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The HVAC system of public buildings, as a thermostatically controlled
load, accounting for a relatively significant proportion of building energy
consumption. Therefore, it is necessary to optimize energy efficient of HVAC
systems in public buildings. Nevertheless, the complication of HVAC systems
is on the rise. As a consequence, the computing efficiency of optimization
algorithms is relatively low, posing challenges for real-time optimal operation
control. Hence, there is an immediate requirement to boost both the energy
efficiency of the system and the computing efficiency in order to strengthen
the system’s robustness. In this paper, a collaborative optimization approach
based on multi-agent is initially put forward to address the overall optimization
issue (OOI) of a complicated HVAC system. The OOI is disintegrated into
numerous sub-optimization issues within the multi-agent structure. These
sub-issues take into account the interaction features among components. By
doing so, the complication of the OOI within HVAC systems is effectively
decreased. Secondly, the adaptive hybrid-artificial fish swarm algorithm (AH-
AFSA) is proposed for solving optimization issues with mixed decision variables.
Finally, the effectiveness of the proposed method is verified by an arithmetic
example. The analysis reveals that the proposed approach is capable of reducing
power consumption by 18.9% and the computation time for each operation
condition is 12.2 s, which saves about 54% of time cost compared with
the centralized method, and can enhance the computing efficiency of the
optimization approach for a complicated HVAC system while reducing power
consumption.

KEYWORDS
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1 Introduction

Heating, ventilation and air conditioning (HVAC) system, as a thermostatically
controlled load, plays a crucial role in regulating the indoor thermal environment
of public buildings, which consists of a number of electromechanical devices
with nonlinear characteristics (Cao and Ren, 2018; Li et al., 2018; Cheng, 2019).
Typically, HVAC systems are designed to handle the maximum cooling load of
public buildings, which accounts for more than 50% of the total energy consumption
of the building (Zhuang et al., 2023). Therefore, there is substantial potential for
energy conservation during part - load operation in HVAC systems. Nevertheless,
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because of the inherent characteristics of nonlinearity and coupling
in HVAC systems, the pursuit of optimal energy efficiency in actual
operation encounters substantial difficulties.

Optimizing the operation of an HVAC system requires
consideration of the interactions between multiple components
of the HVAC system due to their strong nonlinearities and
coupling properties. Typically, OOI within HVAC systems
involve the optimization of switching sequence of homogeneous
components, which called allocational problems (AP) and control
loop set magnitudes, which called diffusional problems, DP).
The optimization of AP belongs to the category of 0–1 integer
programming problems, which the decision variable is discrete.
In contrast, the optimization of DP entails the decision variable that
are continuous. Therefore, the OOI of HVAC systems fall into the
category of mixed optimization problems. In order to substantially
improve the overall operating performance of an HVAC system that
includes homogeneous components, it is necessary to resolve both
the AP and the DP during the optimization.

In recent years, there has been an increasing emphasis on
improving the energy efficiency of HVAC systems through the use
of intelligent techniques such as Genetic Algorithms (GA) (Xiong
and Wang, 2020), Artificial Neural Networks (ANNs) (Jang et al.,
2021), Particle Swarm Optimization (PSO) (Afroz et al., 2022), etc.
HVAC systems configured to contain identical paralleled units of
varying capacities can better adapt to changes in the cooling demand
under part-load conditions by employing differential evolutionary
methods (Lee et al., 2011) to solve the energy optimization problem
of chiller units under low cooling demand conditions and improve
the energy efficiency of the HVAC system with parallel CH. An
improved sparrow search algorithm (Li et al., 2023) was used
to improve the energy saving potential of the HVAC system, in
addition, intelligent algorithms such as enhanced artificial fish
swarm algorithm (Zheng et al., 2019), cuckoo search algorithm
(Coelho et al., 2014) and invasive weed optimization algorithm
(Zheng and Li, 2018) were used to solve the energy optimization
among the same type of parallel components of the HVAC system.
To further enhance the versatility of practical HVAC control
systems, distributed control frameworks have been developed with
improved AFSA algorithms in order to optimize the flow rate
distribution problem for parallel pumps (Yu et al., 2018). In addition,
a multi-agent based distributed approach (Li and Wang, 2020) is
used to solve the airflow distribution problem in ventilation systems,
which provides a reference for the subsequent use of intelligent
distributed algorithms to optimize airflowdistribution inmulti-zone
HVAC systems (Salsbury et al., 2023).

However, the aforementioned studies have focused on parallel
components or subsystems of the same type in an HVAC system
(the allocation problem), while neglecting the interactions between
components or subsystems (the diffusion problem). Since theHVAC
system is intricate system made up of diverse components having
nonlinear traits, considering the interactions among components is
crucial for better optimization and control. The Firefly Algorithm
(FA) (Coelho and Mariani, 2013), the Artificial Bee Colony
Algorithm (Zhang et al., 2013), and the Differential BAT Algorithm
(DBA) (Dos Santos Coelho andAskarzadeh, 2016) have been shown
to be effective in solving the problem of solving the diffusion
optimization problem and improving the energy efficiency of the
components of an HVAC system. The aforementioned studies

emphasize the effectiveness of heuristic search algorithms such as
genetic algorithm (GA), differential evolution (DE), and particle
swarm optimization (PSO), in dealing with the nonlinear properties
of HVAC systems, which can bring about remarkable energy
conservation. In addition, the introduction of integrated back-
propagation neural networks and Gray Wolf Optimizer (GWO)
methods (Li et al., 2021) in adjacent components of HVAC can
optimize the control effectiveness and energy efficiency of adjacent
components of HVAC systems. Similarly, the potential to reduce the
energy consumption of the HVAC system by 15.3% was successfully
achieved by using an online optimization approach based on a
simplified heat transfer model cooling water system (Ma, 2021).

However, most of the studies mentioned above have only
concentrated on solving either the AP or the DP, failing to achieve
an overall balance. From the perspective of global optimization,
research on addressing mixed optimization problems is scarce.
In general, homogeneous components of different capacities are
installed in HVAC systems so that they can better respond to
the fluctuation in cooling demand during part - load situations.
However, existing studies are usually unable to take into account the
suitability and practicality of the proposed optimization approach
to solve the OOI for such the complicated system. Although some
studies aim to improve computing efficiency, usually concentrate on
the components of subsystems, ignoring the necessity of balancing
trade - offs between components, thus rendering these approaches
inappropriate for overall optimization. Hence, it is immediately
required to find an excellent optimization methodology for the
purpose of simplifyingmixed optimization problems, alleviating the
computing burden and keeping theHVAC system’s energy efficiency.

Recent advancements in multi-agent frameworks have offered
promising solutions to these challenges. Distributed reinforcement
learning (DRL) enables agents to learn adaptive control policies
through real-time interactions with dynamic environments, while
heterogeneous agent collaboration models effectively balance trade-
offs between discrete and continuous decision spaces. For instance,
multi-agent deep Q-network (MADQN) has reduced HVAC energy
consumption by 15% by coordinating chiller start-stop sequences
and airflow control. Similarly, federated learning architectures have
enhanced privacy-preserving optimization in multi-zone HVAC
systems. Despite these innovations, existing studies rarely integrate
configuration optimization (AP) and operational optimization (DP)
within a unified framework, limiting their applicability to complex
HVAC systems with mixed optimization requirements.

Looking deeper, distributed optimization and multi-agent
networks complement each other, with multi-agent networks
serving as the concrete carrier of distributed optimization
algorithms (Majzoobi et al., 2018). Each agent, as an autonomous
entity with sensing, communication, computing, and execution
capabilities, forms a large-scale network system through local
collaboration. Compared with centralized control, distributed
control not only significantly reduces problem complexity
and scale by decomposing complex large-scale systems into
multiple subsystems but also remarkably improves work efficiency
(Labeodan et al., 2015). Meanwhile, its advantages of good
scalability, high reliability, and ease of maintenance have been
widely recognized (Kim et al., 2019). Wang et al. developed
a multi-agent control system (Wang et al., 2012) that takes
indoor comfort and energy consumption as objective functions
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to achieve comprehensive optimization of indoor temperature,
lighting, and indoor air quality (IAQ). Yang et al. developed
a user-centered multi-agent control system (Yang and Wang,
2013) to optimize energy utilization efficiency and IAQ in
ventilation systems. Cai et al. established a general multi-agent
control system (Cai et al., 2015; 2016) that provides optimization
algorithms for energy and air conditioning systems.Michailidis et al.
proposed a novel decentralized agent-based model-free optimal
controlmethod (Michailidis et al., 2018) formodern non-residential
buildings to enhance energy performance. These studies have laid
a solid foundation for the application of multi-agent frameworks in
HVAC systems and pointed out directions for follow-up research.

To address these gaps and improve the energy efficiency and
computational efficiency of complex HVAC systems, this paper
proposes a collaborative optimal operation control method based
on multi-agent of HVAC systems that combines the superiority of
heuristic algorithms. A number of simpler subproblems are derived
from complicated mixed optimization problems. Different agents
are assigned to deal with each subproblem, with the interactions
among components being taken into consideration. For the purpose
of ensuring that agents cooperate concurrently to acquire the most
suitable switching sequence and set magnitudes, an AH-AFSA is
introduced in this paper to deal with the OOI.

2 HVAC system model

Figure 1 illustrates a framework for synergistic operation
optimization of HVAC systems, whichmajor consist of chilled water
pumps (CHWP), chiller plants (CH), air handling units (AHU),
cooling towers (CT) and cooling water pumps (CWP). However,
the inherent nonlinear nature of these components of an HVAC
system results in energy efficiency tradeoffs among components.
AP and DP are two common types of tradeoff issues that often
occur in the variable flow HVAC system of public buildings. DP
occur principally between neighboring components such as chillers,
pumps, and fans, which are used to characterize the energy-
efficiency tradeoffs between them. AP occur primarily between
homogeneous components with different capacities.

Therefore, this paper aims to consider the energy efficiency
trade-offs between different components in an HVAC system as well
as between neighboring components with different capacities, and
how to assign the corresponding weights in order to coordinate
the resources within HVAC systems to minimize the energy
consumption of HVAC systems’ synergistic operation, which in turn
reduces the user’s cost. The decisions related to the HVAC system in
this paper are as follows.

(1) The output of the different components in the HVAC system
Psys;

(2) The outputs of different capacities of the same component in
the HVAC system are Pch, Pchwp, Pcwp, Pct and Pahu respectively.

2.1 HVAC system component
characterization model

At the beginning of section 2.1, coupling characteristic
and the components of HVAC systems will be systematically

modeled. Usually, homogeneous operation components are
categorized according to the number into 0/1 discrete or integral
types, which are expressed by Ni,mix and Nd,mix, expressed by
Equation 1.

Nd,mix = {Nd,mix,1,⋯,Nd,mix,l,⋯,Nd,mix,Nmix
}, mix ∈ {cwp,chwp,ct,ahu,ch}

(1)

Ni,mix =∑
Nmix

l=1
Nd,mix,l (2)

where the relationship with Ni,mix and Nd,mix can be
expressed by Equation 2. Using Nd,mix,l to denote the
switching condition, which is discrete binary variable.
Nmix indicates the overall quantity of units, mix indicates
component types, and l indicates the lth unit of
components.

2.1.1 Chiller model
The Stoecker model, which is presented in Equations 3–5,

can be used as a reference for the parallel CH
model.

Pch =∑
Nch

h=1
(PCH,ch,h · fPLR,ch,h · fT,ch,h ·Nd,ch,h) (3)

fPLR,ch,h = a0,h + a1,h(
Qch,h

Qch,R,h
)+ a2,h(

Qch,h

Qch,R,h
)
2

(4)

fT,ch,h = b0,h + b1,hTE,o + b2,hTE,o2 + b3,hTC,o + b4,hTC,o2 + b5,hTE,oTC,o
(5)

where the subscript R denotes the rated value, fPLR,ch,h and
fT,ch,h represent the correction factors. The meaning of subscripts
C and E respectively signify the condenser and evaporator,
and coefficients a0∼a2 and b0∼b5 can be determined by fitting
the sample data. Subscript o denotes the value of the outlet
parameter.

2.1.2 Chilled water pump model
According to both fans and pumps characteristics, the CHWP

model can be described by Equation 6.

Pchwp =∑
Nchwp

u=1 (
mchw,u ·Hchw,u

gc · ηchw,u
Nd,chwp,u) (6)

where gc represents the constants associated with H and m, mchw
means pump flow, Hchw means head. Supposing the gravitational
acceleration to be 9.8 m/s2, and the units ofH andm are respectively
mH2O and m3/h, gc is equal to 367.3. In addition, if H is in kPa
and m is in kg/s, gc turns into 134.9. η represents the pumps
and fans efficiencies linked to H and m, which derived from
data fitting.

2.1.3 Cooling water pump model
Since the cooling water circuit is of an open system nature, the

parallel CWP model, as shown in Equation 7, diverges from the
CHWP model.
Pcwp =∑

Ncwp

m=1Pcwp,R,mNd,cwp,m[c0,m + c1,mPLRcwp,m + c2,m(PLRcwp,m)
2

+ c3,m(PLRcwp,m)
3] (7)

where coefficients c0∼c3 are determined by data fitting, PLRcwp,m is
the partial load rate of the mth cooling water pump, defined as the
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FIGURE 1
Collaborative operation optimization framework of HVAC system.

ratio of the actual flow rate to the rated flow rate (Wang and Zhao,
2024), as follow Equation 8.

PLRcwp,m =
mcw,m

mcw,R,m
(8)

2.1.4 Cooling tower model
The CT model is represented in Equation 9.

Pct =∑
Nct
n=1Pct,R,nNd,ct,n[d0,n + d1,nPLRct,n + d2,n(PLRct,n)

2 + d3,n(PLRct,n)
3]
(9)

where PLRct,n is the partial load rate of the fan (Seong et al., 2019),
which can be calculated as follow Equation 10. The coefficients
d0∼d3 can be determined by data fitting.

PLRct,n =
ma,n

ma,R,n
(10)

2.1.5 Air handling unit model
For the AHU model, the airflow of the kth AHU can be

calculated from the airflow of each air-conditioned room as follow
Equation 12. Equation 13 can be used to simply express the heat
exchange between the air side and the water side of coils. Therefore,
the AHUmodel is shown in Equation 11.

Pahu =∑
Nahu

k=1

msa,kHsa,k

gc · ηahu,k
(11)

msa,k =∑
Nroom

b=1
msa,k,b (12)

∑Nroom

b=1
Qk,b =

e1,k ·m
e3,k
sa,k(Tma,k −TE,o)

1+ e2,k · (msa,k/mchw,k)
e3,k

(13)

where, Tma denotes the mixed air’s temperature, msa indicates
the flow rate of the coil water within the AHU, coefficients
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e1∼e3 are model coefficients determined by data fitting. Similar
to the coil model, the heat exchange between the air side and
the water side of the cooling tower (Zhao et al., 2021) can be
expressed as follow Equation 14:

Pch +∑
Nch

i=1
Qch,i =∑

Nct

n=1
(
g1,n ·m

g3,n
cw,n(TC,i −Twb,od)

1+ g2,n · (mcw,n/ma,n)
g3,n
) (14)

where, Twb,od is the outdoor wet bulb temperature, mcw is the
cooling tower water flow rate, ma is the cooling tower airflow,
and g1∼g3 are the model coefficients, which can be obtained by
data fitting.

2.2 HVAC system model constraints

From the model in Section 2.1, it is clear that the power
consumption of each component depends solely on its operational
parameters, e.g., Pch, it is only affected by Qch, TE,o, TC,o, and
Pct is only related to ma, etc. However, in practical systems, an
interaction exists among the operational parameters of distinct
components, resulting in the problem of the compromise in energy
efficiency among components. In a set magnitudes problem with
control loops (DP), constraints of the DP are represented in
Equation 15.

Lmin ≤ X∗ ≤ Lmax, X ∈ {TE,o,Hchwp,ΔTC,TC,i,Tsa,Hsa} (15)

where L denotes the set of boundaries. In the switching ordering
of homogeneous components (AP), the decision variables must
satisfy the basic system requirements: there must be at least one
operating unit of each component type. Therefore, the constraints
of the AP are defined as follow Equation 16. In addition, constraints
on the upper and lower limits of the allocation quantity are
represented in Equation 17.

Nd,mix ≠ {0} (16)

smix,min ≤ scomp ≤ smix,max, smix ∈ {Qch,mchw,mcw,ma,msa} (17)

In order to facilitate the use of intelligent algorithms to find
the optimal solution, the above constrained optimization problem
needs to be transformed into an unconstrained optimization
problem. Constraints in Equations 15, 16 belong to decision
variables, which can be constrained to the feasible solution space
of the algorithm. For the constraint in Equation 17, the allocation
optimization problem can be transformed into an unconstrained
problem by constructing a penalty function (Seo, 2014;
Wang, 2024).

To effectively solve the above-mentioned constrained nonlinear
optimization problem, a penalty function is typically designed
and incorporated into the original optimization problem. This
helps transform the constrained optimization problem into an
unconstrained one. In this study, the optimization parameter
constraints described by inequalities (15) and (16) can be directly
integrated into the solution space of the optimization algorithm
without resorting to penalty functions. However, the operational
condition constraints specified in the inequalities (17) will be
converted into unconstrained problems by constructing penalty
functions.

Therefore, the constrained optimization problem specified
in Equation 18 can be transformed into the unconstrained
optimization problem expressed in Equation 19. Here, Pi(xi)
represents the penalty function, as shown in Equation 20; Ji denotes
the penalty coefficient, which should be set to a relatively large
positive number.

min f(X), s.t. si,mix,min ≤ si,comp(xi) ≤ si,mix,max (18)

min F(X) =min[ f(X) +
p

∑
i=1

Pi(xi)] (19)

=
{{{{
{{{{
{

0, si,mix,min ≤ si,comp(xi) ≤ si,mix,max

Ji[si,comp(xi) − si,mix,min]
2, si,comp(xi) ≤ si,mix,min

Ji[si,comp(xi) − si,mix,max]
2, si,comp(xi) ≥ si,mix,max

(20)

3 Collaborative optimization model
for HVAC systems based on
multi-agent

3.1 Agent based optimization framework
for HVAC system

This section describes the OOI of HVAC systems, considering
the multi-agent and defining the agents in this study. First,
the traditional optimization problem for HVAC systems is
expressed by Equation 21.
({N∗d,mix},T

∗
E,o,H
∗
chwp,ΔT

∗
C,T
∗
C,i,T
∗
sa,H∗sa) = argmin f({Nd,mix},TE,o ,

Hchwp,ΔTC,TC,i,Tsa,Hsa) (21)

The equation presented above involves a problem with both
discrete and continuous decision variables. As the number
of component units in the parallel HVAC system rises, the
complexity of this problem escalates exponentially. Handling
such a complex system, which features numerous control loops
and uncertainties, is a formidable task when aiming to enhance
overall energy efficiency. Owing to the trade - off nature of
the situation, the components need to cooperate with one
another to reach global optimization. Optimization issues within
HVAC systems consist of diffusion optimization among different
components and allocation optimization among parallel units. For
a variable - flow HVAC system that has multiple parallel units,
the initially complex energy - efficiency optimization problem
in Equation 21 can be broken down into several sub - problems.
These sub - problems comprise one diffusion optimization problem
and five distribution optimization problems, as illustrated in
Equations 22, 23.

fdi f fu =min Psys =min(Pch + Pchwp + Pcwp + Pct + Pahu) (22)

falloca,mix =min Pmix, mix ∈ {ahu,ct,cwp,chwp,ch} (23)

Diffusion optimization is focused on resolving the problem
of coupling characteristics between components. It does this by
identifying the optimal set value of the control loop under a
particular unit ON/OFF state. As a result, the solution to the
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FIGURE 2
Interactions and connections among different types of components of HVAC system.

diffusion optimization problem can be represented by Equation 24
below. In this equation, the six decision variables correspond to
the set values of control loops (C1 to C6) depicted in Figure 1.
The superscripts (∗) denote the optimal values. Distribution
optimization aims to solve the coupling characteristic problem
between parallel units by determining the optimal ON/OFF
sequence at a certain set value, so the solution of the five distribution
optimization problems can be expressed as follow Equation 25,
where the decision variables are the ON/OFF sequences of the
parallel units in discrete form.

(T∗E,o,H
∗
chwp,ΔT

∗
C,T
∗
C,i,T
∗
sa,H∗sa) = argmin fdi f fu

(TE,o,Hchwp,ΔTC,TC,i,Tsa,Hsa) (24)

(N∗d,mix) = argmin falloca,mix(Nd,mix) (25)

Based on the system model constructed in Section 2.1, the
interactions and connections among different types of components
in the HVAC system can be illustrated in Figure 2. In particular,
it can be seen that these two decision variables are coupled with
each other. For example, the number of cooling towers in operation
(Nd,ct) affects the cooling water temperature (TC,i), which is also
affected by the cooling water temperature. This shows that the
diffusion and allocation subproblems are interrelated in the multi-
agent framework.

The description of the problem above indicates that the
subproblems of diffusion and allocation possess a dual nature: they
are both independent and interconnected. To accomplish system
optimization, cooperation between these sub - problems is essential.
Given the distinct characteristics of these sub - problems, a multi
- agent system can be utilized to allocate them among different
agents, thereby simplifying the global optimization challenge, as
illustrated in Figure 3. In this configuration, each individual agent
is responsible for handling the allocation task at a local level.

Simultaneously, the diffusion task is resolved through joint efforts
among all the agents.

3.2 Optimization model for HVAC systems
based on multi-agent

Based on the optimization problem presented in
Section 3.1, its optimization problem can be described in the
compact form as follow Equation 26 after considering multi-
intelligent agents.

min[ fDif fu(Xcon) +∑mix
falloca(Xdis,mix)]

s.t. X ∈ ∩mixCmix

(26)

whereX is the set of decision variables, including the set point (Xcon)
and the on/off sequence (Xdis); f is the agent local objective function;
and Cmix is the local constraints.

The concept of a coordinating agent is introduced to guarantee
information synchronization among the intelligent agents of
components.This coordinating agent holds equal priority with other
component agents and is primarily tasked with solving the diffusion
optimization problem. Here, the BDI model serves to depict the
cognitive and decision - making procedures of the agent. In this
model, beliefs signify the agent’s perception of the environment
and the system’s state. Desires stand for the agent’s local aims
and preferences, while intentions refer to the specific actions the
agent undertakes based on its beliefs and desires. Regarding the
coordinating agent, its beliefs can be regarded as a model of the
coupling between diverse components. It updates its state according
to the environmental parameters it receives from adjacent agents.
The desires of the coordinating agent are local goals that, based
on a concise version of the global optimization problem, can be
expressed as Equation 27. The intention of the coordinating agent
is defined as the action it takes to achieve its goal, and this can be
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FIGURE 3
The task allocation in HVAC system under different network framework considering multi-agent.

formulated as Equation 28.
{
{
{

min[ fDif fu(Xcon) + P f(Xcon)]

s.t. Lmin ≤ X
∗ ≤ Lmax,

(27)

X(t+1)con = arg min
Xcon∈C
[ fDif fu(X

(t)
conZ
(t)
con) + P f(X

(t)
conZ
(t)
con)] (28)

where fDif fu is a local objective function of the coordination agent;
P f is an agent term, i.e., a penalized infeasible solution based on the
information of neighboring components, and Zcon is an information
set constructed based on the coupling variables of neighboring
components, which contain updated solutions from neighboring
components.

Component agents are responsible for solving the allocation
problem within various components. The optimization
model of component agents 1-5 is shown in Equation 29.
Similarly, its iterative execution at t+1 is represented as
Equation 30.

{
{
{

min[ fAlloca,mix(Xdis,mix) + P f ,mix(Xdis,mix)]

s.t. Nd,mix ≠ {0}&smix,min ≤ smix ≤ smix,max

(29)

X(t+1)dis,mix = arg min
Xdis,mix∈C

[ fAlloca(X
(t)
dis,mixZ

(t)
dis,mix) + P f,mix(X

(t)
dis,mixZ

(t)
dis,mix)]

(30)

Zcon changes with each iteration of the algorithm, resulting in an
update of P f and fDif fu at each iteration. This variable is crucial
for agents to interact and update their decision variables. Here,
Zcon consists of the updated decision variables obtained from
neighboring agents through communication as follow Equation 31.
In addition, Zdis represents the set of information obtained
from neighboring dissimilar component interactions as follow
Equation 32.

Z(t)con = {X
∗,(t)
dis,ct,X

∗,(t)
dis,ch,X

∗,(t)
dis,chwp,…} (31)

Z(t)dis,mix = {X
∗,(t)
con } (32)

In each iteration, the coordinating agent interacts with
neighboring agents to obtain Zcon, and then uses the AH-
AFSA algorithm to update its local state and evaluate its local
adaptation Ycon. The fitness values of the coordinating agent
and component agents are represented by Equations 33, 34,
respectively.

Y(t+1)i,con =
1

Psys(X
(t)
i,conZ
(t)
con) + P f(X

(t)
i,conZ
(t)
con)

(33)

Y(t+1)i,dis,mix =
1

Pmix(X
(t)
i,dis,mixZ

(t)
dis,mix) + P f ,mix(X

(t)
i,dis,mixZ

(t)
dis,mix)

(34)

To ensure the optimality and consistency of the solution,
all agents have to compute the global adaptation and local
adaptation. First, each agent computes its local adaptation (Yi,con
or Yi,dis,mix) based on the current environment and broadcasts
this information to its neighbors. Then, after receiving the local
adaptations from neighboring agents, the global adaptation is
computed as follow Equation 35. The local adaptability helps the
agent to determine the best role for each type of component.
Global adaptability allows agents to choose the best combination of
component types to use, thus ensuring that all agents move towards
the globally optimal solution.

F(t+1)i = Y
(t+1)
i,con (X

(t+1)
i,con ) +∑mix

Y(t+1)i,dis,mix(X
(t+1)
i,dis,mix) (35)

When solving the optimization problem proposed in this paper,
the solution of hybrid variables must be considered first.

The Continuous Artificial Fish Swarm Algorithm (C-AFSA) is a
swarm intelligence algorithm for continuous-variable optimization,
whose core principle is to achieve search by simulating the
foraging, swarming, and following behaviors of fish schools. In
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continuous space, the algorithm randomly explores new positions
within the visual range through the “swarming behavior” and
moves in that direction if the fitness is better. It calculates the
central position of the swarm through the “swarming behavior”
and moves toward the center if the central fitness is better
than the current one and not crowded, so as to enhance global
exploration.The “following behavior” prompts individuals to follow
the nearby optimal solution to accelerate local convergence. Key
parameters such as Visual (determining the search breadth) and
Step (controlling the movement amplitude) jointly balance the
exploration and exploitation capabilities of the algorithm, while the
fitness function is directly linked to the target problem (such as
energy consumption minimization) to guide the search direction.

However, C-AFSA has significant limitations. First, its design is
only for continuous variables and cannot directly handle discrete
decisions (such as equipment start/stop states). It requires indirect
modeling through continuous approximation (e.g., 0-1 coding),
leading to accuracy loss. Second, in high-dimensional optimization,
the search space expands exponentially (curse of dimensionality),
causing a sharp decline in computational efficiency. Third, it has
high parameter sensitivity. Fixed settings of step size and visual range
easily lead to premature convergence or slow convergence.

The Discrete Artificial Fish Swarm Algorithm (D-AFSA),
specifically designed for discrete variables, maps problems to
discrete spaces through discrete coding strategies such as binary or
integer encoding. Its core behaviors are similar to those of C-AFSA,
but the movement rules are adjusted to discrete jumps. For example,
1) Equipment start/stop states are represented by binary encoding
(0/1). 2)The “swarming behavior” adjusts switch combinations via a
majority voting mechanism. 3) The “following behavior” selects the
optimal coding sequence within the neighborhood.

D-AFSA also has prominent limitations. First, continuous
variables must be discretized (e.g., temperature segmentation and
quantization), leading to information loss and approximation errors.
Second, searches in discrete spaces are prone to getting stuck in
local optima, especially when the number of variable dimensions
is high—the combinatorial explosion problem significantly reduces
search efficiency. Third, similar to C-AFSA, parameter settings have
a significant impact on algorithm performance, and it lacks dynamic
adaptability.

The inadequate handling of hybrid variables is a common
bottleneck for both types of algorithms. Optimization problems in
real-world systems (such as HVAC) often involve hybrid variables
(e.g., continuous flow settings and discrete equipment on/off states),
which cannot be cooperatively handled by either C-AFSA or
D-AFSA. If a hybrid problem is forcibly split into continuous
and discrete subproblems for separate optimization, additional
coordination mechanisms are required to avoid solution space
fragmentation, and suboptimal solutions are likely due to ignored
interactions. For example, if the coupling between cooling tower
on/off (discrete) and water pump flow (continuous) in HVAC
is optimized independently, local decision conflicts may reduce
overall energy efficiency. Furthermore, both algorithms rely on fixed
parameters and struggle to adapt to dynamic load changes, further
limiting their practical applications.

To address these shortcomings, this paper proposes an Adaptive
Hybrid Artificial Fish Swarm Algorithm (AH-AFSA) in the next
section. Through a hybrid variable fusion and divide-and-conquer

strategy, adaptive mechanisms, and a collaborative framework, AH-
AFSA not only solves the challenge of hybrid variable handling
but also significantly enhances the robustness and real-time
performance of complex system optimization, providing a more
efficient solution for multi-variable coupling scenarios like HVAC.

4 Solution based on adaptive hybrid
AFSA

Aiming to address mixed collaborative optimization problems
for HVAC systems, it is necessary to optimize both continuous
and discrete decision variables simultaneously.Therefore, this paper
proposes an AH-AFSA algorithm, which inherits the advantages of
C-AFSA and D-AFSA. When handling problems with continuous
decision variables, such as diffusion problems, C-AFSA is a more
appropriate choice. On the other hand, D-AFSA is appropriate
for problems where discrete decision variables are involved, for
example, allocation problems. It consists of four main steps:
initialization, predation, swarming and following. The step size and
visual of AH-AFSA is represented in visual = {visualcon,visualdis}
and step = {stepcon, stepdis}.

In the initialization phase, several parameters including fish
group M, maximum number of attempts Ntry, dimension n, vision,
step size, feasible solution space L, maximum number of moves T,
and crowding factor δ are required to be initialized. And each fish
i (Xi) contains two types of segments, one segment is a continuous
part Xi,con, and the other is a discrete part Xi,dis. Each segment has
its own dimension, and the sum of the dimensions of all segments
is the dimension of the artificial fish. The initialization process
is shown in Equation 36:

X(0)i = (X
(0)
i,con, X

(0)
i,dis) = (

x(0)i,con,1,x
(0)
i,con,2,⋯,x

(0)
i,con,d,⋯,x

(0)
i,con,n,

x(0)i,dis,1,x
(0)
i,dis,2,⋯,x

(0)
i,dis,k,⋯,x

(0)
i,dis,m

),

xi,dis,k ∈ {0,1},k = 1,2,⋯,m (36)

During the feeding phase, the fish i will randomly choose
newly position j within the field of view (di,j < visual) as follow
Equation 37. If the fitness ofXj is better thanXi, then fish iwill move
one step toward position j as follow Equations 38, 39.

Xj = Xi + visual · rand(−1,1) (37)

x(t+1)i,con,d = x
(t)
i,con,d +

xj,con,d − x
(t)
i,con,d

di,j
· setpcon · rand(0,1) (38)

x(t+1)i,dis,k =
{
{
{

xj,dis,k x(t)i,dis,k = xj,dis,k
min(1,xj,dis,k) x

(t)
i,dis,k ≠ xj,dis,k

k = RAND(1,n, stepdis) (39)

where Xj = (xj,con,xj,dis), RAND (1, n, step) denotes a randomly
generated integer between 1 and n, and t denotes the tth move. If
fish i does not find a suitable prey target after the second attempt, it
will take a random move as follow Equations 40, 41.

x(t+1)i,con,d = x
(t)
i,con,d + setpcon · rand(−1,1) (40)

x(t+1)i,dis,k =
{
{
{

0 x(t)i,dis,k = 1

1 x(t)i,dis,k = 0
k = RAND(1,n, stepdis) (41)
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In the group stage, fish i will sense the number of companions
(n f) within the field of view and the center of the group (c), and the
center of the group Xc can be expressed as Equations 43, 44, and if
the adaptation of is better and the center is not congested, fish i will
move to the center as follow Equations 45, 46.The preconditions for
the group action are shown in Equation 42, and if the conditions are
not satisfied, the predation action is carried out.

n f

N
< δ & Yc > Yi (42)

xc,con,d =
∑

nf
j=1xj,con,d
n f

(43)

xc,dis,k = round(∑
nf
j=1xj,dis,k/n f) (44)

x(t+1)i,con,d = x
(t)
i,con,d +

xc,con,d − x
(t)
i,con,d

di,c
· setpcon · rand(0,1) (45)

x(t+1)i,dis,k =
{
{
{

xc,dis,k x(t)i,dis,k = xc,dis,k
min(1,xc,dis,k) x

(t)
i,dis,k ≠ xc,dis,k

k = RAND(1,n, stepdis) (46)

In the following phase, fish i senses the best adapted companion
b within its field of view, and if the adaptation Xb is better and there
are no crowded fish in the vicinity, fish imoves one step towards the
companion b as followEquations 48, 49. If the condition of following
action as follow Equation 47 is not satisfied, the predation action is
performed.

n f

N
< δ & Yb > Yi (47)

x(t+1)i,con,d = x
(t)
i,con,d +

xb,con,d − x
(t)
i,con,d

di,k
· setpcon · rand(0,1) (48)

x(t+1)i,dis,k =
{
{
{

xb,dis,k x(t)i,dis,k = xb,dis,k
min(1,xb,dis,k) x

(t)
i,dis,k ≠ xb,dis,k

k = RAND(1,n, stepdis) (49)

In an effort to boost the local search ability and the convergence
rate ofAH-AFSA, this paper formulates the concept of action reward
and modifies the fixed step - size to an adaptive one. The action
reward R is specified as the gain that fish i attains when moving
towards target o, as presented in Equation 50. The step size of the
action is defined in accordance with Equation 51:

R =
Yo −Yi

Yo
(50)

step = stepmin + (stepmax − stepmin) ·R (51)

where stepmin and stepmax are the bounds of the step size.

5 Case studies

5.1 Case background

The system of the case studies analysis is built upon the
HVAC system of a public building. This building has an air-
conditioned area of 49,000 square meters and a total floor
area of 55,000 square meters. The HVAC system consists of 4
AHUs, 3 CTs, 3 CWPs, 3 CHWPs and 3 CHs. Table 1 show the
components’ detailed specifications. Based on 70% identification

TABLE 1 Specifications of the main components of the HVAC system.

Components Number Specifications

CH (large) 2 rated power: 323.0 kW; cooling capacity:
1758 kW; COP: 5.44

CH (small) 1 rated power: 125.3 kW; cooling capacity:
721 kW; COP: 5.75

CHWP (large) 2 rated power: 37.0 kW; flow rate:
330 m3/h; lift: 18.5 m⋅H2O

CHWP (small) 1 rated power: 15.0 kW; flow rate:
136 m3/h; lift: 22 m⋅H2O

CWP (large) 2 rated power: 37.0 kW; flow rate:
410 m3/h; lift: 23 m⋅H2O

CWP (small) 1 rated power: 15.0 kW; flow rate:
160 m3/h; lift: 22 m⋅H2O

CT (large) 2 rated power: 15.0 kW; water flow rate:
450 m3/h; air volume: 522,000 m3/h

CT (small) 1 rated power: 7.5 kW; water flow rate:
250 m3/h; air volume: 260,000 m3/h

AHU 4 rated power: 59.8 kW; cooling capacity:
787 kW; air volume: 114,000 m3/h;

water flow rate: 90.4 m3/h

data and 30% validation data, Tables 2, 3 present the parameter
identification results for the model proposed in this paper. Under
this system configuration, component agents numbered from 1
to 5 are integrated with component models of AHUs, CHWPs,
CHs, CWPs and CTs respectively. Its main task is to tackle the
allocational optimization problem. On the other hand, coordination
agents are furnished with component interaction models and
is mainly concentrated on addressing diffusional optimization
problems.

5.2 Comparison analysis for distinct
optimization approaches

To conduct a comprehensive assessment of the performance
of the proposed approach, a comparison analysis taking into
account energy consumption and computational efficiency across
the diverse operating condition will be carried out. The following
four approaches’ performance will be contrasted:

(1) Approach 1: a traditional approach based on constant for
optimizing the system, i.e., x5 ∼ x10 set magnitudes is
respectively 7°C, 22 m·H2O, 5°C, 30°C, 18°C, and 900 Pa;

(2) Approach 2: an intelligent optimization approach based on
AHDE for optimizing the set magnitudes;

(3) Approach 3: an artificial fish swarm optimization algorithm
considering continuous variables (C-AFSA);

(4) Approach 4: the method proposed in this paper
(AH-AFSA).
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TABLE 2 Model identification results of the large components.

Superscript 0 Superscript 1 Superscript 2 Superscript 3 Superscript 4 Superscript 5

a 0.1632 0.3077 −0.1594 / / /

b −0.8795 −0.1169 −0.0010 0.1410 −0.0018 0.0031

c 0.0573 0.0940 0.0052 0.0000809 / /

d 4.1528 7.1158 −0.5826 0.0053 / /

e / 0.0000056 3.2895 5.7351 / /

g / 1.74E+05 1.03E+05 0.4610 / /

TABLE 3 Model identification results of the small components.

Superscript 0 Superscript 1 Superscript 2 Superscript 3 Superscript 4 Superscript 5

a 0.3942 0.1756 0.0046 / / /

b −0.8153 −0.1150 −0.0009 0.1425 −0.0017 0.0027

c 0.0919 0.4825 0.3619 −0.2833 / /

d 3.0058 4.7342 −0.3982 0.0031 / /

e / 5.60E-06 3.2895 5.7351 / /

g / 1.16E+05 1.76E+05 0.8993 / /

5.2.1 Analysis of the hourly power consumption
of the HVAC system over three representative
days

Figure 4 depicts hourly power consumptions of
the HVAC system under three typical days, operating
conditions as per Figure 5, when four optimization approaches are
applied. Evidently, power consumptions of the approach based on
constant is substantially greater than the others, particularly in high
cooling loads period, which ranges from 9:00 a.m. to 14:00 p.m.
Highlighting the remarkable energy conservation performance of
variables set magnitudes optimization approaches.

5.2.2 Analysis of cooling loads and outdoor
climate during three representative days

Figure 6 shows total power consumptions of the HVAC system
across three representative periods. The “Relative Savings” entry
indicates energy conservations of AH-AFSA approach in relation to
others. Compared to the constant approach, theAH-AFSA approach
attains relative energy conservations ranging from 13.3 percent to
17.7 percent. In contrast to the C-AFSA and AHDE approaches,
the maximum relative energy conservations are 1.0 percent and 2.4
percent respectively. In addition, energy conservations potential of
AH-AFSA approach is marginally greater than that of the C-AFSA
and AHDE approaches. Above enhancements can be ascribed to
the disparities in dealing with discrete decision variables among
three algorithms, with the C-AFSA and AHDE algorithms using
Sysconvert and circular methods to optimize the discrete decision
variables, which results in a loss of accuracy in the discrete variables.

The above superiority of AH-AFSA will become more evident in
larger HVAC systems with more homogeneous components.

5.2.3 Analysis of subitems in HVAC system power
consumption during annual cooling seasons

Figure 7 depicts the annual power consumption in the HVAC
system corresponding to various optimization approaches. The
percentages presented therein signify the proportion of energy
conservations that the AH-AFSA approach achieves in comparison
to other approaches within each identical subitem. Annual power
consumption levels of above three approaches are quite similar.
In terms of energy conservations, the AH-AFSA approach shows
relative conservations of 2.5 percent and 0.9 percent when
contrasted with the traditional constant approach. When compared
to the C-AFSA and AHDE approaches respectively, the relative
conservations of the AH-AFSA method can reach as high as
18.9%. Regarding the power consumption for CH, AHU and
CHWP, in comparison with other approaches, the relative energy
conservations achieved by the AH-AFSA approach were 19.6%,
24.0%, and 13.2% respectively. Although, with respect to CT
and CWP, the power consumption of AH-AFSA is marginally
greater than the constant method, this goes against the common
anticipation that the energy consumption of every component
would decline. This divergence occurs since the goal of the research
in this paper is to find the optimal result for the overall HVAC
system by taking into account the trade-off features between the
components. When considering the energy efficiency in total, it
proves more advantageous to moderately augment the flow of
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FIGURE 4
Hourly total power of the HVAC system in the three typical days.

cooling water and the air flow in the cooling tower. By adopting this
approach, the overall energy efficiency of the HVAC system can be
elevated. Results from the analysis further implies that the proposed
approach is able to reach overall optimization through striking a
balance in energy efficiency among individual components and the
entire HVAC system, giving up the energy efficiency of some part of
components like CWPs and CT fans in HVAC system.

5.3 Comparative analysis of calculation
efficiency and calculation time of different
methods

The comparison analysis of three different methods, from the
perspective of computing efficiency, consider iteration times and
computational times shown in Figure 8, respectively.

As shown in Figure 8, during the optimization process, the
AHDE method requires a relatively large number of iterations,
ranging from twenty to seventy, when contrasted with the other two
approaches. Simultaneously, the disparity in the iterationnumbers of
AH-AFSA and C-AFSA is not significant, remaining in the range of
approximately 40 iterations. In addition, under certain operational
conditions, the iteration numbers of AH - AFSA are restricted to 10.
This indicates that the efficiency ofAH -AFSA ismarginally superior
to C - AFSA. In contrast, since AH-AFSA doesn't incorporate an
approximate circular procedure, it proves to be more effective when
addressing integer program problems such as switching sequences.
It can be noted that the AH - AFSA algorithm requires the least
amount of time to reach the optimal solution. Furthermore, it can
be noted that the AH-AFSA requires the least amount of times
to reach the optimum effect. In the case of the AHDE algorithm,
the time taken for computations across all operating points spans
from 18 to 25 s. On average, each operating point demands 21 s of
computational time. Under themajority of operating conditions, the
iterations of AH - AFSA can be wrapped up within 10 s. Meanwhile,
the computational time for C - AFSA varies between 10 and 27 s.
Even though the variation in the number of iterations between
the C - AFSA and AH - AFSA algorithms isn't substantial, C -
AFSA exhibits a relatively longer computation time. This clearly
shows that AH - AFSA boasts higher computational efficiency.
Despite the fact that, within this research, the basic parameter
configurations for the C - AFSA and AH - AFSA algorithms
are identical, the application frameworks of these two algorithms
diverge significantly. As a result, the data presented in Figure 8 also
implies that algorithms can be enhanced effectively within a multi
- agent framework, with a relatively minimal time expense for each
iteration.

5.4 In-depth analysis of influencing factors

5.4.1 Analysis of the coupling strength of cooling
water temperature and cooling tower airflow
weights

This paper focuses on the influence of the interaction weights
of cooling water temperature and airflow on energy consumption
in HVAC systems. By studying the distribution of total energy
consumption under different interaction weights, we aim to clarify
the internal correlation and provide a basis for the optimization of
system energy consumption.

From Figure 9, we can clearly see the performance of energy
consumption with different values of interaction weights. When
the interaction weights α are 0.2, 0.4, 0.6, 0.8 and constant
control (control group), the distribution of energy consumption
shows significant differences. At an interaction weight α of 0.6,
the distribution of energy consumption is more prominent. Its
average energy consumption (marked by squares) and median
(marked by horizontal lines) are relatively low, and the degree
of data dispersion is small, indicating that under this weight, the
HVAC system operates relatively stable, with less fluctuation in
energy consumption. This verifies that within a certain range, a
reasonable interaction weight can effectively improve the system
energy efficiency and reduce unnecessary energy loss. With the
deviation of the interaction weights towards the ends of 0.2 and
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FIGURE 5
Outdoor climate and cooling load in the three typical days.

FIGURE 6
Outdoor climate and cooling load in the three typical days.

FIGURE 7
The subitems of the system electricity consumption in the annual cooling season.
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FIGURE 8
Iterations and time cost of different methods in a typical day.

0.8, the distribution of energy consumption changes significantly.
When α = 0.2, the energy consumption data points are more
dispersed, which indicates that the system operation stability is
poor, probably due to the improper setting of weights, resulting
in the deviation of the system in adjusting the cooling water
temperature and airflow, which leads to the increase of energy
consumption fluctuation. When α = 0.8, although there are some
lower energy consumption data, there are also some outliers with
higher energy consumption, which implies that under high weights,
the system may focus too much on the regulation of one factor
while neglecting another factor, resulting in an imbalance in the
overall energy consumption control. The control group (constant
control) has a significantly higher level of energy consumption
than the other cases under different weight settings. Its average
energy consumption and median are at a high level, and the
wide distribution of data points reflects the limitations of the
traditional constant control method in dealing with the complex
working conditions of the system, which highlights the necessity
of optimizing control based on multi-agent consideration of
interaction weights.

5.4.2 Analysis of AH-AFSA parameter sensitivity
testing

Figure 10 investigates the two key parameters of AH-AFSA
algorithm: visual range and adaptive step range. The average daily
energy consumption of the HVAC system in the traditional method
(e.g., constant setting value) is about 1,200∼1,500 kW h, while the
energy consumption is reduced to 950∼1,200 kW h after AH-AFSA
optimization (saving about 18.9%). When the value of the system
parameter field of view is 0.1–0.5 and the adaptive step range is
0.3–0.7, the HVAC system shows a clear distribution of low energy
consumption in the middle and high energy consumption at both

FIGURE 9
Analysis of the coupling strength of cooling water temperature and
cooling tower airflow weights.

ends. When the field of view range is about 0.3 and the adaptive
step range is about 0.5, it is at the lowest point of the energy
consumption surface, which corresponds to the lowest energy
consumption, about 954.6 kW h, which indicates that the algorithm
energy consumption optimization is the best under this parameter
combination. When the field of view range and adaptive step range
deviate from the optimal parameter combination of 0.3 and 0.5,
the energy consumption gradually climbs to a higher level of about
1,200 kW h, which indicates that the deviation of this parameter
combination leads to an increase in the energy consumption of the
HVAC system. The closer to the optimal parameter combination
area, the faster the energy consumption decreases, whichmeans that
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FIGURE 10
Analysis of visual range and adaptive step range parameter sensitivity testing.

reasonable adjustment of the parameter visual range and Adaptive
step range, so that the value is close to the optimal combination,
can effectively reduce the energy consumption of the HVAC system,
and vice versa will lead to an increase in energy consumption, but
also reflects the synergistic operation of the trade-off between the
components of the HVAC system. It also reflects the effectiveness
of the trade-off between the synergistic operation of the HVAC
system components to reduce the energy consumption of the
HVAC system.

6 Conclusion

This paper presents a collaborative optimization approach
based on multi-agent. By taking into account the interaction
traits between components of HVAC systems, this approach
aims to solve the energy efficiency trade-off problem in
the complicated HVAC system that consist of homogeneous
components with different capacities. To prove the effectiveness
of this proposed approach, arithmetic examples from practical
HVAC systems are analyzed. As a result, the following conclusions
can be derived:

(1) The approach presented in this paper breaks down
a complicated optimization problem into multiple
straightforward subproblems, which are then resolved
in an efficient manner. Moreover, it possesses strong
reconfigurability, allowing it to adapt to HVAC systems
featuring varying degrees of complexity and diverse
optimization goals.

(2) From the perspective of the energy conservation potential,
the multi-agent based collaborative optimization approach for
HVAC systems proposed in this study has the capacity to

reduce power consumption by approximately 18.9 percent in
contrast to traditional approaches.When compared with other
intelligent approaches such as those based on AHDE and C-
AFSA, their respective relative energy conservation rates are
merely 2.5 percent and 0.9 percent.

(3) When it comes to computing efficiency, the AH-AFSA
algorithm based on multi-agent proposed in this study clearly
surpasses the centralized C-AFSA algorithm. In contrast, the
average computation time for AH-AFSA saves approximately
54 percent than the centralized framework.

Even though the validity of the proposed collaborative
optimization method has been verified, its comparative analysis
only covers traditional methods and those based on AFSA. In future
works, more advanced methods within agent-based frameworks
will be investigated, and its performances will be assessed by
implementing in practical systems.
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