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Against the backdrop of high investment costs in distributed energy storage
systems, this paper proposes a bi-level energy management model based
on shared multi-type energy storage to enhance system economics and
resource utilization efficiency. First, an electricity–heat–hydrogen coupled
shared storage architecture is developed, incorporating hydrogen-blended gas
turbines, gas boilers, and hydrogen loads to achieve deep coupling between the
power grid and natural gas network. Then, a bi-level game model is formulated
with the upper-level objective of minimizing the storage operator’s cost and
the lower-level objective of minimizing the cost of the integrated energy
microgrid (IEM) aggregator. A cooperative game mechanism is introduced
within the microgrids to support peer-to-peer energy trading. Nash bargaining
theory is applied to determine benefit allocation and dynamic pricing strategies
among microgrids. The model is solved using a genetic algorithm (GA) and the
alternating direction method of multipliers (ADMM). Simulation results validate
the proposed strategy’s effectiveness and feasibility in reducing system costs,
improving overall benefits, and achieving fair benefit allocation.

KEYWORDS

shared hydrogen storage, integrated energy microgrid, shared trading, hybrid game
theory, hydrogen energy pricing strategy

1 Introduction

As the global energy transition accelerates, energy systems are rapidly evolving
toward greater efficiency, cleaner energy sources, and lower carbon emissions. The energy
technology revolution is driving the deep integration of various emerging technologies
within the energy sector to accommodate the large-scale development of distributed energy
while meeting the comprehensive supply demands of multiple energy carriers, including
cooling, heating, electricity, and gas. Against this backdrop, the penetration of renewable
energy, represented bywind and solar power, continues to increase in distribution networks.
This trend has become a key research focus in the energy sector. Integrated energy systems
(IES) play a crucial role in promoting the large-scale development of renewable energy,
achieving multi-energy complementarity and coordinated optimization, and improving
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energy utilization efficiency (Xu et al., 2024). To address the
dual uncertainty of renewable energy generation and load
demand, the energy storage system (ESS) serves as a critical
technological solution (Sepulveda et al., 2021). ESS has significant
application value in power system reserve capacity support,
transmission and distribution network optimization, and voltage-
frequency regulation.

As an important development direction of chemical energy
storage, hydrogen storage exhibits broad application prospects due
to its significant advantages, including high energy density, low
operation and maintenance costs, long-term storage capability,
and environmental friendliness. Among them, power-to-hydrogen
(P2H) technology has emerged as a highly promising energy storage
solution because of its ability to operate independently and its
freedom from time constraints. With continuous advancements in
P2H technology, large-scale and cost-effective storage of surplus
renewable energy through hydrogen production is becoming
increasingly feasible. Research indicates that hydrogen production
costs are primarily influenced by a combination of factors, including
initial investment, operation and maintenance expenses, raw
material prices, electricity costs, and other variable expenditures
(Li et al., 2019). Notably, electricity costs account for more
than 70% of the total hydrogen production cost (Timilsina,
2021). Utilizing low-cost renewable electricity can significantly
reduce the share of electricity costs in hydrogen production and
enhance economic feasibility. More importantly, using renewable
electricity enables a zero-carbon emission process in power-to-
hydrogen conversion (Pan et al., 2020). Existing studies confirm that
producing hydrogen from municipal waste is not only cost-effective
but also technically feasible (Hammond et al., 2020). According to
the latest research by the International Renewable Energy Agency,
renewable energy generation has a clear electricity price advantage
over traditional coal-fired power generation. Therefore, utilizing
renewable electricity from sources such as photovoltaic and wind
power can effectively mitigate the issue of high electricity costs in
hydrogen production.

The energy storage systems in the current power grid and
integrated energy microgrid (IEM) primarily adopt a single-user
service model. While this approach meets the customized needs
of individual users, it lacks economic efficiency in large-scale
energy storage applications. To address this limitation, the shared
energy storage (SES) model has emerged, innovatively integrating
energy storage technology with the concept of a shared economy
(Kalathil et al., 2017), through optimized operational strategies,
SES can provide flexible auxiliary services for renewable energy
power plants and the grid, facilitating large-scale renewable energy
integration while significantly enhancing the economic benefits
of energy storage facilities. Under this model, prosumers can
effectively reduce energy costs through resource sharing while
improving power supply reliability. Compared with traditional
distributed energy storage, user-side centralized energy storage
integrates dispersed energy storage resources, enabling unified
scheduling, centralizedmanagement, and coordinatedmaintenance,
which significantly reduces operational costs. Existing research has
made significant progress in the field of shared energy storage:
Ma et al. (2022) constructs a bilateral optimization model between
users and operators based on the cloud energy storage business
model, providing an important reference for the decision-making

optimization of shared energy storage operators (SESO). This study
achieves efficient allocation and maximization of energy storage
value through a systematic operational framework. Chen et al.
(2022) proposes a shared energy storage station business model,
demonstrating that users can significantly reduce operational costs
through a sharing mechanism. Dai et al. (2021) develops a multi-
microgrid collaborative management strategy that enhances both
reliability and economic benefits through system interconnection.
However, at the practical level, since SESO and IEM belong
to different stakeholders, their complex game relationship poses
challenges for coordinated system operation.Therefore, establishing
a reasonable SESO-IEM collaborative operation mechanism can
not only improve the local consumption capacity of distributed
renewable energy but also stimulatemicrogrids’ intrinsicmotivation
to participate in energy sharing.

Current research focuses on the collaborative optimization of
microgrid clusters with shared energy storage, primarily improving
system operational efficiency through economic dispatch. Existing
studies indicate that a collaborative operation mechanism based
on shared energy storage can effectively reduce operating costs,
achieving a win-win situation for both SESO and IEM. In terms of
modeling approaches, shared energy storage models mainly adopt
either non-cooperative game theory or cooperative game theory
frameworks (He et al., 2021), providing a theoretical foundation
for system optimization. Tushar et al. (2019) significantly enhances
prosumer participation and strengthens the bargaining power of
power grid user groups through an innovative incentive model.
Alwesabi et al. (2022) proposes a collaborative optimization model
for multiple microgrids, effectively solving the benefit distribution
problem in interconnected systems using the Shapley value method.
Zeng et al. (2023) optimizes the energy interaction mechanism
between prosumers and consumers based on the social utility
function and Nash bargaining model. Zhang et al. (2021) combines
game theory with an auction pricing strategy to achieve optimal
prosumer transactions based on day-ahead and real-time electricity
price signals, significantly improving energy trading efficiency while
enhancing social benefits. These studies provide an important
theoretical foundation for the optimal operation of shared energy
storage systems.

In summary, existing research has the following shortcomings:
Current studies on shared energy storage mainly focus on
single-form electrical energy storage, with relatively insufficient
exploration of hydrogen-integrated multi-energy collaborative
sharing. In terms of modeling approaches, most existing studies
adopt a leader-follower game framework to construct collaborative
optimization models for shared energy storage and multiple
microgrids. However, this modeling approach, which prioritizes
individual profit maximization, has significant limitations. Firstly,
game participants tend to focus excessively on their own benefits,
making it difficult to achieve overall system optimization. Secondly,
this unidirectional decision-making mechanism severely restricts
the bidirectional interaction efficiency between multi-microgrid
systems and shared energy storage. On the other hand, multi-
integrated energy microgrid systems typically use fixed electricity
pricing mechanisms for energy transactions with the grid or
shared energy storage, which significantly discourages system
members from actively participating in demand response and
energy interactions. Additionally, in the field of shared hydrogen
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storage research, existing studies mainly focus on optimizing
storage capacity allocation or oversimplify the collaborative
operationmechanism between hydrogen storage systems andmulti-
integrated energy microgrids. This prevents the full realization of
the advantages of hydrogen-integrated multi-energy collaborative
sharing. As a result, the synergistic value of hydrogen energy within
integrated energy systems remains underexplored.

To address the shortcomings of existing research, this
paper innovatively proposes a hybrid game-based collaborative
optimization framework for sharedmulti-energy storage inmultiple
integrated energy microgrids (IEMs). By establishing a dynamic
pricing mechanism, it simultaneously optimizes energy transaction
prices, IEM operation strategies, and energy consumption
behaviors, achieving a dual reduction in operating costs for both
the Shared Energy Storage Operator (SESO) and IEMs. The main
contributions and innovations of this paper are as follows:

1. A hybrid game-based optimization framework for
shared multi-energy storage is constructed, innovatively
characterizing themulti-level game relationships among SESO,
the IEM aggregator, and individual IEMs. This framework
enables the coordinated optimization of energy storage
resource allocation efficiency and system stability.

2. A multi-energy collaborative pricing mechanism is designed
to dynamically optimize the prices of electricity, heat, and
hydrogen, significantly reducing the operating costs of SESO
and IEMs.Thismechanism integrates time-of-use energy price
signals, effectively guiding the IEM aggregator in optimizing
energy transaction strategies and improving overall energy
utilization efficiency.

3. A bi-level optimization solution strategy is proposed:
the lower-level problem is decomposed into two
subproblems—coalition cost optimization and inter-microgrid
transaction settlement. A cooperative game-based revenue
allocation model is established, and a novel GA-ADMM
hybrid algorithm is employed for solving the problem. This
approach ensures convergencewhile enhancing computational
efficiency.

2 Integrated energy multi-microgrid
system with centralized shared
multi-energy storage

2.1 Structure of the shared multi-energy
storage system in integrated energy
multi-microgrid

Theshared framework constructed in this paper takes the shared
multi-energy storage station and the IEM aggregate as the core
participants, achieving coordinated sharing of electricity, heat, and
hydrogen energy. With the rapid development of P2H technology,
hydrogen is gaining increasing application due to its significant
emission reduction characteristics. The hydrogen energy system
demonstrates unique advantages in enhancing the flexibility of
energy systems: on one hand, it enables large-scale and economical
storage of excess renewable energy through P2H technology; on
the other hand, it provides a crucial low-carbon energy carrier

for integrated energy systems. This dual value makes hydrogen an
increasingly important player in the energy transition.

The multi-agent collaborative operation framework constructed
is shown in Figure 1. The main participants include the upper-
level power grid, heating network, natural gas network, SESO, and
the IEM aggregate. Within the IEM aggregate, multiple energy
forms, including electricity, heat, gas, and hydrogen, are integrated.
Through the coordinated operation of various energy conversion
and storage devices, along with energy interactions with the external
power grid, heating network, and natural gas network, the internal
load demand of the system is fully met (Chen et al., 2024). In
terms of the operational mechanism, the IEM aggregate establishes
a bidirectional electricity trading mechanism with SESO: when
IEM generates excess renewable energy, it can sell electricity to
SESO. SESO, through a dynamic pricing mechanism, distributes
electricity to other demand parties. This model effectively promotes
local consumption of renewable energy and reduces dependence
on the distribution network. The IEM aggregate is equipped with a
comprehensive energy conversion device system, mainly including
wind and solar renewable energy generation units, hydrogen-
blended gas turbines (HGT), hydrogen-blended gas boilers (HGB),
methane reactors (MR), and carbon capture and storage (CCS)
devices (Li et al., 2023; Luo et al., 2024; Gao et al., 2024). Each
IEM member optimizes its energy trading strategy and equipment
operation plan based on its own energy supply and demand
characteristics to achieve a balanced supply of electricity, heat, and
hydrogen. The natural gas required by HGT and HGB is directly
procured from natural gas suppliers by the IEM.

The specific energy conversion models in energy storage
and integrated energy systems can be found in Supplementary
 Appendix A.

The energy trading framework constructed in this paper
is shown in Figure 2. SESO, as the system coordinator, is responsible
for setting the electricity, heat, and hydrogen trading prices for
the IEM aggregation. In terms of operational mechanisms, IEM
members prioritize achieving energy balance through internal
transactions: members with excess energy first sell the surplus to
internal demand sides, and the remaining portion is sold to SESO at
a price; members with insufficient energy prioritize purchasing from
within the aggregation, and the gap is then filled by purchasing from
SESO, and if still insufficient, they purchase from the external grid,
heat network, or natural gas pipeline. SESO generates operational
revenue through electricity, heat trading, and hydrogen sales,
while IEM reduces carbon emission costs by deploying CCS, MR,
and other equipment. This framework innovatively achieves triple
optimization: 1) enhancing system flexibility through hydrogen
utilization; 2) reducing environmental costs with carbon capture
technology; 3) improving overall economy based on a sharing
mechanism, ultimately forming a win-win energy trading model for
multiple parties.

2.2 Hybrid game optimization framework

As shown in Figure 3, the SESO-IEM aggregation collaborative
optimization model proposed in this paper adopts a two-tier game
framework, achieving two-level collaborative optimization through
a dynamic feedback mechanism. While ensuring the autonomy of
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FIGURE 1
Schematic diagram of the multi-microgrid shared multi-energy storage power station system.

decision-making for each entity, it uses price signals to promote
overall system optimization, providing an effective decision-support
tool for multi-energy sharing.

The two-way interactive hierarchical solution architecture
adopted by the optimization model is as follows: In the upper-
level dominant layer, a leader-follower game model is constructed,
where SESO aims to minimize operational costs. SESO dynamically
adjusts its pricing strategy based on the electricity, heat, and
hydrogen purchase-sale quantities and strategies feedback from
the IEM aggregation, and transmits the optimized electricity
price, heat price, and hydrogen sale price parameters to the
collaborative layer of the IEM aggregation. In the collaborative
layer, a cooperative game model is established, where each sub-
microgrid optimizes its internal energy trading plan with the
goal of minimizing system collaborative costs, based on the
price parameters issued from the dominant layer. This ensures
the maximization of cooperative benefits while safeguarding
individual interests. The updated energy demand information
is then fed back to the dominant layer to complete the closed-

loop optimization. This two-way coupled hierarchical architecture
achieves both system-wide and localized collaborative optimization
through a dynamic pricing mechanism. In the lower-level
collaborative layer game, based on Nash bargaining theory,
the problem is decomposed into two subproblems: maximizing
aggregation benefits and distributing revenues. By analyzing
actual electricity trading data, fair distribution of cooperative
gains is achieved, and electricity trading prices between IEMs are
determined.

The hybrid game mechanism achieves multi-agent collaborative
decision-making throughhierarchical optimization.Theupper-level
leader-follower game ensures the balance of interests between the
ESO and the IEM aggregation, while the lower-level cooperative
game, based on Nash bargaining theory, ensures fair revenue
distribution among IEM members. This dual-layer structure not
only considers the decision-making autonomy of entities at
different levels but also achieves collaborative optimization of the
entire system, providing an effective decision-making framework
for multi-energy storage sharing.
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FIGURE 2
Schematic diagram of the electricity, heat, and hydrogen combined supply microgrid structure participating in the shared multi-energy storage power
station service.

FIGURE 3
Hybrid game-theoretic optimization framework.

3 Hybrid game bi-level optimization
model

3.1 Upper-level objective function

SESO, as the leader in the leader-follower game, aims to
minimize its own daily operational costs. In response to the energy
purchase-sale plans requested by the follower IEM aggregation,
SESO formulates the corresponding time-of-use energy prices. The
upper objective function is shown in Equation 1:

min C = Cinv −C
e
IEMG,s −C

h
IEMG,s −C

H2
IEMG,s −Cserve (1)

here,Cinv is the daily investment andmaintenance costs of the shared
electricity-hydrogen storage station; Ce

IEMG,s is the revenue from
electricity transactions between the electricity-hydrogen storage
station and the microgrid cluster on a typical day; Ch

IEMG,s is the
revenue from heat transactions between the electricity-hydrogen
storage station and the microgrid cluster on a typical day; CH2

IEMG,s
is the revenue from hydrogen sales from the electricity-hydrogen
storage station to the microgrid on a typical day; Cserve is the
service fees collected by the electricity-hydrogen storage station on
a typical day.

1) Daily investment and maintenance costs of SESO are shown in
Equation 2 (Cui et al., 2021):
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Cinv = ∑
d∈Nn

[

[

γ(1+ γ)Tu

365[(1+ γ)Tu − 1]
ξdQ

d]

]
+
ηPP

max
ese + ηSE

max
ese

Tu
+MSES

(2)

here, d represents the index for various types of devices, while Nn
is {ele, fuel,H2,heat}, denoting the electrolyzer, fuel cell, hydrogen
storage tank, and heat storage tank. γ is the interest rate, ξd
corresponds to the unit capacity investment cost of device d, andQd

represents the configured capacity of device d. ηP and ηS indicate the
power cost and capacity cost of electrical energy storage, measured
inCNY/kWandCNY/(kWh), respectively.Pmax

ese andEmax
ese denote the

maximum charge/discharge power and capacity of electrical energy
storage.Tu represents the expected service life (in days) of the energy
storage device, while MSES denotes the daily maintenance cost.

2) Revenue from electricity transactions between SESO and the
IEM coalition on a typical day:

Ce
MGC,s =

N

∑
i=1

NT

∑
t=1
(ues,i(t)P

e
IEM,s,i(t) − ueb,i(t)P

e
IEM,b,i(t))Δt (3)

In the equation, N represents the total number of IEMs; NT
represents the total number of time periods in the scheduling
cycle; IEMi represents the i-th IEM; ues,i(t) represents the electricity
price at time period t for electricity sold by SESO to IEMi; ueb,i(t)
represents the electricity price at time period t for electricity
purchased by SESO from IEMi; PeIEM,s,i(t) represents the power sold
by SESO to IEMi at time period t on each typical day; PeIEM,b,i(t)
represents the power purchased by SESO from IEMi at time period
t on each typical day; Δt represents the time step, set to 1 h.

3) Revenue from heat energy transactions between SESO and the
IEM coalition on a typical day is shown in Equation 4:

Ch
MGC,s =

N

∑
i=1

NT

∑
t=1
(uhb,i(t)P

h
IEM,b,i(t) − uhs,i(t)P

h
IEM,s,i(t))Δt (4)

here,PhIEM,b,i(t) andP
h
IEM,s,i(t) represent the thermal power purchased

by SESO from IEMi and the thermal power sold to IEMi at time
period t, respectively. uhb,i(t) and uhs(t) represent the cost paid by
SESO for purchasing thermal energy from IEMi and the revenue
obtained from selling thermal energy at time period t, respectively.

4) Revenue from hydrogen sales by SESO to the IEM coalition on
a typical day is shown in Equation 5:

CH2
IEM,s =

N

∑
i=1

NT

∑
t=1
(PH2

IEM,s,i(t)uH2s,i(t))Δt (5)

here, PH2
IEM,s,i(t) represents the amount of hydrogen sold by SESO

to IEMi at time period t, and uH2s,i(t) represents the unit price of
hydrogen sold by SESO to IEMi at time period t.

5) Service fees collected by SESO from the IEM coalition on a
typical day are shown in Equation 6:

Cserve =
N

∑
i=1

NT

∑
t=1
[θe(t)(P

e
IEM,s,i(t) + P

e
IEM,b,i(t))

+θh(t)(P
h
IEM,b,i(t) + P

h
IEM,s,i(t)) + θH2

(t)PH2
IEM,s,i(t)]Δt (6)

here, θe(t), θh(t), and θH2
(t) represent the unit service fees paid by

the IEM coalition to SESO for electricity, heat, and hydrogen in time
period t, respectively, measured in CNY/(kWh).

3.2 Upper-level constraints

1) Shared multi-energy storage capacity constraints

Electric energy storage capacity constraints are shown in
Equation 7 (Tengfei et al., 2020):

{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{
{

Eese(t) = Eese(t− 1) + [ηcesePese,c(t) − Pese,d(t)/η
d
ese]Δt

Eese(0) = 20%Emax
ese

Eese(0) = Eese(24)

0.1Emax
ese ≤ Eese(t) ≤ 0.9Emax

ese

0 ≤ Pese,c(t) ≤ Uc(t)Pmax
ese

0 ≤ Pese,d(t) ≤ Ud(t)P
max
ese

Uc(t) +Ud(t) ≤ 1

Uc(t) ∈ {0,1},Ud(t) ∈ {0,1}

(7)

where Eese(t) represents the energy stored in the electric energy
storage system at time t; ηcese and ηdese denote the charging and
discharging efficiencies of the electric energy storage system,
respectively; Pese,c(t) and Pese,d(t) represent the charging and
discharging power of the electric energy storage system at time
t, respectively; Eese(0) indicates the initial stored energy of the
electric energy storage system; Uc(t) and Ud(t) are binary variables
indicating the charging and discharging states, ensuring that the
shared electric energy storage system can only be in either a charging
or discharging state at any given time, but not both simultaneously.

Thermal storage equipment constraints are shown in Equation 8:

{
{
{

Etse(t) = Etse(t− 1) + [η
c
tsePtse,c(t) − Ptse,d(t)/η

d
tse]Δt

Etse(0) = Etse(24)
(8)

here, Etse(t) is the thermal energy of the heat storage tank at time
t; ηctse and ηdtse represent the thermal energy input efficiency and
output efficiency of the heat storage tank, respectively; Ptse,c(t) and
Ptse,d(t) represent the thermal energy input and release power at time
t, respectively.

Hydrogen storage tank balance constraints: In the modeling
process, this paper considers the pressure variation characteristics
of high-pressure hydrogen storage tanks during hydrogen
charging and discharging. Meanwhile, based on simplified model
assumptions, the effect of temperature variation is neglected, leading
to the balance described in Equation 9:

{
{
{

MH2
(t) =MH2

(t− 1) + ηcH2
PH2,c(t) − PH2,d(t)/η

d
H2

MH2
(0) =MH2

(24)
(9)
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whereMH2
(t) andMH2

(t− 1) represent the hydrogen storage energy
at time t and time t-1, respectively; PH2,c(t) and PH2,d(t) represent the
power of hydrogen charging anddischarging in the hydrogen storage
tank at time t, respectively; ηcH2

and ηdH2
represent the efficiency of

hydrogen charging and discharging, respectively.

2) Price Constraints

The purchasing price and selling price set by SESO should satisfy
Equation 10:

{{{{{{{{{{
{{{{{{{{{{
{

umin
eb ≤ ueb,i(t) ≤ u

max
eb

umin
es ≤ ues,i(t) ≤ umax

es

umin
hb ≤ uhb,i(t) ≤ u

max
hb

umin
hs ≤ uhs,i(t) ≤ u

max
hs

umin
H2s
≤ uH2s,i(t) ≤ u

max
H2s

(10)

here, umin
eb and umax

eb are the upper and lower limits of the electricity
purchase price set by the SESO for the IEM; umin

es and umax
es are the

upper and lower limits of the electricity selling price; umin
hb and umax

hb
are the upper and lower limits of the heat purchase price; umin

hs and
umax
hs are the upper and lower limits of the heat selling price; umin

H2s
and

umax
H2s

are the upper and lower limits of the hydrogen selling price.

3) Power Balance Constraints (Pan et al., 2020). The power
balance constraints are shown in Equation 11.

{{{{{{{{{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{{{{{{{{{
{

Pese,c(t) =
N

∑
i=1

PeIEM,b,i(t) − P
ele
e (t)

Pese,d(t) =
N

∑
i=1

PeIEM,s,i(t) − P
fuel
e (t)

Ptse,c(t) =Hele(t) +H fuel(t) +
N

∑
i=1

PhIEM,b,i(t)

Ptse,d(t) =
N

∑
i=1

PhIEM,s,i(t)

PH2,c(t) = P
ele
H2
(t)

PH2,d(t) =
N

∑
i=1

PH2
IEM,s,i(t) + P

fuel
H2
(t)

(11)

3.3 lower-level model objective function

In the proposed game framework, the IEM aggregation,
as the follower, responds to the energy pricing strategies
set by SESO (Wang et al., 2024a), including electricity purchase-
sale prices, heat purchase-sale prices, and hydrogen sale prices.
By optimizing the trading combination of electricity, heat, and
hydrogen while coordinating internal unit output and energy
interactions among members, the IEM aggregation ultimately
feeds back the optimized results to SESO, forming a closed-loop
decision-making process. Each IEM member aims to maximize
overall benefits, and its optimization model integrates multiple
economic factors, including energy trading revenue, demand
response compensation, energy storage operation and maintenance
costs, natural gas procurement expenses, equipment operation
and maintenance costs, renewable energy curtailment penalties,

and carbon trading costs. This approach enables comprehensive
economic evaluation and optimization.

The daily operating cost of the multi-integrated energy
microgrid system with heat, electricity, and hydrogen cogeneration
based on SESO services is minimized:

min C =
N

∑
i=1
(CDR

i +C
Aban
i +C

CCS
i +C

Op
i +C

Fuel
i +C

Grid
i −C

SES
i ) +C

serve

(12)

here, CDR
i represents the demand response cost for IEMi; CAban

i
represents the penalty cost for IEMi due to wind and solar
curtailment; COp

i represents the operating cost of IEMi’s equipment;
CCCS
i represents the carbon trading and carbon capture-related costs

for IEMi; CFuel
i represents the natural gas purchase cost for IEMi;

CGrid
i represents the energy trading cost between IEMi and the power

grid and heat network; Cserve
i represents the service fees charged by

SESO to IEMi; CSES
i represents the trading revenue between IEMi

and SESO.

1) The trading revenue with SESO includes the purchase and sale
of electricity, heat, and hydrogen costs is shown in Equation 13:

CSES
i (t) =

NT

∑
t=1
[(ues,i(t)P

e
IEM,s,i(t) − ueb,i(t)P

e
IEM,b,i(t))Δt

+ (uhb,i(t)P
h
IEM,b,i(t) − uhs,i(t)P

h
IEM,s,i(t))Δt

+(PH2
IEM,s,i(t)uH2s,i(t))Δt] (13)

2) The demand response cost of IEMi, for incentive-based
electricity and heat demand response, is primarily influenced
by the transferable and reducible load (Doan et al., 2021)
as shown in Equation 14:

CDR
i (t) =

NT

∑
t=1
[λtrane |P

tran
i (t)| + λ

cut
e Pcuti (t) + λ

cut
h Qcut

i (t)]Δt (14)

where Ptrani (t) and Pcuti (t) represent the electricity load shifting and
curtailment of IEMi at time t, respectively;Qcut

i (t) represents the heat
load curtailment of IEMi at time t; λtrane , λcute , and λcuth correspond to
the unit costs of electricity load shifting, electricity load curtailment,
and heat load curtailment, respectively.

3) The natural gas purchase cost is shown in
Equation 15 (Wang et al., 2022):

CFuel
i = cCH4

N

∑
i=1

NT

∑
t=1

{
{
{

[

[

QHGT,i
CH4
(t)

LCH4

+
QHGB,i
CH4
(t)

LCH4

−
mCH4
(t)

ρCH4

]

]
· Δt
}
}
}
(15)

here, cCH4
is the unit volume price of gas, CNY/m3.

4) Wind and solar curtailment penalty cost: This penalty
mechanism is used to quantify the economic losses
caused by the ineffective use of renewable energy, thus
incentivizing system optimization scheduling to improve the
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utilization of wind and solar energy. The penalty function
is shown in Equation 16:

CAban
i (t) =

NT

∑
t=1

λaban(P
WT,cur
i (t) + PPV,curi (t))Δt (16)

here, λaban represents the penalty cost coefficient for wind
and solar curtailment; PWT,cur

i (t) represents the wind energy
curtailment at time t; PPV,curi (t) represents the solar energy
curtailment at time t.

5) Ladder-style carbon trading and carbon sequestration costs as
shown in Equation 17 (Wang et al., 2024b):

CCCS
i = C

CC
i +C

CS
i (17)

The allocation of carbon quotas is mainly carried out free of
charge. Given that HGT and HGB are the primary sources of
carbon emissions, the actual carbon emission quota of IEMi can be
expressed as shown in Equations 18–20:

E∗i (t) =
NT

∑
t=1

E∗HGT(t) +E
∗
HGB(t) (18)

E∗HGT(t) =
NT

∑
t=1

β∗hHHGT(t)Δt+φe,hPHGT(t)Δt (19)

E∗HGB(t) = β
∗
h

NT

∑
t=1

HHGB(t)Δt (20)

where Ei
∗(t) represents the free carbon emission quota of the

IEMi system; EHGT∗ (t) represents the free carbon emission quota
of HGT; EHGB

∗ (t) represents the free carbon emission quota
of HGB; βh

∗ represents the free carbon emission allowance
per unit of heat; φe,h is the conversion coefficient of the heat
output of HGT.

Considering the CO2 capture capacity of CCS, the actual carbon
emissions of IEMi are shown in Equation 21:

Ei(t) =
NT

∑
t=1

ε(QHGB
CH4
(t) +QHGT

CH4
(t))(1− ηc) (21)

where Ei(t) represents the actual carbon emissions of IEMi; ε
represents the carbon emissions corresponding to the consumption
of natural gas per unit of power; ηc represents the carbon capture
efficiency, with a value of 90%.

ettrad = Ei(t) −E
∗
i (t) (22)

CCC
i =

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

−χ(2+ 3δ)L+ χ(1+ 3δ)(ettrad + 2L),e
t
trad ≤ −2L

−χ(1+ δ)L+ χ(1+ 2δ)(ettrad + L),−2L < e
t
trad ≤ −L

χ(1+ δ)ettrad,−L < e
t
trad ≤ 0

χetjy,0 < e
t
trad ≤ L

χL+ χ(1+ θ)(ettrad − L),L < e
t
trad ≤ 2L

χ(2+ θ)L+ χ(1+ 2θ)(ettrad − 2L),2L ≤ e
t
trad

(23)

in Equation 22, ettrad is the actual carbon emissions rights
participating in the carbon trading market. In Equation 23 χ
represents the base price of carbon trading; L is the length of the

carbon emission interval; θ is the increase in the carbon trading
price; δ is the compensation coefficient.

CCS
i =

NT

∑
t=1
(ccsEcs(t)) (24)

In Equation 24, ccs represents the cost of storing a unit mass of CO2,
and Ecs(t) represents the amount of CO2 stored by CCS at time t.

6) The equipment operation andmaintenance costs includeHGT,
HGB, MR, and CCS:

COp
i (t) =

NT

∑
t=1

ω1
i P

HGT
i (t) +ω

2
i P

HGB
i (t) +ω

3
i P

MR
i (t) +ω

4
i P

CCS
i (t) (25)

In Equation 25, ω1
i , ω2

i , ω3
i , and ω4

i represent the operation
and maintenance costs coefficients for GT, GB, P2G, and CCS,
respectively.

7) Transaction costs with the power grid and heat network:

CGrid
i ==

NT

∑
t=1
[uEgrids (t)P

Egrid
IEM,b,i(t)Δt+ u

Hgrid
s (t)P

Hgrid
IEM,b,i(t)Δt] (26)

In Equation 26, uEgrids (t) is the electricity selling price of the power
grid at time t; PEgridIEM,b,i(t) is the power purchased by the i-th IEM from
the power grid at time t; uhs(t) is the heat selling price of the heat
network at time t; PHgridIEM,b,i(t) is the heat purchased by the i-th IEM
from the heat network at time t.

8) Service fee for IEM using the shared energy storage system
is shown in Equation 27.

CServe =
NT

∑
t=1
{
ωe(Pese,c(t)Δt+ Pese,d(t)Δt) +ωh(Qese,c(t)Δt+Qese,d(t)Δt)

+ωH2
(PH2,c(t)Δt+ PH2,d(t)Δt)

}

(27)

3.4 Lower-level model constraints

The operational optimization of the IEM aggregation system
must satisfy multiple constraints, including maintaining the supply-
demand balance of electricity, heat, hydrogen, and natural gas,
equality constraints for electricity trading among IEMs, as well as
inequality constraints such as load demand response, equipment
operating limits, external network energy purchase power, and
SESO interaction power. These constraints collectively define the
feasible region for system operation, ensuring real-time balance
across energy networks while maintaining the stable operation of
equipment within safe limits, thus providing essential boundary
conditions for optimization decisions.

1) Electric power balance constraint is shown in Equation 28:

PHGTi (t) + P
WT
i (t) − P

WT,cur
i (t) + PPVi (t) − P

PV,cur
i (t) + P

Egrid
IEM,b,i(t)

+PeIEM,s,i(t) − P
eload
i (t) − P

e
IEM,b,i(t) = 0

(28)

where PWT
i (t) represents the wind power generation of IEMi at time

period t; PPVi (t) represents the photovoltaic power generation of
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IEMi at time period t; Peloadi (t) represents the electrical load power
of IEMi after demand response at time period t.

2) Thermal power balance constraint is shown in Equation 29:

N

∑
i=1

PHgridIEM,b,i(t) + P
h
IEM,s,i(t) +HHGT(t) +HHGB(t) − P

hload
i (t) − P

h
IEM,b,i(t) = 0

(29)

here, Phloadi (t) represents the heat load power of IEMi after
curtailment at time period t.

3) Hydrogen Energy Balance Constraint is shown in Equation 30:

N

∑
i=1

PH2
IEM,s,i(t) − P

H2load
i (t) −

mH2
(t)

ρH2

LH2
−QHGT

H2
(t) = 0 (30)

here, ρH2
represents the density of hydrogen gas.

4) Natural gas balance constraint is shown in Equation 31:

QHGT
CH4
(t) +QHGB

CH4
(t) =

mCH4
(t)

ρCH4

LCH4
+

N

∑
i=1

QCgrid
IEM,b,i(t) (31)

whereQCgrid
IEM,b,i(t) represents the natural gas power purchased by IEMi

from the natural gas network.

5) Electricity trading constraints between IEMs: P2P electricity
trading must remain within the transaction volume limits,
while also ensuring that the trading volume between IEM
members is equal:

{
{
{

PTradee,ij (t) + P
Trade
e,ji (t) = 0

−PTradee,max ≤ P
Trade
e,ij (t) ≤ P

Trade
e,max

(32)

in Equation 32 PTradee,ij (t) is the electricity transmission power
from IEMi to IEMj at time t; PTradee,max is the maximum electricity
transmission power between IEMs.

6) IEM equipment output constraints:

{{{{{{{{{{{
{{{{{{{{{{{
{

Pmin
HGT ≤ PHGT(t) ≤ P

max
HGT

Hmin
HGB ≤HHGB(t) ≤H

max
HGB

mmin
CH4
≤mCH4
(t) ≤mmax

CH4

Pmin
H2,ele
≤ PeleH2
(t) ≤ Pmax

H2,ele

Pmin
e, fuel ≤ P

fuel
e (t) ≤ Pmax

e, fuel

(33)

in Equation 33 Pmin
HGT and Pmax

HGT are the minimum and maximum
values of the HGT electrical output power; Hmin

HGB and Hmax
HGB are

the minimum and maximum values of the HGB thermal output
power;mmin

CH4
andmmax

CH4
are theminimumandmaximumvalues of the

methane mass generated by the methane reactor; Pmin
H2,ele

and Pmax
H2,ele

are the minimum and maximum values of the hydrogen production
power from the electrolyzer; Pmin

e, fuel and Pmax
e, fuel are the minimum and

maximum values of the fuel cell electrical output power.

7) Demand response constraints (Tushar et al., 2019):

{{{{{{{{{
{{{{{{{{{
{

NT

∑
t=1
|Ptrani (t)| ≤ βe

NT

∑
t=1

PEloadi (t)

|Ptrani (t)| ≤ P
tran
max

0 ≤ Pcuti (t) ≤ P
cut
max

0 ≤ Qcut
i (t) ≤ Q

cut
max

(34)

in Equation 34 βe is the maximum transferable electricity load ratio
coefficient; PEloadi (t) is the electricity load before demand response
at time t; Ptranmax, Pcutmax, and Qcut

max represent the transferable electricity
load, reducible electricity load, and thermal load limit, respectively.

8) Constraints on IEM’s power purchase from the electricity grid,
heat network, and natural gas network:

{{{{
{{{{
{

0 ≤ PEgridIEM,b,i(t) ≤ P
E max
Egrid,b,i

0 ≤ PHgridIEM,b,i(t) ≤ P
H max
IEM,b,i

0 ≤ QCgrid
IEM,b,i(t) ≤ Q

C max
IEM,b,i

(35)

in Equation 35 PE max
Egrid,b,i, P

H max
IEM,b,i, andQ

C max
IEM,b,i are themaximumpower

that IEM purchases from the electricity grid, heat network, and
natural gas network, respectively.

9) Constraints on the power purchase and sale between
IEM and SESO.

{{{{{{{{{{
{{{{{{{{{{
{

0 ≤ PeIEM,s,i(t) ≤ P
e max
IEM

0 ≤ PeIEM,b,i(t) ≤ P
emax
IEM

0 ≤ PhIEM,s,i(t) ≤ P
h max
IEM

0 ≤ PhIEM,b,i(t) ≤ P
h max
IEM

0 ≤ PH2
IEM,s,i(t) ≤ P

H2 max
IEM

(36)

in Equation 36 Pe max
IEM , Ph max

IEM , and PH2 max
IEM are the maximum

electricity, heat, and hydrogen interaction powers between IEM and
SESO, respectively.

3.5 Integrated energy microgrid
aggregation nash bargaining model

The IEM aggregation faces dual optimization objectives when
responding to SESO’s upper-level decisions: on one hand, it needs
to minimize the overall operating costs of the aggregation, and
on the other hand, it must coordinate the benefit distribution
among its members. To address this complex decision-making
environment, this paper designs a benefit distribution scheme
that balances fairness and efficiency based on Nash bargaining
theory (Jing et al., 2022). This scheme establishes a win-win
interest coordination mechanism, which ensures the basic
benefits of each member while effectively enhancing the overall
operational efficiency of the aggregation:
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FIGURE 4
Solution process of the hybrid game bi-level model based on GA and ADMM.

{
{
{

max∏i(C0
i −Ci)

C0
i ⩾ Ci

(37)

here, C0
i represents the minimum cost of each IEM when there is no

cooperation, which is the Nash bargaining breakdown point. Since
Equation 37 is a non-convex, nonlinear problem that is difficult
to solve, this paper equivalently decomposes Equation 37 into two
subproblems: the cost minimization of the IEM alliance and the
alliance’s electricity transaction payment.

1) Problem 1: IEM alliance cost minimization, i.e., Equation 12.

In the absence of considering internal transaction costs within
the IEM aggregation, the minimum operating costs of each IEM are
difficult to determine directly.This is because the energy transaction
volumes between members within the aggregation offset each other
at the system level, making it impossible to directly calculate
the internal transaction prices. Therefore, after solving the leader-
follower game equilibrium, the electricity trading prices within
the alliance need to be further determined through subproblem 2.
This optimization step ensures that, under the premise of overall
cost optimization, the energy transaction values between IEM
members can be reasonably quantified.

2) Energy transaction payments between IEMs:

{{{
{{{
{

CTrade
e,i =

NT

∑
t=1

N

∑
j=1,j≠i

ue,ij(t)P
Trade
e,ij (t)Δt

umin
e,ij (t) ≤ ue,ij(t) ≤ u

max
e,ij (t)

(38)

in Equation 38 CTran
e,i is the revenue from electricity trading between

IEMi and other microgrids; ue,ij(t) is the electricity trading price

between IEMi and IEMj at time t; umin
e,ij (t) and umax

e,ij (t) are the

minimum and maximum electricity trading prices between IEMs,

respectively.

{{{{{{{{{
{{{{{{{{{
{

min−∑
n
[ln(C0

i −C
∗
i −

NT

∑
t=1

N

∑
j=1,j≠i

ue,ij(t)P
Trade∗
e,ij (t))]

s.t.C∗i +
NT

∑
t=1

N

∑
j=1,j≠i

ue,ij(t)P
Trade∗
e,ij (t) ⩽ C

0
i

0 ≤ ue,ij(t) ≤ ues(t)

(39)

in Equation 39, Ci
∗ and PTradee,ij

∗(t) are the optimal solutions

obtained from solving subproblem 1.
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FIGURE 5
The iteration convergence results of SESO cost and IEM alliance cost.

FIGURE 6
ADMM iteration convergence results.

4 Solution method for the hybrid
game bi-level optimization model

This paper constructs a two-stage collaborative optimization
framework, modeled and solved using a leader-follower and
cooperative hybrid game approach. In this framework, SESO acts
as the leader in the leader-follower game, while the IEM aggregation
participates in the cooperative game.The schedulingmodel solution
involves a mixed-integer linear programming problem, where the
leader-follower game is solved using GA, and the cooperative game
is solved using ADMM. These two methods work together to solve

the entire bi-level optimization model (Qiao et al., 2023). This
hybrid solution approach ensures both computational efficiency and
the rationality of the optimization results. The solution process is
shown in Figure 4, and the detailed transformation process can
be found in Supplementary Appendix B.

5 Case study

To verify the effectiveness of the proposed hydrogen storage-
integrated multi-microgrid scheduling method considering hybrid
games, simulationswere conducted on theMATLAB2023a platform
using the GUROBI solver. The model was solved by combining GA
and ADMM algorithms. IEM1 and IEM2 include both wind turbine
(WT) and photovoltaic (PV) units, while IEM3 only contains PV
units. Each IEM is equipped with identical HGT, HGB, MR, and
CCS. The electricity price follows a time-of-use pricing mechanism,
and the natural gas price is set at 2.93 CNY/m3. It is assumed that
transferable loads account for 20% of the total load, with upper
limits of 900 kW for transferable electricity loads and 1,400 kW for
transferable thermal loads. Hydrogen energy is uniformly converted
into kW for calculation. The initial electricity, heat, and hydrogen
loads of each IEM aggregation, as well as wind and solar output, grid
electricity prices, energy conversion coefficients, and equipment
parameters, are detailed in Supplementary Appendix C.

5.1 Algorithm convergence analysis

Figure 5 presents the iterative convergence results of SESO
and IEM aggregation costs in Subproblem 1. By analyzing the
curves in the figure, it can be observed that the proposed
algorithm successfully converges after 16 iterations. The SESO
cost decreases rapidly in the initial stage and then stabilizes,
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TABLE 1 Cost and benefit analysis before and after cooperation.

Plan SESO cost (CNY) IEM1 cost (CNY) IEM2 cost (CNY) IEM3 cost (CNY) IEM alliance cost (CNY)

1 −2,966.8 35,064.03 24,666.73 32,748.08 92,478.84

2 −2,685.27 50,198.9 36,696.51 44,534.2 131,429.61

3 −2,872.33 39,917.66 29,705.48 39,345.4 108,968.54

4 −1972.95 37,821.57 30,523.5 34,274.6 102,619.67

5 −2,391.8 43,002.29 33,881.09 39,958.44 116,841.82

FIGURE 7
IEM2 Electricity, Heat, and Hydrogen Power Balance. (a) Electric power balance. (b) Heat power balance. (c) Hydrogen power balance.
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FIGURE 8
The electricity purchase and sale prices set by the SESO.

FIGURE 9
The heat purchase and sale prices set by the SESO.

indicating that the algorithm can quickly approach the optimal
solution. Figure 6 shows the iterative convergence results of the
residual curve for transaction prices in Subproblem 2.The algorithm
successfully converges to a residual value below 0.001 after 32
iterations. The curve in the figure exhibits a stable downward
trend, further demonstrating the convergence and stability of
the algorithm. In summary, the proposed optimization algorithm
exhibits excellent convergence characteristics and computational
efficiency in solving both subproblems.

FIGURE 10
The hydrogen purchase price set by the SESO.

FIGURE 11
Electricity interaction results between IEMs.

5.2 The optimization results of different
schemes

To validate the effectiveness of the proposedmodel, five different
schemes are designed to compare and analyze the operating costs
of the SESO and the IEM alliance: Scheme 1: The IEM alliance and
the SESO participate in a leader–follower game; members within
the IEM alliance engage in cooperative games. All devices in the
thermal and hydrogen energy systems are included. Scheme 2: The
IEM alliance and the SESO participate in a leader–follower game;
members within the IEM alliance engage in cooperative games. The
thermal and hydrogen energy systems are excluded. Scheme 3: The
IEM alliance and the SESO do not participate in a leader–follower
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FIGURE 12
Electricity trading prices between IEMs after cooperative game.

game; members within the IEM alliance engage in cooperative
games. All devices in the thermal and hydrogen energy systems
are included. Scheme 4: The IEM alliance and the SESO participate
in a leader–follower game; members within the IEM alliance
do not engage in cooperative games. All devices in the thermal
and hydrogen energy systems are included. Scheme 5: The IEM
alliance and the SESO do not participate in a leader–follower game;
members within the IEM alliance do not engage in cooperative
games. All devices in the thermal and hydrogen energy systems are
included.

When the IEM alliance and the SESO do not participate in the
leader–follower game, the SESO’s electricity selling price follows
the grid’s time-of-use pricing, with the electricity purchase price
set at 0.35 CNY/kWh, the thermal energy purchase price set at
0.3 CNY/kWh, and the hydrogen selling price at 1.2 CNY/kWh.
Comparing Schemes 1 and 2 verifies the effectiveness of including
the hydrogen energy system in themodel, while comparing Schemes
1, 3, 4, and 5 validates the effectiveness of the hybrid game
model. The system optimization results under different schemes
are shown in Table 1.

A comparison between Schemes 1 and 2 in Table 1 reveals
that the integration of thermal and hydrogen energy reduces the
total operating cost of the IEM alliance by 29.6%, while the
SESO’s revenue increases by 10.5%. Additionally, the operating
costs of individual IEM members are more evenly reduced.
This demonstrates that the integration of electricity, thermal,
and hydrogen energy—through cross-period energy storage and
multi-energy supply—effectively mitigates the intermittency of
wind and solar power. It confirms the significant advantages of
electric-thermal-hydrogen synergy in enhancing system economic
performance and renewable energy utilization. Compared with
the conventional single-energy storage system in Scheme 2, the
multi-energy storage approach shows clear potential for cost
optimization.

A comparison among Schemes 1, 3, and 5 indicates that
the hybrid game reduces the total IEM operating cost by 20.8%
compared to Scheme 5 and by 15.1% compared to Scheme 3.

The leader–follower game layer facilitates coordinated optimization
between SESO and IEM through dynamic pricing, while the
cooperative game ensures fair transactions among microgrids. The
synergy of both mechanisms avoids the short-sighted decisions
typical of a single game model.

Furthermore, comparing Schemes 1, 4, and 5 shows that the
cooperative game, implemented via Nash bargaining, optimizes
internal electricity trading. It prevents local conflicts of interest as
seen in Scheme 4, and significantly improves the overall efficiency
of the IEM alliance.

5.3 Power balance analysis

Taking IEM2, which includes wind and solar power generation,
as an example, Figure 7 illustrates the optimized operation of
electricity, heat, and hydrogen power within the integrated energy
microgrid. By analyzing the power distribution of different energy
forms, the dynamic balance between renewable energy generation
and electricity, heat, and hydrogen loads can be clearly observed.
During periods of high wind and solar power output, the system
prioritizes the use of renewable energy to meet electricity and
heat demands. Excess energy is either stored through electricity
sales to SESO or converted into hydrogen via electrolysis for
storage. Conversely, during periods of low renewable generation,
the system compensates for power shortages by purchasing
stored electricity and hydrogen from SESO or utilizing HGT
and HGB. This optimization strategy not only improves the
utilization rate of renewable energy but also enhances energy
efficiency and ensures stable system operation. From Figure a, it
can be observed that between 07:00 and 17:00, the increase in
photovoltaic generation leads to a higher overall renewable energy
output. As a result, the output of HGT is partially reduced, and
IEM2 engages in significant electricity sales to SESO and other
IEMs, facilitating the storage and utilization of surplus energy.
However, during 03:00–05:00 and 18:00–22:00, the system primarily
relies on HGT generation and external electricity purchases to
maintain balance.

Figure b illustrates that the heat power balance of IEM2 mainly
relies on HGT and HGB as the primary sources of heat energy.
Due to the significant increase in photovoltaic output during the
daytime, the output of HGT decreases, and thus HGB serves as a
supplementary heat source to fill the heat energy gap. From 10:00
to 16:00, the operation of HGB significantly increases to ensure
heat supply balance. On the other hand, the reduced heat load
curve shows that through demand response and load adjustment,
part of the heat load is reduced, thereby alleviating the scheduling
pressure of heat energy.This peak-shaving and valley-filling strategy
significantly improves heat energy balance and enhances system
flexibility and economic efficiency. From Figure c, it can be seen that
after SESO converts the excess electricity from the IEM alliance into
hydrogen storage, IEM2 purchases hydrogen from SESO to meet
the system’s hydrogen energy demand. Calculations show that the
utilization of hydrogen by HGT and HGB effectively reduces the
system’s carbon cost, and the system achieves a stable matching of
hydrogen energy supply and demand.
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TABLE 2 Cost and benefit analysis before and after cooperation.

IEM Cost before joining
the alliance (CNY)

Cost after joining
the alliance (CNY)

Cost after
considering profit
distribution (CNY)

Profit increase (CNY)

IEM Alliance 102,619.67 92,478.84 92,478.84 10,140.83

IEM1 37,821.57 25,390.36 35,064.03 2,757.54

IEM2 30,523.5 35,770.7 24,666.73 5,856.77

IEM3 34,274.6 31,317.78 32,748.08 1,526.52

5.4 Energy trading analysis

When SESO and the IEM aggregate participate in the leader-
follower game, the IEM aggregate needs to determine its electricity
and heat energy purchase/sale plans as well as its hydrogen purchase
plan based on the time-of-use electricity and heat prices and the
hydrogen sale price set by SESO. When the IEM aggregate members
participate in the cooperative game, they need to determine the
electricity trading price. The electricity purchase and sale prices set
by SESO are shown in Figures 8–10.

From Figures 8–10, it can be observed that SESO generally
purchases electricity during low-price periods, such as from 00:00 to
06:00 and 23:00 to 24:00, and performs electricity-hydrogen energy
storage to reduce operational costs. The low electricity price reflects
themarket condition of oversupply and low demandwhenwind and
solar power generation are high. SESO encourages the IEM alliance
to purchase electricity from the energy storage side by lowering the
electricity price, balancing the grid load. From 15:00 to 21:00, during
peak load hours, due to increased load demand, the renewable
energy output within the IEM alliance cannot fully meet the load
demand. The IEM alliance may need to purchase a large amount
of electricity from SESO’s energy storage side and the distribution
network to meet internal needs. The high electricity price reflects a
market condition of tight electricity supply and increased demand.
Therefore, during this period, SESO adjusts the supply-demand
balance by raising the electricity price while encouraging the IEM
alliance to reduce electricity consumption or release energy storage.

The heat energy of each member in the IEM aggregate is mainly
produced by HGT and HGB, as well as purchased from SESO and
the heat network. The fluctuations in heat energy purchase and sale
prices are relatively consistent, with SESO primarily serving as a
heat energy regulator. When heat demand is low, IEM members
reduce heat production, lower the operating load of HGT and HGB,
and store excess heat energy in SESO’s thermal storage tank for use
during high-demand periods.

As shown further in Figure 10, the hydrogen purchase prices
set by the SESO exhibit relatively high volatility, with significant
differences among IEM members across different time periods. This
is mainly because hydrogen production relies on the electrolysis
process, whose cost is directly influenced by electricity prices and
system load, while also being affected by the storage capacity and the
dynamic hydrogen demand of each IEM. Low hydrogen purchase
prices are mainly concentrated during nighttime and midday

periods with high photovoltaic output, reflecting the SESO’s strategy
to incentivize hydrogen purchases and storage when renewable
energy is abundant. Conversely, during periods of high demand or
tight power supply, hydrogen prices rise significantly, encouraging
IEMs to reduce hydrogen usage or release stored hydrogen. This
enhances the system’s flexibility and enables the spatial and temporal
optimization of hydrogen energy resources.

While SESO sets the time-of-use electricity, heat, and hydrogen
prices and the IEM aggregate formulates energy purchase and sale
plans, the internal members of the IEM aggregate determine their
electricity interaction plans. The electricity trading results among
IEM members are shown in Figure 11. Since IEM1 and IEM2
contain wind and photovoltaic (PV) units, while IEM3 only has
PV units, electricity trading follows a dynamic pattern based on
generation and demand fluctuations. During the low-load periods
from 00:00–06:00 and 23:00–24:00, IEM1 and IEM2’s wind turbines
generate high electricity output due to strong nighttime winds,
while IEM3’s PV units do not generate power at night. At the
same time, IEM2’s load is relatively low, making it unable to
fully consume its generated electricity, whereas IEM1 has a higher
load demand. As a result, IEM1 and IEM3 need to purchase
electricity from IEM2 to meet their base load. Between 10:00–15:00,
IEM1 experiences an excess of solar and wind generation and
thus sells electricity to IEM2 and IEM3. From 15:00–21:00, which
corresponds to peak load periods, the renewable energy output of
IEM members is insufficient to fully meet demand. Consequently,
the IEM aggregate purchases a large amount of electricity from
SESO and the distribution network to ensure the system’s load
requirements are met.

Figure 12 illustrates the electricity trading prices among IEMs
after cooperative bargaining. The pricing strategy effectively
reflects the system’s supply-demand characteristics and the
spatiotemporal distribution of energy. During the 00:00–06:00
and 23:00–24:00 periods, due to surplus wind power in IEM2
and no photovoltaic output in IEM3, a low-price trading interval
of approximately 0.25 CNY/kWh emerges, promoting nighttime
wind power utilization. In contrast, during peak load periods,
prices rise significantly—accurately reflecting the true cost of
power supply—while still maintaining a cooperative advantage by
staying below the retail grid price. This enables both cost savings
and benefit sharing within the alliance. The time-of-use pricing
mechanism, based on supply-demand response and supported by
Nash bargaining, ensures trading stability and facilitates coordinated
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optimization of power resources among microgrids with different
energy structures.

5.5 Energy allocation and profit
distribution analysis

The key to the stable operation of the IEM alliance is whether
the profit distribution generated by the cooperation in electricity
and heat trading among the IEM alliance members is fair. As shown
in Figure 8, IEM2 takes on a significant amount of energy and
plays a leading role in the transactions. Without considering its
leading role, the alliance would not be able to operate. The profit
distribution method based on symmetric bargaining does not take
into account the contributions of each IEM member to the alliance.
As shown in Table 2, the asymmetric bargaining method based
on comprehensive bargaining power proposed in this paper can
determine the contributions (i.e., bargaining power) of each IEM
member. IEM2 has undertaken a large amount of energy in the
energy transactions, thus receiving the highest bargaining power.
It can be seen that the asymmetric bargaining profit distribution
method improves the profits of each IEM member and effectively
enhances the stability of the alliance’s cooperation.

6 Conclusion

The hybrid game model constructed between the SESO and
the IEM aggregator coordinates SESO pricing and IEM response
mechanisms through a leader–follower game, and incorporates
cooperative game theory and Nash bargaining to optimize energy
scheduling and benefit allocation under electricity–heat–hydrogen
multi-energy coordination. The results show that: 1) The
integration of hydrogen storage significantly enhances multi-
energy coordination and renewable energy utilization, lowers
the cost of hydrogen use, and demonstrates strong potential for
supporting the development of the hydrogen energy industry;
2) The P2P collaborative trading mechanism among microgrids
effectively reduces operating costs, increases system flexibility, and
improves renewable energy utilization efficiency; 3) The time-
of-use pricing mechanism based on hybrid game theory enables
dynamic optimization of electricity, heat, and hydrogen across
multiple time periods, fully leveraging the regulation potential
of energy storage and greatly improving economic performance.
The proposed model enhances the benefits of all participants while
achieving a win–win outcome and ensuring both fairness in internal
IEM benefit distribution and overall system efficiency.

This study focuses on flexible hydrogen supply scheduling and
does not consider hydrogen transport routes or cost differences.
Future work may introduce a full life-cycle cost model for
hydrogen to further explore its economic viability and optimization
potential in integrated energy systems.
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