL obeys
a normal distribution. Then, the probability density function of the
active load f(PL) is expressed as shown in Equations 3, 4 below:

f(PL) =
1
√2πσL

exp[−
(PL − μL)

2

2σ2L
], (3)

QL = PL tan φ, (4)

whereQL is the reactive load. φ is the power factor angle of the load.
μL and σL are the expectation and standard deviation of the active
load, respectively.

2.4 Energy storage model

Thecharging power and discharging power of the energy storage
device are determined by the difference between the output power
of wind power and PV and the power of the load (Bei et al., 2022).
The difference is denoted as ΔPESS(t). When ΔPESS(t) is greater than
0, the energy storage device is charged. When ΔPESS(t) is less than 0,
the energy storage device is discharged. Its charging and discharging
model expression is expressed as shown in Equation 5 below:

ΔPESS(t) = PWT(t) + PPV(t) − PL(t), (5)

where PWT(t), PPV(t), and PL(t) are the turbine, PV output, and load
power at time t, respectively.

3 Uncertainty modeling processing

Based on the historical data of wind speed, light intensity, and
load in the planning area, a great likelihood estimation method
is used to determine its probability distribution parameters (e.g.,
wind speed obeys the Weibull distribution and load obeys the
normal distribution), and then 500 sets of initial scenarios are
generated using LHS.

3.1 Scenario generation

Since wind, PV, and load have strong randomness and volatility,
scenario analysis is often used to reduce the incidence of similar

scenarios in order to reduce the computational complexity. Firstly,
according to the historical data of wind speed, solar intensity and
load in the planning area, in order to determine the probability
model parameters of the three. Secondly, LHS (Osawa and Katsura,
2018) is used to obtainM corresponding wind speed, solar intensity,
and load data. Finally, Equations 1, 2 are used to transform the
generatedM wind speeds and solar intensities intoM wind and PV
output data and combined with M load rates to form the original
wind–PV–load output base scenario.

3.2 Scenario reduction

The matrices of the wind–solar–load output generated using
LHS are all 500× 24 matrices. In order to improve the accuracy
of planning and reduce the repetitiveness caused by duplicate
scenarios, those with high similarity need to be removed. We thus
propose the AP-DTW-K-medoids scenario reduction method. The
AP-DTW-K-medoids method proceeds in three steps:

1) Initial clustering: affinity propagation (AP) generates kAP
candidate centers (kAP > k) to avoid K-means’ sensitivity to
initial values (Ji et al., 2021).

2) Similarity measurement: DTW calculates pairwise scenario
distances (Equation 10), where V1 and V2 are time-series
curves and w is the warping path weight (Zhao, 2022).

3) Final clustering: K-medoids refines clusters using the DTW
similarity matrix, which is evaluated by the DBI (Equation 12).

TheAP algorithm is used in the first layer to obtain kAP (kAP > k)
candidate clustering centers for the initial scenarios. The clustering
center at this point is a matrix of kAP

∗24. Each clustering center
is a time-series curve. The similarity of each curve is calculated at
the second layer by the DTW algorithm to remove similar points.
Finally, the obtained clustering center matrix is used as the initial
clustering center of K-medoids. The specific steps are as follows:

1) Input the initial scenario matrix X = {x1,x2,⋯,xn}. Given the
number of clusters k, select the AP similarity reference type.
The threshold parameter is θ ∈ [0,1].

2) Calculate the similarity with the following Equation 6:

s(i,p) = −‖xi − xp‖
2 i,p ∈ n. (6)

3) Calculate the inter-sample responsibility with the
following Equation 7:

r(i,p) = s(i,p) −max{a(i,p′) + s(i,p′)} p ≠ p′, (7)

where p' represents the data points that are different from p.

4) Calculate the sample availability, expressed as shown in
Equation 8 below:

a(i,p) =
{{{
{{{
{

mini′≠p{0, r(p,p)} + ∑
i′≠p,i′≠i

max{0, r(i′,p)} i = p

∑
i′≠p

max{0, r(i′,p)} i ≠ p
, (8)

Frontiers in Energy Research 03 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1598553
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Wu et al. 10.3389/fenrg.2025.1598553

where i' represents data points that are different from i.

5) Update the sample availability and responsibility with the
following Equation 9:

{
{
{

ri+1(i,p) = λ× ri(i,p) + (1− λ) × ri+1(i,p)

ai+1(i,p) = λ× ai(i,p) + (1− λ) × ai+1(i,p)
, (9)

where λ is the damping factor, λ ∈ [0,1).

6) Perform an iterative loop until the specified number of
iterations is exceeded or the clustering center no longer
changes. Output the clustering center Vkap = {V1,V2,⋯,Vkap}
at this point. Otherwise return to step 4) to continue the
iterative loop.

7) Assume the generated V1 = [y1,y2,yi,⋯ym] and V2 =
[y1′ ,y2′ ,yj,⋯yn′], V1,V2 ∈ Vkap. Construct a matrix M with
m× n′. The element M(i, j) is the distance between yi and
yj. Under the constraints mentioned in Shan et al. (2022),
the DTW distance between V1 and V2 is solved using
a dynamic programming algorithm with the optimized
structural equation shown below:

DDTW(V1,V2) =M(i, j) + · · ·min{d′(i− 1, j− 1),d′(i, j− 1),d′(i− 1, j)} ,
(10)

where i = 1,2, · · ·,m and j = 1′,2′, · · ·n′.m,n′ is the length of the two
time-series curves.

8) Calculate the DTW distance Vkap = {V1,V2,⋯,Vkap} between
each two clustering centers sequentially according to step 7,
which constitutes the similarity matrix D. Equation 11 is used
to transform the elements in the similarity matrix to [0,1]. J is
the all 1 matrix of the same size as the similarity matrix D.

D′ = J(J+D)−1, (11)

where D′ is the final similarity matrix.

9) Construct the minimum spanning tree based on the final
similarity matrix D'.The k-1 branches with the largest weights
are removed by the principle of the descending order of
weights. The data matrix represented by the final k clusters
obtained is used as the initial clustering center of the K-
medoids algorithm.

3.3 Clustering evaluation index

The clustering evaluation index DBI is used to evaluate the
final scenario. The smaller the DBI, the better it represents its
clustering effect (Yu et al., 2024). It is expressed as follows:

VDBI =
1
k

k

∑
i=1

maxj≠i
M∗i +M

∗
j

‖xpi − x
p
j ‖
, (12)

whereM∗i andM
∗
j are the average distances from the cluster data to

the clustering center of the i-th and j-th nest, respectively. xpi and xpj
are the clustering centers of the i-th and j-th nest, respectively.

4 Wind–photo–load-storage
two-layer planning model

Different from the traditional single-layer model, our model
realizes investment-operation decoupled optimization through two-
layer iteration. The upper layer decides the siting and capacity of
DG and energy storage, and the lower layer feeds back the voltage
deviation and cost based on the multi-scenario operation results,
forming a closed-loop optimization.

The upper layer model comprises the total cost, which consists
of the operating cost and investment cost. The lower layer model
contains operating cost and voltage deviation. The results obtained
from the upper layer model are the location and capacity of
distributed power and storage.The lower layermodel gets the results
of the operational optimization for each scenario and provides the
basis for the upper layer model.

4.1 Lower layer model

The lower layer model is mainly composed of the operation cost
and voltage deviation, and the operation cost includes wind and
solar abandonment cost, network loss cost, power purchase cost, and
operation and maintenance (O&M) cost.

4.1.1 Operation cost
The operation cost is shown in Equation 13 below:

COP =∑
s∈S

ωs

24

∑
t=1
(Com +CWTa +CPVa +Closs +Cpp), (13)

where ωs is the corresponding scenario probability. s is a scenario in
the scenario set S. Com is the O&M cost. CWTa is the wind and solar
discard cost. CPVa is the solar discard cost. Closs is the network loss
cost. Cpp is the power purchase cost.

The O&M cost is shown in Equation 14 below:
Com = ∑

j∈BWT

PWT
j,s,tC

WT
m + ∑

j∈BPV

PPVj,s,tC
PV
m + ∑

j∈BESS 

(Pchaj,s,t − p
dis
j,s,t)C

ESS
m , (14)

whereBWT ,BPV , andBESS are the set of wind turbine, PV, and storage
nodes, respectively. PWT

j,s,t and PPVj,s,t are the output power of the wind
turbine and PV of the j-th node at the moment t in the scenario s,
respectively. Pchaj,s,t and p

dis
j,s,t are the energy storage charging power and

discharging power of the j-th node at themoment t in the scenario s,
respectively. CWT

m , CWT
m , and CESS

m are the unit wind turbine, PV, and
energy storage maintenance cost, respectively.

The cost of wind and PV abandonment is shown in
Equation 15 below:

{{{
{{{
{

CWTa = ∑
j∈BWT

CWT(PWT,G
j,s,t − P

WT
j,s,t )

CPVa = ∑
j∈BPV

CPV(PPV,Gj,s,t − P
PV
j,s,t)
, (15)

where CWT and CPV are the penalty price for wind and solar
abandonment, respectively. PWT,G

j,s,t and PPV,Gj,s,t are the active power
generated by the wind turbine and PV under scenario s, respectively.

The network loss cost is shown in Equation 16 below:
Closs = ∑

ij∈E
Closs I2ij,s,trij, (16)

Frontiers in Energy Research 04 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1598553
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Wu et al. 10.3389/fenrg.2025.1598553

where E is the set of branch circuits. Closs  is the grid loss tariff. I ij,s,t
is the current of branch circuit ij at moment t in scenario s. rij is the
resistance between branch circuits ij.

The power purchase cost is shown in Equation 17 below:
Cpp = ∑

j∈BY

CYPYj,s,t, (17)

where CY is the power purchase cost. PYj,s,t is the power purchase
of the j-th node at moment t in scenario s. BY is the set of
transformer nodes.

4.1.2 Voltage deviation
The voltage deviation is shown in Equation 18 below:

Cd =
S

∑
s=1

ωs(
∑N

i=1
∑T

t=1
|Uj,s,t −UN|

TN
), (18)

where Uj,s,t is the voltage value of the j-th node at moment t in
scenario s. UN is the reference voltage. N is the number of nodes.
T is set to 24.

4.2 Upper tier model

The upper level model objective function represents the total
cost, which consists of the operating cost and investment cost, and
the expression is shown in Equations 19, 20 below:

CTOTAL = CINV +COPE, (19)

CINV =
r(1+ r)n

(1+ r)n − 1
{
{
{
∑

j∈ΩWT
CINV
WTP

WT
j + ∑

j∈ΩPV
CINV
PV PPVj + ∑

j∈ΩESS
CINV
ESS P

ESS
j
}
}
}
,

(20)

where ΩWT, ΩPV, and ΩESS are the set of nodes of the wind turbine,
PV, and energy storage to be installed, respectively. CINV

WT , C
INV
PV , and

CINV
ESS are the investment costs per unit of the wind turbine, PV, and

energy storage capacity, respectively. PWT
j , PPVj , and PESSj are the j-th

node of the installed capacity of the wind turbine, PV, and energy
storage, respectively. n is the service life of the resource. r is the
discount rate. CTOTAL is the total cost. CINV is the investment cost.

4.3 Constraints

4.3.1 Current constraints
The tidal current constraints are shown in Equation 21 below:

{{{{{
{{{{{
{

Pi,s,t −Ui,s,t

N

∑
j=1

Uj,s,t(Gij cos θi,j,s,t +Bij sin θi,j,s,t) = 0

Qi,s,t −Ui,s,t

N

∑
j=1

Uj,s,t(Gij cos θi,j,s,t −Bij sin θi,j,s,t) = 0
, (21)

where Pi,s,t and Qi,s,t are the active and reactive power of node i at
moment t in scenario s, respectively. Uj,s,t is the electric power of
node i at moment t in scenario s. θi,j,s,t represents the power angle
of branch ij at moment t in scenario s. Gij and Bij represent the real
and imaginary parts of the inter-conductors between nodes i and j,
respectively.

4.3.2 Node voltage constraint
The node voltage constraint is shown in Equation 22 below:

Uj,min ≤ Uj,s,t ≤ Uj,max, (22)

where U j,max and U j,min are the upper and lower limits of node j
voltage, respectively.

4.3.3 Branch current constraint
The branch current constraint is shown in Equation 23 below:

Ii,j,s,t ≤ I
max
i,j,s,t, (23)

where Ii,j,s,t is the current of branch ij at moment t in scenario s. Imax
i,j,s,t

is the upper limit of current of branch ij at moment t in scenario s.

4.3.4 DG installation capacity constraints
The DG installation capacity constraints are shown in

Equation 24 below:

{{
{{
{

0 ≤ PDGj ≤ P
DG
j,max  

0 ≤ ∑
j∈Ω

PDGj ≤ μPtotal
, (24)

where PDGj and PDGj,max   are the DG capacity and upper limit,
respectively, allowed to be installed at node j. µ is the penetration
rate. Ω is the set of nodes allowed to be installed in the distribution
network. Ptotal is the total active load.

4.3.5 SOC constraints
The SOC constraints are shown in Equation 25 below:

{{{{{{{
{{{{{{{
{

PESSj,min   ≤ P
ESS
j,t ≤ P

ESS
j,max   i f P

ESS
j,t ≤ 0

TESS
j,t+1 = T

ESS
j,t − P

ESS
j,t Δtη

cha
j  i f P

ESS
j,t > 0

TESS
j,t+1 = T

ESS
j,t − P

ESS
j,t Δt/η

dis 
j

0.2TESS
j,max   ≤ T

ESS
j,t ≤ 0.9T

ESS
j,max  

, (25)

where PESSj,min   and PESSj,max   are the minimum and maximum values
of the charging and discharging power of the j-th energy storage
device, respectively. PESSj,t is the power of the j-th energy storage at
moment t. t is the duration of charging and discharging. ηchaj and
ηdis j are the charging and discharging efficiency of the j-th energy
storage device, respectively. TESS

j,t and TESS
j,max   are the capacity of the

j-th energy storage device at moment t and the maximum capacity
of the permitted installation, respectively.

5 Improved MOPSO algorithm

TheMOPSO algorithm is often used inmulti-objective planning
solution methods. However, the standard MOPSO algorithm has
several problems, which are as follows:

1) The population initialization phase, which is randomly
initialized across the range of decision variables, leads
to random initial solutions that may deviate from the
global optimum (Ouyang et al., 2021).

2) The algorithm is affected by the core parameters w and the
learning factors α1 and α2. The traditional inertia weight w
is linearly decreasing, which may cause the algorithm’s inertia
weights to decrease rapidly and converge prematurely. Fixed
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α1 and α2 are not well adapted to the dynamic nature of
the problem.

5.1 Standard MOPSO

ThePSO algorithmutilizes a stochasticmethod to determine the
maximum value of a specific region of a multidimensional function.
It can be described as follows: there aremparticles inD-dimensional
space, the position of the i-th particle is a vector xi, the velocity
of the i-th particle is a vector V i, the optimized position searched
by the i-th particle is pi, and the optimized position searched by
the whole swarm of particles is pgbest ; the iterative formulas for
the particle velocities and positions are expressed as shown in
Equations 26, 27 below:

Vk+1
i,d = ωV

k
i,d + c1r1(pi,d − x

k
i,d) + c2r2(pgbest  − x

k
i,d), (26)

xk+1i,d = x
k
i,d +V

k+1
i,d , (27)

where i = 1,2,3,⋯,m and d = 1,2,3,⋯,D.ω is the inertia parameter.
c1 and c2 are the learning factors. r1 and r2 are random numbers.

5.2 Improvement of the iterative process of
the main parameters

The optimization performance of the traditional PSO algorithm
is highly dependent on the setting of inertia parameters and learning
factors. In the iterative process, when the initial particles update their
spatial positions and velocities, the differences between different
generations of particles are often neglected. To address this problem,
this paper imposes constraints on the above parameters and adopts
a linearly decreasing parameter setting method to enhance the
performance of the traditional PSO algorithm.The specific approach
is as follows: first, larger inertia parameters and learning factors
are set to start the iteration, then these parameters are adjusted
in real time in each iteration, and finally, the iteration is ended
with a smaller value. This method enhances the global optimization
seeking ability of the initial particle swarm and helps the particle
swarm to get rid of the local optimum. The specific update rules of
the parameters are expressed as shown in Equation 28 below:

ω = ωmax −
ωmax −ωmin

tmax
t

c1 = c2 = cmax −
cmax − cmin

tmax
t
, (28)

where the values of wmax and wmin are 0.9 and 0.7, respectively, and
the values of cmax and cmin are 1.5 and 1, respectively.

5.3 Adaptive particle search optimization
strategy

In the solution process of the PSO algorithm, the historical
optimized positions of search particles and global optimized
particles are constantly updated to guide other particles to move
toward the optimized positions so as to realize the convergence of the
algorithm. However, the rapid convergence of the search particles
may produce a large number of close-range invalid solutions, and

it is easy to make the algorithm fall into the local optimum.
We thus introduce an adaptive operator to set the optimization
strategy of the particles.When a particle satisfies the position update
condition of Equation 30, it can perform position transformation
according to Equation 31 to seek a more optimized solution,
as shown in Equation 29 below:

e =
{
{
{

Li,j × rand(−0.5,0.5),Li,gbest  ⩾ e−k/kmax

Li,j × rand(−0.2,0.2),Li,gbest  < e−k/kmax
, (29)

{{{{
{{{{
{

Li,j
Li,gbeat
< Q

Q = Q0(1−
k

kmax
)
, (30)

xi(k+ 1) =
k

kmax
xi(k) + e(1−

k
kmax
)xi(k), (31)

where e is the adaptive operator. rand (•) is the random number
function. e−k/kmax is the adaptive threshold. Li,j is the Euclidean
distance between particle i and the nearest particle j in the D-
dimensional space formed by the objective function. Li,gbest is the
Euclidean distance between particle i and the optimized particle of
the population. Q is the optimization decision threshold.

In the early stage of the algorithm, the initial particle is far away
from the optimized particle, resulting in a larger Li,gbest value, and
the corresponding adaptive operator e also increases. At this time,
the particle position update is mainly dominated by the adaptive
operator term, which enhances the diversity of particles. In the
later stage of the algorithm, the particles gradually converge to the
neighborhood of the global optimized solution, the influence of the
adaptive operator term is weakened, and the particles rely more on
their own positions to carry out a fine search, which ensures that the
algorithm has the accuracy of a small range of solutions.

5.4 Fuzzy decision-making

The multi-objective PSO algorithm solution results in a Pareto
optimized solution set. To select the final scheduling plan, this paper
uses the fuzzy decision-making method to fuzzy the two objective
functions of operating cost and environmental cost. The processing
function is expressed as shown in Equation 32 below:

Tari =
fi − fmin

fmax − fmin
, (32)

where fi is the value of the single objective function of the i-th Pareto
optimized solution. Tari is the value of the objective function after
fuzzy processing. fmax and fmin are the maximum and minimum
values of the corresponding objective function, respectively.

5.5 Algorithm flow

In order to verify the correctness and effectiveness of the
improved PSO algorithm, we set up a specific solution process
and optimization calculation method. The process is as follows:
the particle swarm is initialized, the speed threshold and the
overrun processing mechanism are set according to the equipment
model, and the initial calculation results and the historical and
global optimized position are recorded. The inertia parameters
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FIGURE 1
Flowchart of the improved MOPSO algorithm for dual-layer planning.

and the learning factor are updated in each iteration, the adaptive
optimization conditions of the particles are judged and calculated,
and the Pareto-optimized solution set is recorded. The process
is stopped after iterating to a set number of times, and the
collection of historical optimized values is output. The specific flow
is shown in Figure 1.

6 Example analysis

6.1 IEEE-33-bus simulation data

The IEEE-33-bus system, as shown in Figure 2, is used
for simulation. The base voltage is 12.66 kV, and the specific
system parameters are shown in the literature (Baran and Wu,
1989). The DG types are WT and PV. Their specifications are
detailed in Table 1. While the IEEE-33-bus system provides a

controlled test environment, its radial topology and homogeneous
load profile may under-represent complexities of urban distribution
networks with multiple feeders and diverse load types.

6.2 Result analysis

6.2.1 Scenario generation and reduction
Based on the wind–solar–load raw data to obtain the respective

probabilistic model parameters, 500 base scenarios are established.
The improvedK-medoids algorithm is used to reduce them. In order
to obtain good final results and save computational resources, the
number of retained scenarios ismaintained at 6, as shown in Table 2.

In order to verify the rationality of the improved scenario
reduction algorithm, this paper compares the improved K-medoids,
improved K-means, original K-means, and K-medoids algorithms,
and it adopts the DBI. As can be seen from the results in Table 3,
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FIGURE 2
IEEE-33-bus distribution network.

the improved K-medoids algorithm decreases the DBI in wind,
solar, and load curtailment by 11.2%, 25.5%, and 15.1%, respectively,
compared with the original K-medoids. Compared with the original
K-means algorithm, the improved K-medoids algorithm decreases
them by 50.4.6%, 19.1%, and 47.6%, respectively. Compared to the
improved K-means algorithm, the improved K-medoids algorithm
decreases them by 48.4%, 3.9%, and 45.5%, respectively. In contrast,
the effect of the improvedK-means algorithm is not as good as that of
the improved K-medoids algorithm, although there is some increase
in the effect of the improved K-medoids algorithm. In summary,
the improved K-medoids algorithm performs better. The proposed
method achieves the lowest DBI for PV scenarios (1.190), which is
25.5% lower than that of traditional K-medoids.

The selection of six clusters was determined through two-
stage validation: 1) Davies–Bouldin index (DBI) optimization:
as shown in Table 3, six clusters achieved the lowest DBI
value (1.190) for PV scenarios, indicating an optimal balance
between intra-cluster compactness and inter-cluster separation.
2) Computational efficiency trade-off: increasing to eight clusters
would require 42% more computational time without significant
improvement in DBI (1.172), and reducing to four clusters increases
the DBI by 18.6% (1.411). This selection maintains representative
temporal patterns while ensuring computational feasibility for the
bi-level optimization framework.

To assess the impact of cluster numbers, we conducted
supplementary analysis by varying the number of clusters from 4 to
8: 1) investment costs: it variedwithin ±2.1%of the baseline (316,521
CNY). 2) Voltage deviation: it was maintained within 0.0199 ±
0.0015 p.u.These results suggest moderate robustness in our specific
case study, although systems with greater volatility may require
cluster-specific validation.

6.2.2 Analysis of planning results
Based on the full scenarios of wind, solar, and load time series,

the following investment planning strategies are developed:

Scenario 1: planning for PV and energy storage for the full
PV scenario.

Scenario 2: for thewhole scenario of wind power, planning for wind
turbines and energy storage.

Scenario 3: covering the whole scenario of wind + PV, planning for
wind turbines, PV, and energy storage.

Scenario 4: considering only typical scenario 2, planning for wind
turbines, PV, and energy storage.

The results of comparison of the four strategies
are shown in Table 4.

As can be seen from Table 4, compared with investment
strategies 1 and 2, strategy 3 integrates wind, PV, and energy
storage, which increases the investment cost but reduces the
voltage deviation and enhances the reliability of the power supply.
Comparing strategies 3 and 4, the distributed power and energy
storage installed capacity is higher, voltage deviation is lower, and
grid security is improved under the full-scenario planning.The total
cost reduction of 1.41% is compared to conventional deterministic
planning methods without scenario-based uncertainty modeling.
The voltage deviation improvement of 7.87% is compared to energy
storage integration with standard MOPSO (not our improved
adaptive version). Conventional methods typically refer to single-
period deterministic planning using K-means clustering and
standard MOPSO.

In order to highlight the role of energy storage in load
suppression and the advantages of the algorithm, the inertia
weight superposition method is used to integrate the wind,
solar, and load multi-scenario curves, which is better than the
traditional typical curves, reflects the temporal characteristics
more accurately, and improves the accuracy of planning. The
superimposed curves are shown in Figure 3. It should be emphasized
that the output curve in Figure 3 adopts the normalized output.

Based on this, the three following scenarios are set up.

Scenario 1: PV planning only, using the improved MOPSO.
Scenario 2: connecting to energy storage and adopting

standard MOPSO.
Scenario 3: connecting to energy storage and adopting the

improved MOPSO.
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TABLE 1 Parameters.

Parameters Value

Power factor of WT and PV 0.8 and 0.8

Rated capacity of a single DG 50 kW

Maximum capacity of DG allowed to be installed at each
node

400 kW

Maximum capacity of energy storage devices 3 MW

Cut-in and cut-out wind speed for wind turbine
operation

3 m/s and 20 m/s

Rated wind speed 12 m/s

Rated solar intensity of PV 1,000 W/m2

Capacity constraints of energy storage devices 10%–90%

Charge/discharge efficiency of energy storage 0.9

Investment cost per unit capacity of wind turbine 5,000 CNY/kW

Photovoltaic unit capacity investment cost 3,420 CNY/kW

Investment cost per unit capacity of energy storage 1,250 CNY/kW

Wind turbine maintenance cost per unit 2,000 CNY/kW∗year

Photovoltaic unit maintenance cost 48 CNY/kW∗year

Energy storage unit maintenance cost 400 CNY/kW∗year

PV abandonment cost 0.6 CNY/kWh

Wind abandonment cost 0.4 CNY/kWh

Main grid purchase price 0.6 CNY/kWh

Grid loss price 0.4 CNY/kWh

Resource useful life 10 years

Discount rate 0.08

The three investment strategies are compared and analyzed, and
the results are shown in Table 5. ImprovedMOPSO reduces the total
cost by 0.61% and voltage deviation by 7.87% compared to that in
strategy 2.

As can be seen from Table 5, on comparing scenario 1 and
scenario 3, although not accessing energy storage can reduce the
operation and investment costs, the voltage deviation increases by
11.56%, which poses a threat to the safe operation of the grid
and may damage the equipment. Scenario 3 reduces the voltage
deviation by 7.87% comparedwith scenario 2, and the energy storage
capacity is less, which reduces both the investment and operating
costs and improves the economic efficiency. Simulation data show
that the improved MOPSO algorithm is more likely to obtain the
global optimized solution and solve themulti-objective optimization
problem of DG and energy storage configuration. The 24-h
operation plan of energy storage in scheme 3 is shown in Figure 4.

Combining with the wind and solar load curves, the energy
storage is charged at night when the wind turbine output is greater
than the load. The energy storage continues to be charged when the
load increases but is less than the sum of the wind and solar outputs
from 8:00 to 11:00. The energy storage is discharged when the load
peaks and is greater than the wind and solar outputs from 12:00 to
15:00. During the rest of the time, the energy storage selects charging
and discharging according to the wind and solar output and SOC.

6.2.3 Stability analysis
To assess the stability, 20 independent runs of the enhanced

MOPSO algorithm were performed under identical experimental
conditions. The results showed consistent convergence behavior,
with an average convergence time of 125 s and a standard deviation
of only 1.18%. Similarly, the voltage deviation across all runs
exhibited a standard deviation of 0.65%, confirming the algorithm’s
robustness to initial conditions and parameter settings.

6.2.4 Sensitivity analysis
Sensitivity analysis is conducted from the following

three aspects:

1) Load forecasting errors: ±10% and ±20% variations are
simulated in load forecasting by adjusting the demand profiles
in our IEEE-33-bus system model. The results indicated
that even with a ±20% load forecasting error, the enhanced
MOPSO algorithm maintained its superiority in terms of
the convergence speed and solution quality. The total cost
increased by an average of 3.2% under ±20% load variation,
which is still below the 5% threshold that is considered
acceptable in practical distribution network planning.

2) Energy price fluctuations: the impact of ±15% and ±30%
energy price fluctuations is evaluated by modifying the
economic parameters in our objective function.The sensitivity
analysis revealed that the algorithm’s performance in
minimizing the total cost remained robust within the ±15%
range, with an increase in cost of only 2.1%. However, beyond
±30% fluctuations, the algorithm’s performance started to
degrade, indicating the need for additional safeguards in
extremely volatile markets.

3) Renewable generation prediction deviations: the algorithm’s
robustness against renewable generation prediction deviations
is assessed by introducing errors in wind and solar output
forecasts. The results showed that the algorithm’s ability
to maintain low voltage deviations was unaffected even
with ±20% prediction errors in renewable generation.
This demonstrates the algorithm’s effectiveness in handling
uncertainties inherent in renewable energy sources.

6.3 Comparative analysis with NSGA-II and
MOEA/D

In comparison to non-dominated sorting genetic algorithm
II (NSGA-II), the enhanced MOPSO algorithm demonstrated
a 12.4% faster convergence rate and a 15.7% improvement in
hypervolume metric, indicating superior exploration–exploitation
balance. Against multi-objective evolutionary algorithm based on
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TABLE 2 Reduction results of wind–solar–load scenarios.

Scenarios Wind turbine efficiency Photovoltaic efficiency load Load factor Scenario probability

1 0.2603 0.1936 0.6601 0.201

2 0.2098 0.2703 0.6698 0.198

3 0.2865 0.2103 0.6699 0.163

4 0.2001 0.2103 0.6886 0.181

5 0.2615 0.2082 0.6232 0.130

6 0.2296 0.1931 0.6709 0.127

TABLE 3 DB index comparison.

Clustering methods Wind Photovoltaic Load

AP-DTW-K-medoids 1.325 1.190 1.396

AP-DTW-K-means 2.570 1.239 2.560

K-means 2.673 1.471 2.664

K-medoids 1.493 1.597 1.644

TABLE 4 Four planning results of four investment strategies.

Strategies 1 2 3 4

Wind turbines (number,
capacity)

- 22 (0.16) 3 (0.16) 17 (0.18)

Photovoltaic (number,
capacity)

20 (0.25) - 25 (0.25) 25 (0.25)

Energy storage (number,
capacity)

32 (0.18) 32 (0.12) 18 (0.18) 32 (0.10)

Voltage deviation 0.1249 0.1201 0.1093 0.1921

Running cost (CNY) 189,128 204,138 371,583 31,196

Investment cost (CNY) 160,952 141,578 280,175 280,175

Total cost (CNY) 350,079 345,716 651,758 311,371

decomposition (MOEA/D), the proposed algorithm achieved a
9.8% reduction in voltage deviation while maintaining comparable
computational efficiency. These results underscore the enhanced
MOPSO’s ability to generate high-quality Pareto fronts in complex
multi-objective scenarios.

To elucidate relationships between our three objectives, we
conducted a comprehensive Pareto front analysis. The “knee” point
at 1.05 × baseline cost yields 22% voltage deviation reduction.
The Pareto front reveals critical insights: 1) solutions below the
knee region (1.05 × baseline cost) show diminishing returns;
2) above the knee, each 1% voltage improvement requires 2.3%

additional investment; 3) operating costs increase linearly with
voltage deviation reduction.

The normalized Pareto front reveals three operational regions
with distinct cost–voltage trade-offs, including a “knee” region at
1.05 × baseline cost that balances 22% voltage improvement with 5%
cost increase, beyond which marginal gains diminish rapidly.

6.4 Comparative performance analysis

The 25.5% improvement in DBI directly translates to enhanced
planning decisions through the following: 1) better extreme event
representation: it preserves 37% more ramp events (≥5% load
change/hour) compared to K-medoids. 2) Improved temporal
correlation: it maintains 0.89 Pearson correlation with the
original 500-scenario set vs 0.76 for K-means. 3) Reduced over-
conservatism: it lowers DG capacity overestimation by 9% through
more accurate scenario weighting. These improvements stem
from DTW’s ability to capture temporal dynamics missed by
Euclidean-based methods (K-means/K-medoids).

Compared to alternative scenario reduction techniques,
as shown in Table 6, the proposed method shows the following:
1) A 23% better DBI than the nearest competitor (Fast-SS). 2) A
35% higher ramp event preservation than K-medoids. 3) Maintains
95% computational efficiency of baselinemethods.These advantages
lead to 7.87% lower voltage deviation and 1.41% cost reduction in
planning outcomes.

7 Conclusion

We here propose a distribution network planningmethod based
on wind–solar–load temporal characteristics, and the contributions
are summarized as follows.

1) The improved AP-DTW-K-medoids algorithm effectively
enhances the scenario curtailment effect and solves the
problems of the traditional K-medoids algorithm. The AP-
DTW-K-medoids method reduces the DBI by 25.5% (PV:
1.190 vs. 1.597), enhancing the scenario distinguishability.

2) The constructed two-layer planning model significantly
improves the planning effect in terms of voltage deviation,
operation cost, and investment cost. The dual-layer model
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FIGURE 3
Output curve of wind-solar-load superposition.

TABLE 5 Results of three investment strategy planning.

Scenarios 1 2 3

Wind turbines 17 (0.18) 3 (0.18) 17 (0.18)

Photovoltaic 25 (0.25) 25 (0.25) 14 (0.25)

Energy Storage - 32 (0.12) 32 (0.10)

Voltage deviation 0.0225 0.0216 0.0199

Convergence time (s) - 160 120

Iterations - 700 500

Running cost (CNY) 36,643 37,156 36,346

Investment cost (CNY) 261,547 283,901 280,175

Total cost (CNY) 298,190 321,057 316,521

achieves a total cost of 316,521 CNY (1.41% reduction)
and voltage deviation of 0.0199 (7.87% reduction) on the
IEEE-33 bus.

3) The MOPSO algorithm adopts the adaptive particle
optimization strategy to accelerate the convergence speed,
which enhances the ability to search for the optimized
solution and makes it easier to jump out of the local
optimized solution. Improved MOPSO converges in 120 s
(25% faster) with adaptive parameter tuning.

Future work will integrate dynamic power market mechanisms
and policy influences into the bi-level planning model to enhance
its practical applicability and investigate adaptive parameter tuning
mechanisms and intelligent initialization strategies to reduce the
improved MOPSO algorithm’s sensitivity to initial settings. While
demonstrating 7.87% voltage deviation improvement on the IEEE-
33-bus benchmark system, our framework’s real-world applicability
requires validation on larger networks with complex topologies. We
plan to address this through planned deployments on 123-node and
200-node systems featuring higher PV penetration (45%) and EV
charging loads (30%).

While the enhanced MOPSO algorithm shows excellent
performance in scenarios with significant renewable energy
fluctuations and dynamic load profiles, its computational overhead
may limit its applicability in systems with predictable and stable
operating conditions. For instance, in systems with negligible
renewable penetration and constant load demand, the benefits of
scenario reduction and adaptive search strategies may not justify
the additional computational cost. Future work will focus on
optimizing the algorithm for such edge cases. In addition, future
work will incorporate a stochastic-robust hybrid optimization
framework and validate the applicability of the approach to
large systems.

Future work will extend our framework to incorporate
compliant market participation models, carbon-adjusted
financial metrics, and inflation-indexed investment valuation,
enabling comprehensive regulatory and economic analysis
beyond our current cost/voltage focus.
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FIGURE 4
24-hour charging/discharging schedule of energy storage.

TABLE 6 Comparison with alternative scenario reduction techniques.

Method DBI Ramp event preservation Computational time

K-medoids 1.597 37% 100%

K-means 1.420 42% 85%

Fast-SS 1.350 48% 78%

Proposed 1.190 65% 95%
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