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Photovoltaic (PV) systems have seen significant global growth due to
their economic and environmental benefits. However, the output of PV
systems is subject to uncertainties arising from factors like unpredictable
weather conditions. Given the considerable uncertainty in meteorological data,
Geographic Information Systems (GIS) have emerged as effective tools for
analyzing such data. This study presents a novel method based on satellite-
based remote sensing and artificial intelligence techniques to assess the
potential of PV power plants and predict energy generation in different locations.
We utilize GIS and the Analytic Hierarchy Process (AHP) in ArcGIS software to
evaluate suitable sites for PV systems. Satellite data from global sources is used
to analyze PV energy production based on specific geographic coordinates.
Several machine learning algorithms, including Random Forest (RF), Support
Vector Regression (SVR), Decision Tree (DT), and XGBoost, are applied to
predict PV energy production from meteorological variables. The evaluation,
using various statistical metrics, shows that the XGBoost algorithm outperforms
others, achieving up to 91% accuracy in predicting energy production from
PV systems.

KEYWORDS

photovoltaic performance prediction, energy prediction, remote sensing, satellite
imagery in solar energy, artificial intelligence

1 Introduction

Today, energy is one of the fundamental needs of human life and a necessity for
the continuation of economic development, provisioning, and ensuring the welfare and
comfort of human life. On the other hand, one-third of the world’s consumed energy is
still supplied by oil, to the extent that global energy consumption is projected to increase
by 30 percent by the year 2040 (Beard, 2016). The 2015 United Nations Climate Change
Conference (COP21), now known as the Paris Agreement, became a turning point in
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the fight against global warming. The 196 countries that signed
this document agreed to make efforts to limit global warming
to approximately 1.5°C above pre-industrial levels, which means
that greenhouse gas emissions from human activities should be
reduced to zero. To achieve these goals, among many other
actions, the agreement emphasizes the necessity of generating
energy from renewable sources and incentivizing research on
how to manage and integrate these variables into production
systems (Antonanzas et al., 2016). In line with this, the United
Nations Climate Change Conference, COP28, which recently took
place in Dubai in November 2023, had one of its objectives to
evaluate previous agreements aimed at controlling the increase
in Earth’s temperature. On the other hand, the current average
natural gas storage worldwide is 53 years, and the capacity of
coal reserves worldwide is 15,980 billion tons, which could be
extracted for approximately 200 years (). For many years, most
industries worldwide have re-lied on fossil fuels (coal, oil, and
natural gas). Fossil fuels are non-renewable resources, meaning
their formation requires thousands of years. Therefore, these fuels
cannot sustain all human needs indefinitely and will eventually be
depleted. Hence, it is im-perative to find suitable alternatives to
these fuels. The two major challenges of fossil fuels, namely, their
non-renewable nature and the environmental pollution resulting
from their consumption (Broesamle et al., 2001), have led to global
attention being focused on the use of renewable energy (Kahraman
and Kaya, 2010). In this regard, solar energy has emerged as one of
the safest, most effective, and economically viable energy sources,
with the potential to become the primary energy source in the near
future (Dincer, 2000).TheUnited Nations Sustainable Development
Goals (SDGs) emphasize global access to clean energy (SDG-7)
and action to combat climate change (SDG-13). Therefore, they
provide strong motivation for enhancing international cooperation
in harnessing renewable energy resources (Nations, 2015). Apart
from the significant greenhouse gas emissions, heat-based energy
production systems relying on fossil fuels face other limitations in
terms of transmission and distribution (Rathore et al., 2019). Several
developing countries still have very low electricity coverage and
distribution. For instance, about 630 million people in Africa and
approximately 244 million people in India lack access to electricity
(Bertheau et al., 2017). In vast countries with underdeveloped
interior regions, extending the thermal electricity grid to remote
areas is practically challenging. On the other hand, solar energy can
be generated through the installation of decentralized small solar
panels on rooftops for household and community use (Rathore et al.,
2019). The abundance of sunny days (around 300 days per year)
in most tropical countries in Africa and Asia provides another
incentive for harnessing the potential of solar energy (Muneer et al.,
2005). Therefore, solar energy has the potential to address several
concerns of the global community in their efforts to create a

Abbreviations: PV, Photovoltaics; AI, Artificial Intelligence; AHP, Analytic
Hierarchy Process; COP28, UN Climate Change Conference; DT, Decision
Tree; GIS, Geographic Information System; IDW, Inverse distance weighting;
MAE, Mean Absolute Error; MAPE, Mean Absolute Percentage Error;
MCDM, Multi-Criteria Decision-Making; MSE, Mean Squared Error; ML,
Machine learning; nRMSE, Normalized Root Mean Squared Error; PV,
Photovoltaic; RF, Random Forest; RSD, Remote Sensing Data; SDG,
Sustainable Development Goals; SVR, Support Vector Regression; XGBoost,
Extreme Gradient Boosting.

clean and economical energy source to meet the increasing energy
demand (Obama, 1979). However, before investing on a large scale
in photo-voltaic solar energy development systems, policymakers
should assess the sensitivity of solar energy potential considering
climate change (Feron et al., 2020), which is a major concern. The
amount of solar radiation, affected by absorption and scattering
through clouds and aerosol concentration, is a direct measure of
photovoltaic potential (Li et al., 2017). Factors like precipitation,
air temperature, and wind speed also affect the potential of photo-
voltaic systems (Adeh et al., 2019). All these weather factors
are subject to fluctuations with changes in weather and extreme
climates, such as hot and cloudy days, and so on. Therefore,
identifying the variables affecting solar energy and evaluating
suitable geographical locations to achieve the desired potential is
crucial. The amount of solar energy received varies in different
locations based on differences in geographical latitude, altitude,
weather phenomena, and so forth. Thus, to obtain information
on radiation and other influential meteorological variables, various
meteorological stations need to be established for the desired
location. Due to the limited distribution of weather stations,
determining these variables at all locations is always challenging
and may not have an acceptable level of accuracy. The use of
remote sensing data in extracting climatic in-formation is an
area that has recently gained attention among researchers. Data
obtained from satellite images, considering their spatial coverage at
different geographic scales, addresses the lack of spatial information
and accuracy in estimating weather data. Satellite images have
the advantage of covering extensive and wide areas where spatial
changes in phenomena can be examined. Due to the dependence
of PV energy output on accurate and extensive weather data, in
this study, weather data obtained from satellite images is used for
evaluating optimal geographical locations as well as assessing and
predicting photovoltaic energy production worldwide.

The main achievements, including contributions to the field can
be summarized as follows.

1- Optimal Location Selection: The best locations for installing
PV systems were determined based on the influence of factors
affecting output power, using meteorological data obtained
from satellite images and applying MCDMmethods.

2- Power Output Prediction: The output power of PV systems
is predicted using the most effective machine learning
algorithms.

3- Algorithm Evaluation: After evaluating the machine learning
algorithms, the most accurate algorithm was identified for
predicting the output of PV systems.

The rest of this study is summarized as follows:
Section 2 reviews related previous research. Section 3, which

covers data andmethodology, describes the data collectionmethods,
analyzes the data, and examines the impact and relationship
of each data point with the problem’s output, presenting the
results in various charts. After thoroughly analyzing the data, the
methodology section details the site selection process using GIS and
MCDM approaches. Addition-ally, machine learning algorithms
have been introduced for predicting the output power of PV systems.
The final part of Section 3 is dedicated to introducing the study areas
considered in this research. Section 4 presents the results of the site
selection and prediction for each algorithm in tables and charts.
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FIGURE 1
The research framework.

Finally, Section 5 provides a summary and introduces the optimal
algorithm. Figure 1 shows the framework of this research.

2 Related work

The first step in developing solar energy is to identify regions
where solar energy is sufficient and other necessary conditions
for power plant construction are met. Much research has been
conducted on evaluating suitable locations for photovoltaic system
deployment through examining climatic variables. In China,
a study by Xiao et al. (2013) focused on selecting optimal
locations for photovoltaic power plants in de-sert areas. Western
China, with its Gobi desert and grasslands, is among the most
vulnerable environmental regions due to desertification, dust
storms, high temperatures, and strong winds. These environmental
factors significantly impact the performance of photovoltaic power
plants. This study analyzes the influential factors in selecting
and establishing desert photovoltaic power plants, successfully
demonstrating the optimal location through the integration of
the AHP and GIS methods, considering variables such as solar
radiation, air temperature, dust storms, sandstorms, proximity to
highways, and others (Xiao et al., 2013). Doljack and Stanovitch
(2017) demonstrated, by employing the integration of GIS and the
MCDM approach, the selection of optimal locations for developing
photovoltaic power plants in Serbia, focusing on climatic criteria
(solar radiation, mean air temperature, relative humidity, sunshine
hours without clouds). Utilizing the AHP method, their study
showed that the northern region possesses the highest potential

for photovoltaic project development (Doljak and Stanojević, 2017).
Achayi and Atak (2018) selected the best locations for developing
photovoltaic systems in Turkey by comparing the geographical
positions of the cities Konya, Karaman, Burdur, Antalya, Mersin,
and Van, which have good solar radiation.They utilized a combined
AHP and TOPSIS method to weigh layers of variables such as
radiation, precipitation, cloudiness, etc. Ultimately, Mersin was
chosen as the best region in terms of having suitable conditions
for power plant construction (Akçay and Atak, 2018). Rovis et al.
(2020) focused on research conducted inWest Kalimantan Province
on the island of Borneo in Indonesia. In this study, satellite data
on the required climatic variables was collected from NASA’s
website, averaged monthly over an 11-year period. Utilizing the
AHP method for weighting and lay-er overlap in GIS, optimal
locations were ultimately identified (Ruiz et al., 2020). Mian et al.
(2023) combined various MCDM methods in a research study
to leverage the strengths of each method over the weaknesses
of others. Through this analysis, it was inferred that the most
crucial factors in selecting locations for photovoltaic power plants
are solar radiation and cloudiness. Furthermore, by analyzing a
number of variables including topography, air temperature, dust,
solar radiation, etc., it was concluded that among the cities under
investigation, Tabuk is the optimal location for photovoltaic power
plant construction due to its high Global Horizontal Irradiance
(GHI) value (Mian et al., 2023).

In recent years, PV technology has rapidly advanced and
is currently one of the most promising technologies for solar
energy generation. The increasing efficiency and cost-effectiveness
of photovoltaic panels has led to a rapid growth in installed capacity
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worldwide. To enhance the efficiency and optimal performance of
PV systems in terms of technical, economic, and environmental
aspects, there is a need for predicting the performance of PV
systems. According to research conducted in this area, methods for
predicting solar energy can be divided into two groups: indirect
and direct.

Indirect methods first predict solar radiation and then
convert this prediction into energy production based on the
characteristics of photovoltaic power plants and other relevant
knowledge. Technologies such as Numerical Weather Prediction
(NWP) and satellite image processing are used together to analyze
complex meteorological data such as cloud cover movement
and changes in solar angle to predict solar radiation and
ultimately energy production (Miller et al., 2018). The accuracy
of indirect models largely de-pends on the accuracy of individual
components and the availability of ancillary in-formation. Ancillary
information complicates the process and heavily relies on do-
main-specific engineering knowledge, limiting the application of
indirect methods.

In contrast, direct methods predict the energy production of
PV systems directly without the need for initial solar radiation
prediction. The primary data source is past PV energy production
data, readily available, with additional data sources including past
weather data, which is less complex and more easily accessible
compared to the information required by indirect methods for PV
plant location. In fact, additional da-ta sources can be used to
improve accuracy compared to using past PV energy data alone,
but they are no longer necessary. This allows for a wider application
of direct approaches compared to indirect ones. Direct approaches
can be further divided into two groups: statistical and machine
learning (ML) methods. Below are examples of re-search conducted
in this area.

Li et al. (2014) proposes an extended model, ARMAX, to
improve the ARIMA model for predicting energy production from
PV. The ARMAX model incorporates exogenous inputs to facilitate
the prediction of energy production. The exogenous inputs of the
model include variables such as average temperature, precipitation,
radiation, and humidity. It was ultimately demonstrated that the
ARMAX model significantly improves the accuracy of energy
production prediction compared to the ARIMA mod-el (Li et al.,
2014). Chiteka and Enweremadu (Chiteka and Enweremadu, 2016)
developed an integrated artificial neural net-work (ANN) model
to predict global horizontal irradiance (GHI) for key locations in
Zimbabwe, covering major cities and towns. The prediction of GHI
was performed us-ing geographical data of latitude and longitude,
as well as climatic data including humidity, pressure, transparency
index, and mean air temperature. This ANN model with seven
inputs achieved R^2 = %99, MAE = %17, and MAPE = %26,
indicating good predictive performance of the model. Antonanzas
et al. (Antonanzas et al., 2017) conducted a study com-paring
two widely used statistical methods, Support Vector Regression
(SVR) and Random Forest (RF), as well as two machine learning
methods, Deep Neural Network (DNN) and Extreme Gradient
Boosting (XGB). In this regard, they used influential factors
affecting PV energy generation such as radiation, temperature,
relative humidity, and wind speed as input data for model training.
The best results were achieved with the SVR method, with a
performance evaluation metric of normalized root mean square

error (nRMSE) showing a value of 22.49% for this algorithm. Fan
et al. (Fan et al., 2018) focused on predicting solar radiation in
a region of China characterized by warm and humid weather.
They utilized climate data such as temperature, precipitation, and
radiation from the years 1966–2000, employing machine learning
(ML) methods for prediction. They suggested the use of Support
Vector Machine (SVM) and XGBoost algorithms. To evaluate the
performance of the proposed ML models, they compared them
with four empirical models, and the evaluation results using RMSE
showed that SVM and XGBoost models outperformed the selected
empirical models. Considering prediction accuracy, model stability,
and computational efficiency, the XGBoost model demonstrated
excellent performance in humid subtropical weather conditions
and is highly recommended. Alskaf and colleagues (AlSkaif et al.,
2020) presented a coherent approach to analyzing various climate
variables, including temperature, dew point temperature, relative
humidity, air pressure, wind speed, cloud cover, and precipitation,
to evaluate their impact on energy production from PV systems.
In this study, 3 years of input climate data and PV energy
production data were utilized for two case studies, one in the
United States and the other in the Netherlands. Initially, correlation
and mutual dependency analysis among climate variables were
covered. Then, using machine learning-based regression methods
such as Linear Regression (LR), Random Forest (RF), and Support
Vector Regression (SVR), the initial climate variables were evaluated
for estimating PV energy production. Finally, the study concludes
that the most important common influential climate variables are
radiation, temperature, humidity, precipitation, and cloud cover.
Banik and Biswas (Banik and Biswas, 2023) presented an efficient
model for predicting solar radiation and PV energy production,
specifically designed for the city of Agartala in Tripura, India. In this
study, they analyzed RF, XGBoost, CatBoost, and LightGBMmodels
using 10 years of solar data and other relevant climatic variables
from the National Aeronautics and Space Administration (NASA).
The developed models were utilized for long-term predictions and
assessing the PV energy production potential in Agartala, the capital
of Tripura, India. The results demonstrated the effectiveness of
RF and CatBoost with an accuracy score of 86%. Furthermore,
in terms of RMSE and MAE, the superior performance of the
model was indicated by lower values, confirming the suitability and
effectiveness of the proposed model for long-term pre-dictions of
solar radiation and PV energy.

Table 1 shows a summary of related work that has been
done before.

3 Materials and methods

3.1 Data collection

High-quality energy systems information is a critical input for
energy systems re-search, modeling, and decision-making. Remote
sensing data (RSD) (e.g., satellite images and aerial photographs)
have emerged as a rich source of information on potential energy
systems (National Research Council, 2001). which may help close
the energy information gap. Remote sensing data is increasingly
cheap, abundant, and accessible in any geographic location. Re-
mote sensing technology deals with measuring and determining
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TABLE 1 Review of related works.

Site selection Forecasting

Ref Factors Applied
Methods

Ref Features in
the data set

Applied
methods

Validation
method
and

performance
score of
proposed
model

Best
ML method

Xiao et al. (2013) solar radiation,
air temperature,
dust storms,
sandstorms,
proximity to
highways, and

others

AHP and GIS Antonanzas et al.
(2017)

radiation,
temperature,

relative humidity,
and wind speed

SVR, RF, DNN,
XGB

nRMSE = 22.49% SVR

Doljak and
Stanojević (2017)

solar radiation,
mean air

temperature,
relative humidity,
sunshine hours
without clouds

AHP and GIS Fan et al. (2018) temperature,
precipitation, and

radiation

SVM, XGBoost
and empirical

models

R2 = 0.77 XGBoost

AKÇAY and
ATAK (2018)

radiation,
precipitation,
cloudiness

AHP and
TOPSIS

AlSkaif et al.
(2020)

radiation,
temperature,
humidity,

precipitation, and
cloud cover

LR, RF, SVR MAE = 0.25,
RMSE = 0.63,
MSLE = 0.1

RF

the properties of objects from a distance. In reference (nasa,
2023), efforts were made to enhance existing renewable energy
datasets and develop new ones through the utilization of advanced
satellite systems. The inception of the POWER project in 2003
by NASA facilitated the acquisition of this vital information to
access these datasets. Various satellites are employed for this
purpose, including CERES, MERRA-2, and MODIS. Rodriguez
and Braga (2021) conducted a study to assess the data from
source (nasa, 2023), which includes temperature, radiation, relative
humidity, and wind speed, comparing it with data collected from
14 meteorological stations across the entire Alentejo region in
southern Portugal, characterized by a warmMediterranean summer
climate.The findings revealed a significant concordance between the
data from source (nasa, 2023) and the observed data (Rodrigues
and Braga, 2021). Additionally, the Global Solar Atlas (GSA),
discussed in (Globalsolaratlas, 2023), serves as an online,map-based
platformoffering comprehensive information on solar resources and
PV energy potential worldwide. This source has repeatedly been
acknowledged as the premier database (Copper and Bruce, 2018).
Photovoltaic energy production mainly depends on the amount
of solar radiation. In addition, other climate variables, such as
ambient temperature, cloud cover, wind speed and precipitation
are considered as potential variables for estimating photovoltaic
production energy. Meteorological variables change with location
and weather conditions. Therefore, their effects on photovoltaic
production energy are different in different geographical locations.
Despite this fact, the performance of a forecasting model depends
on the correlation between the input variables and the output values

of the model. Correlation between meteorological variables, such
as ambient temperature, solar radiation, wind speed, cloudiness,
precipitation and production energy should be taken into account,
for this purpose, the correlation of meteorological variables with
production energy has been investigated in Figures 1–5. To analyze
the correlation between meteorological factors and PV output
power, the correlation coefficient (R-squared) is utilized. Specifically,
the critical R-squared standard is a very strong correlation between
0.8 and 1.0, a very weak correlation, or no correlation of 0. The
higher the number of variables used as input vectors, the high-er
the accuracy of the prediction model, but the higher the complexity
and computational cost of the model. To achieve high accuracy
and minimum computational cost, the optimal number of input
vectors should be found based on correlation. Components that are
considered as outliers lead to high prediction errors. In addition,
the loss of input data points caused by measurement errors or
other errors also increases the prediction errors of the model.
Therefore, there is a need to pre-process the input data.Theproblems
of inappropriate model training and computational costs can be
significantly reduced by pre-processing the input data, and the
accuracy of the prediction models can be improved.

3.1.1 Global horizontal irradiance (GHI)
GHI stands for Global Horizontal Radiance, which indicates

the total amount of shortwave radiation received from above by
a horizontal surface (parallel) to the ground. GHI is the most
important component for calculating photovoltaic energy efficiency
which can bemeasured in space or at the Earth’s surface after passing
through the atmosphere. The amount of solar radiation depends on
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FIGURE 2
Scatter diagram of PV power and global horizontal irradiance.

FIGURE 3
Scatter diagram of PV power and cloud amount.

FIGURE 4
Scatter diagram of PV power and precipitation.

FIGURE 5
Scatter diagram of PV power and temperature.

the distance from the sun and the solar cycle. The most important
weather factor in relation to the use of solar energy is the amount
of solar radiation, the amount of which varies in different regions
according to the latitude, unevenness, distance and proximity to
the sea and other factors. Figure 2 shows the scatter plot of PV
power and global horizontal radiation, which shows that PV power
is strongly correlated with global horizontal radiation.

3.1.2 Cloud amount
Cloudiness at different levels has a very close relationship with

the amount of radiant energy received. So that the clearer the surface
of the sky, the more this energy is, and the more cloudy it is, this
situation becomes reversed. Clouds reflect an average of 21% of the
sun’s short-wave energy. Figure 3 shows scatter diagramof PVpower
and cloud amountwhich shows PVpower is strongly correlatedwith
cloud amount. Therefore, cloud amount is used as the second input
factor in the prediction method.

3.1.3 Precipitation
Precipitation can be considered the most important factor

that is directly involved in the climate cycle. Precipitation refers
to all atmospheric precipitation that enters the earth’s surface.
Therefore, areas with high precipitation throughout the year on
the one hand indicate high humidity in the area, which the most
important factor in absorbing short-wave radiation, and on the other
hand, it indicates the presence of high sus-pended particles in the
atmosphere of that place, which is also plays a role in absorption and
reflection of short-wave radiation, and both of these factors indicate
the high number of cloudy days in the region. Figure 4 shows scatter
diagram of precipitation and PV output, which shows PV output is
moderately correlated with precipitation. Therefore, precipitation is
used as the third input factor.

3.1.4 Temperature
One of the components of photovoltaic systems is an energy

converter. In order for this system to provide the required power
and energy, it must have a suitable efficiency, the efficiency of the
converter depends on its temperature, which is influenced by the
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FIGURE 6
Scatter diagram of PV power and wind speed.

ambient temperature.The energy produced by photovoltaic systems
has an in-verse relationship with the ambient temperature. Figure 5
shows scatter diagram of PV power and temperature, which
shows PV power is weakly correlated with temperature. Therefore,
temperature is used as the fourth input variable.

3.1.5 Wind speed
Another variable that has a positive correlation with the output

of photovoltaic systems is wind speed, in the sense that the systems
perform better with increasing wind speed. Figure 6 shows scatter
diagram of PV power and wind speed, which shows PV power is
weak correlated with wind speed. Therefore, wind speed is used as
the final input parameter.

It can be seen that the meteorological variables of global
horizontal radiation, number of clouds, precipitation, temperature
and wind speed have a strong to weak effect on the performance
of the PV power plant. Therefore, these variables are select-ed
as the main meteorological input parameters affecting PV power
generation.

3.2 Methods

To achieve the research goals of evaluating criteria for locating
photovoltaic systems and forecasting PV energy production, a
comprehensive assessment of PV production energy criteria was
conducted, including the weighting and ranking of indicators. In the
next step, the data is prepared in the GIS environment. In this step,
the data is transferred to the GIS environment and converted into
raster format. Weighting of criteria was done using AHP method.
At the end, the analysis of the pre-pared data was done in order to
achieve the main goal of this study, which is to pro-duce a classified
map to identify the desired areas from the point of view of high PV
potential. Then, after integrating all the data from different regions,
SVR, RF, DT and XGBoost algorithms were used for predicting
photovoltaic energy production.

TABLE 2 Scale of relative importance.

Intensity of importance Definition

1 Equal importance

3 Weak importance of one over another

5 Essential or strong importance

7 Demonstrated importance

9 Absolute importance

2,4,6,8 Intermediate values

3.2.1 Integration of GIS and MCDM
The development of new technologies and methods for spatial

data gathering has resulted in large amounts of data that are difficult
to process, store, and man-age. Therefore, as a result of the need
for cost-effective, efficient, and accurate spatial data management
methods, GIS was developed (Sawadogo et al., 2020). The use
of Geographic Information Systems (GIS) facilitates quicker and
simpler manipulation of spatial data. However, their most notable
advantage lies in their capability to conduct spatial, at-tribute, and
multi-criteria analyses. The effective utilization of solar energy and
the construction of power plants relies on various spatial and other
parameters. Therefore, thorough research into these parameters is
essential before selecting the ideal construction site.Therefore, there
is a need for the creation of spatial planning based on geographic
information systems that will take into account all the essential
parameters for the solar power plant construction. Numerous
authors use GIS tools to define solar energy potential but at the
same time use different parameters and their values. In the context
of multi-criteria decision making (MCDM), the decision-making
problem ismost often seen as a problem inwhich the decisionmaker
must decide on one of the alternatives that are known or need to be
generated, taking into account all relevant factors or criteria, Among
theMCDMcan bementioned, TOPSIS, AHP, and FUZZYmethods.

Kumar et al. (Adeh et al., 2019) presented an analysis
of the most frequently used multi-criteria decision-making
methods and their application, and concluded that the weighted
sum model and the Analytic Hierarchy Process (AHP) are
most commonly used for energy planning. Ramanathan and
Ganesh (UNEP. Information Unit for Conventions) and Ishizaka
and Labib (National Research Council, 2001) stated the benefits of
AHP for energy planning, such as simple application, flexibility,
intuition, and ability to qualitatively and quantitatively address the
criteria. Since this research encompasses a number of parameters all
used for determination of optimal solar power plant locations, the
AHP method has been applied.

In the AHP method, after selecting the effective criteria in the
potential of PV power generation, the pairwise comparison matrix
is used to find the priorities using the relative importance scale as
described in Table 2 (Xiao et al., 2013).

After that Develop pairwise comparison matrices. In the
pairwise comparisonmatrix, the importance of the criteria and sub-
criteria is scored by experts.The k-by-kmatrix includes k rows and k
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columns. The aij element denotes the importance of the row i index
compared to the column j index (Equation 1).

A = (aij)k×k =
[[

[

1 a12 ⋯ a1k
a21
⋮

1
⋮
⋯ a2k
⋮ ⋮

ak1 ak2 ⋯ 1

]]

]

(1)

Consistency in factor comparisons is measured. AHP is
consistent in itself. However, the accuracy of the results depends
on the consistency in the decision-maker’s comparison between the
factors. In order to measure the consistency in these comparisons,
CR value which is called accuracy rate is calculated, and the
consistency of the weight matrix can be tested. Therefore, the
consistency of themodel is checked by comparisons between factors.
The calculation of theCR value is based on comparing the number of
factors with a coefficient called the base value (λ). When calculating
the λ value, the D column vector is obtained from the comparison
matrix A and the weight matrix of W. The basis value (E) for each
evaluation factor is obtained from the section of themutual elements
of the weight column D and the weight matrix of W. (Equation 2).
The arithmetic mean of these values gives the basic value (λ) for
comparison (Equation 3).

Ei =
di
wi

(2)

λ =
∑n

i=1
Ei

n
(3)

After calculating the basic value λ, the consistency indicator (CI)
is calculated with Equation 4.

CI = λ− n
n− 1

(4)

The value of “n” in the equations is the number of factors. Finally,
the CI value is divided by the standard correction value which is
called the random indicator (RI), shown in Table 4, and the CR value
that is called consistency ratio is obtained (Equation 6).The RI value
to be used in a 5-factor comparisonwill be 1.12. For the comparisons
made by the decision-maker to be consistent, the calculated CR
value with Equation 5 must be less than 0.10. If the CR value is
higher than 0.10, there is either a calculation error in AHP or it is
inconsistent in the decisionmaker comparison.

CR = CI
RI

(5)

To determine the relative importance of the selected criteria
in evaluating photovoltaic (PV) energy potential, a pairwise
comparisonmatrixwas constructed based on theAnalyticHierarchy
Process (AHP) methodology, using the Saaty scale of relative
importance. Expert judgmentwas employed to score the importance
of each criterion relative to the others. The resulting pairwise
comparison matrix is presented in Table 3.

Subsequently, the matrix was normalized by dividing each
element by the sum of its respective column. The priority vector
was then derived by averaging the values in each row of the
normalized matrix. These priority values represent the relative
weights of the criteria. The final weights calculated in this study are
presented in Table 4.

To evaluate the internal consistency of the judgments, the
maximum eigenvalue (λ), the Consistency Index (CI), and the
Consistency Ratio (CR) were calculated. In this study, λ was found

to be 5.21, resulting in a CI of 0.05. Given the Random Index (RI) of
1.12 for a 5 × 5matrix, the Consistency Ratio (CR) was calculated as
0.048, which is less than the acceptable threshold of 0.10. Therefore,
the pairwise comparisons can be considered consistent and reliable.

In order to perform any analysis in geographic systems, it is
necessary to introduce information into the system in the form of
information layers, so first, to implement the methods mentioned
in this research, the effective variables become information layers.
In order to use the maps and their final integration in the GIS
environment, points such as entering the information layers with
the appropriate format and model into the GIS environment,
referencing all the layers with each other must be observed. All
information was converted into raster layers and the coordinate
system of all layers was adapted to the coordinate system of the
studied area. To create a layer, the method (IDW) was used to
interpolate information in the area. Finally, the desired layer was
classified into four classes based on the values, the above steps were
repeated for each variable, resulting in the acquisition of five layers
for the variables of temperature, radiation, precipitation, wind speed,
and cloudiness in each region. In Figure 7, the classified layers of
each variable for the Mendoza region, which is one of the regions of
Argentina, are provided as an example.The classification of radiation
and wind speed layers, which have a positive effect on photovoltaic
energy, is such that higher values for these variables are classified
as very good, while lower values are classified as weak. On the
other hand, for cloud layers, temperature, and precipitation, which
have a negative effect on photovoltaic energy, higher values are
classified as weak, and lower values as very good. Now, by using
the weights obtained in the AHP method, we cover the classified
layers. Finally, Figure 8 illustrates the suitable locations in terms of
favorable conditions for photovoltaic potential.

3.2.2 Power generation forecasting for solar PV
system

After determining the optimal region, we employ ML-based
methods such as SVR, RF, DT, and XGBoost to predict the amount
of energy obtained in that area. The following section will explain
these methods.

3.2.2.1 Data integration and pre-processing
ML methods are highly dependent on data. That’s why the

data collected from 500 selected points from all over the world,
which includes the variables of radiation, temperature, precipitation,
cloudiness, wind speed with specific longitude and latitude, are
integrated. and prepared as a file for the next steps. Due to the
varying ranges of the variables relative to each other, they need to
being equalized as a pre-processing of the input data to produce
forecasting models of photovoltaic production energy. For this
purpose, the normalization operation It has been used according to
Equation 6, which is a common method in this field. This method
usually reduces a wide range of input data values to a smaller range
to reduce regression errors and improve accuracy. Using Equation 6,
the data was limited to be between 0 and 1.

pNormalized =
Pactual − Pmin

Pmax − Pmin
(6)

where pNormalized is the normalized data and Pactual is the measured
data, whilePmax andPmin are themaximumandminimummeasured
data respectively (AlHakeem et al., 2015).
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TABLE 3 Binary comparisons of factors.

factors (C1) (c2) (c3) (c4) (C5)

GLOBAL HORIZONTAL IRRADIANCE (C1) 1 3 3 4 4

CLOUD AMOUNT (c2)
1
3

1 3 3 3

TEMPERATURE (c3)
1
3

1
3

1 2 2

PRECIPITATION (c4)
1
4

1
3

1
3

1 2

WIND SPEED (C5)
1
4

1
3

1
2

1
2

1

TABLE 4 The obtained weights for each variable in the AHP method.

Variables Global horizontal irradiance Cloud amount Temperature Precipitation Wind speed

Weights 0.44 0.25 0.13 0.1 0.07

FIGURE 7
Classified information layers in GIS environment for Mendoza region, (a): Classified information layers of irradiance, (b): Classified information layers of
cloud amount, (c): Classified information layers of precipitation, (d): Classified information layers of wind speed, (e): Classified information layers of
temperature.

3.2.3 Choosing a forecasting method
According to the graphs drawn in the previous part

(Figures 1–5) which show the type of relationship between the
input variable and the output of the problem, it was found that
the problem is of the regression type. Irradiance and cloudiness
variables have the highest correlation with photovoltaic production
energy. Other variables also had moderate correlation. Based on
this and also based on the previous research in this field, SVR, RF,
DT and XGBoost algorithms that can perform better to achieve the
research goals have been selected.

3.2.4 Support vector regression (SVR)
This model is in the category of supervised learning methods,

which was first introduced by Vapnik and Lerner in (1963) (Vapnik,
1999) and developed by Kurtz and Vapnik (1995) for use in
classification problems. given. This model is based on the principle
of structural risk minimization.This principle works by minimizing
the upper limit of the expected risk. Therefore, the SVM model
minimizes the errors in the input training data. Vapnik developed

the SVM model to tackle classification tasks, but this model has
recently been modified to solve regression problems, known as
support vector regression (SVR). Photovoltaic energy forecasting is
a common problem that can be implemented with SVR (Hu et al.,
2014).The SVR algorithmworks bymapping input data (non-linear)
in a space with higher dimensions through non-linear mapping
before performing linear regression in the new space. Assuming
that we have a set of training data such as {(x1, y1),., (xk, yk)} in
this set xkϵRn are the problem variables (input data) and ykϵR

n are
the corresponding photovoltaic production energy, the modeling
function f(x) is obtained as Equation 7.

fx = ω×Ψx + b (7)

where Ψx is the input vector, ω is the weight vector, and b
is the bias term, all of which are members of the Rn set, by
minimizing the regularized risk function, it is approximated in
the form of Equation 8.

Rc = c
1
N

N

∑
i=1

L∈(yi, fi),+
1
2
‖w‖2 (8)
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FIGURE 8
Site selection for Mendoza.

In this relation, the cost function L∈(yi, fi) is obtained using the
relation Equation 9.

L∈(yi, fi ) =
{
{
{

|yi, fi|, i f|yi, fi| ≥∈

0,otherwise
(9)

where yi indicates the measured value and fi indicates the predicted
value in period i and 1

2
‖w‖2 evaluates the flexibility of the function.

Themain idea of SVR is to find theminimum cost.The performance
of SVR is highly dependent on the choice of kernel function and its
variables. Linear, polynomial, Gaussian RBF and sigmoid functions
are examples of commonly used kernel functions for SVR. In this
research, the linear kernel function, which is shown in the form of
mathematical Equation 10, has been used (Shi et al., 2012).

z(xj,xk) = xTj xk (10)

3.2.5 Decision tree (DT)
A decision tree is a simple but powerful supervised learning

method that uses a tree-like model of decisions and their possible
consequences. They are used in both classification and regression
problems. Unlike SVM, which has many dimensions and it is
impossible to imagine how the hyperplane is built in the human
brain, decision trees provide a very good visualization of the
decision-making stages and the relative importance of features.
Decision tree regression was developed based on the CART
algorithm proposed by Berryman et al., in 1984 (Breiman et al.,
2017).The twomain components discussed in this method are node
structure and node division. The node structure is such that each
node stores attributes that define the tree structure and help to
navigate the tree during prediction.Node Split finds the attribute and
threshold values to split a node. CART calculates the cost function

for different features and threshold values, then splits the node for
the feature and threshold value that minimizes the cost function. In
fact, the decision tree algorithm starts from the root node, which
contains the complete data set of the problem. Using the feature
selection algorithm (ASM), the best feature in the data set is selected.
Then, by dividing the root node into subsets that contain appropriate
and possible values for the best features, it produces a decision tree
node with the best features, using the subsets created from the data
set in the third step of this approach, new decision trees recursively
are createdThis process continues until the nodes cannot be further
classified and the final node is obtained as a leaf or terminal node. In
this method, the cost function tries to find homogeneous branches
or branches with groups of characteristics with similar results. The
relation of cost function for regression problems is obtained as
relation Equation 11 (Breiman et al., 2017).

L∈ =∑(y_ prediction)2 (11)

3.2.6 Random forest (RF)
Random forest is an ensemble algorithm that uses an aggregated

result of multiple decision trees to determine the outcome.The data
is recursively split to classify the target data when given a set of
predictor data. The size of the random forests can be optimised for
the dataset which ranges from one leaf per tree to 50, and between
30 trees and 50 for each algorithm. Gini impurity (Equation 12) is
used to decide whether to continue spilitting the data.

Gini = 1−
n

∑
i=1
(Pi)

2 (12)

It can be defined as the deduction of squared probabilities of
each class from one, where ‘Pi’ is the probability of an element being
classified for in a certain class. Once the Gini impurity reaches the
minimum value, it can be considered a ‘pure’ split, meaning it no
longer must be split. This means that the tree cannot split the data
to a better degree and the algorithm has finished training. The data
splits and values of the target variables are remembered, and once
new data is added, the target variables can be calculated by splitting
the data like they did during training.

3.2.7 Extreme Gradient Boosting (XGBoost)
This algorithm is based on a decision tree that uses the

reinforcement method and was proposed by Tianchi Chen in 2016
(Xiao et al., 2013). A simple model such as a decision tree can
help train the model on our dataset. The act of “reinforcement”
trains models one after the other. Boosting is a method to improve
prediction accuracy by training a sequence ofweak treemodels, each
of which compensates for the residuals of the previous tree model.
Each new model is trained with the aim of correcting the errors
caused by previous models. Models are added sequentially until no
further progress is possible. The advantage of this iterative method
is that the added models try to correct the mistakes made by other
models. XGBoost algorithm has recently started to be applied in
different fields, in the field of production energy prediction, we can
refer to the source (Madrid and Antonio, 2021).The predicted value
of the XGBoost regressor is calculated with the relation Equation 13
as follows (XGBoost Documentation).

yt =
k

∑
k=1

fk(xt),  fk ∈ F (13)
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In this relation, yt represents the predicted value, fk represents
the kth tree model, xt represents the input feature, K represents the
number of trees, and F represents the functional space that includes
a set of trees.

Finally, each of these algorithms aims to provide strong
prediction models with the least possible error. Each algorithm has
objective and cost functions based on which they try to optimize
predictions and increase accuracy.

3.2.7.1 Model training
In order to learn and train themodels, the data set is divided into

two parts, in such a way that 80% of the data for training and 20%
of the data for evaluating the model are separated from each other.
After separating the data, the model starts learning with the help of
training data, finally the model is evaluated by test data.

3.2.7.2 Model evaluation
After training the model with the training data, which

constituted 80%of the en-tire dataset, the performance of themodels
was evaluated using the test data, com-prising 20% of the total data.
Evaluation criteria include MSE (Mellit et al., 2020), RMSE, nRMSE
(Yang et al., 2015), MAE (Pedro and Coimbra, 2012), MAPE, and
R2 (Rana et al., 2015), as expressed in Equations 14–19 respectively,
were employed for assessment.

MSE = 1
N

N

∑
i=1
(wforecasted −wmeasured)

2 (14)

RMSE = √ 1
N

N

∑
i=1
(wforecasted −wmeasured)

2 (15)

nRMSE = RMSE
Max(wmeasured) −Min(wmeasured)

(16)

MAE = 1
N

N

∑
i=1
|wforecasted −wmeasured| (17)

MAPE = 1
N

N

∑
i=1

|wforecasted −wmeasured|
wmeasured

× 100% (18)

R2 = 1−
∑N

i=1
(wforecasted −wmeasured)

2

∑N
i=1
(wforecasted −waverage)

2 (19)

In these equations, w forecasted, wmeasured, and waverage represent
forecast values, measured values, and average values, respectively.

3.2.8 Case study
In this section, the proposed integrated model is used to

optimize the location of solar power plants and predict the energy
generated from PV systems in various regions of selected countries
based on latitude and considering the specific climate type of each
region in different parts of the world. For this purpose, regions
in different countries were selected, such as Utah from the United
States, Coahuila from Mexico, Mendoza from Argentina, Mato
Grosso from Brazil, Kunene from Namibia, Katanga from Congo,
Awbari from Libya, Tabuk from Saudi Arabia, Karaganda from
Kazakh-stan and Berlin fromGermany, as shown in Figure 9, which
displays a map of these areas along with the respective flags and
names of the countries.

4 Results and discussion

The purpose of this study was to provide guidelines for finding
suitable locations for installing PV power plants and predicting the
energy output from that system in that region around the world.
Therefore, by collecting the data described in the previous sections,
several areas have been examined in order to locate and predict
the energy produced by the PV system, the results of which are
given below.

The world has a different climate in each region, the factors
affecting the world’s climate in addition to latitude, factors such
as the angle of the sun, distance and proximity to the oceans and
seas and ocean and sea currents, height above the earth’s surface,
air pressure and wind flow affect the climate of a region. Among
the climatic variables that influence the evaluation of the potential
of photovoltaic systems in a region are the amount of radiation
depending on the latitude, temperature, precipitation, cloudiness
and wind speed, which are dependent on the distance and proximity
to the oceans and seas and oceanic and marine currents. In this
section, an analysis of the climatic conditions of the world based on
the climatic desirability for the purpose of photovoltaic energy that
may be obtained in it with a certain color spectrum (from blue color:
unfavorable to red color: favorable) has been prepared in ArcGIS
software, which is introduced in Figure 10 they become Areas close
to the Arctic region, including Scotland and the parts of Russia that
were studied, are unfavorable for PV energy potential. While areas
close to the southern temperate zone such asNamibia have favorable
conditions in terms of photovoltaic energy potential.

4.1 Site selection

In order to determine the optimal location for the construction
of a photovoltaic power plant according to the instructions that
are fully explained in Section 3.2.1 and mentioned as a step-by-
step example for the Mendoza region of Argentina, the layers of
each variable were prepared for each region and then the layers are
superimposedwith thementionedmethod, the finalmap is obtained
for the desired area and the degree of desirability of the areas by
several classes with specific color spectrum that were introduced in
the previous section, which is the amount of energy produced by PV
that can be used in that area earned it shows Figure 11 shows the site
selection results of different regions.

4.2 PV power prediction

After determining the optimal area from the point of view
of the usefulness of photovoltaic energy potential in that area,
in order to predict the amount of photovol-taic energy using
effective climate variables and geographical coordinates, SVR, RF,
DT and XGBoost algorithms have been used. In order to check
the performance of these algorithms, the results of the trained
model have been evaluated. Table 5 shows a general comparison
between the indicators introduced in the previous section as a
tool for determining the accuracy of the model and evaluating
the model. Figure 12 shows the results of each model graphically,
which shows the prediction accuracy of each model. As it is clear
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FIGURE 9
The research Case study.

from the table and figures, according to the statistical indicators
used for evaluation, the XGBoost method performs better than
other methods.

In Table 6, a comparison has beenmade between the best results
of previous works and this research. In (Fan et al., 2018), using
the variables temperature, humidity and radiation and using the
XGBoost algorithm, the prediction was made. The result of the
R2 statistical index for this study was R2 = 0.77, while in the
current study, using the variables temperature, radiation, humidity,
cloud amount and wind speed and using the same XGBoost
algorithm, we achieved a better result of R2 = 0.91 and a better
prediction was made.

5 Conclusion

In recent years, the challenges of global warming, the crisis
of limited non-renewable resources, and the issues surrounding
energy supply and transportation worldwide, such as resource
transmission incidents, disruptions in fossil fuel supply, and
resource wastage along the transmission path, have led the world’s
attention towards replacing renewable sources with fossil fuels.
According to forecasts, solar energy, particularly photovoltaic
solar energy, is increasingly gaining attention in the coming

years. Understanding the spatial and temporal variability of
solar energy as a long-term energy source is fundamental for
energy policy decisions, optimal design of solar energy conversion
systems, transmission network planning, integration of power
generation systems, market operations, and reducing uncertainty
in investments. Estimating the energy of photovoltaic systems
requiresmultiple studies, and accurate information about the energy
potential in a region is among the top priorities in energy application
designs.

The use of satellite imagery and remote sensing technology
as primary data sources has expanded in recent decades.
Alongside this, Geographic Information Systems (GIS) have
always been of interest to researchers for their unparalleled
spatial and locational analysis capabilities. Machine learning (ML)
methods have emerged as effective tools for prediction tasks with
good performance and high accuracy, as also utilized in this
study.

Despite previous research, a study addressing the evaluation
of photovoltaic energy production in terms of optimal location
determination and energy production prediction within the
same region has not yet been conducted. Furthermore, the un-
precedented breadth of data examined globally necessitated the
collection of data for 500 specific geographic coordinates for
this study. This research demonstrates that using GIS and the
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FIGURE 10
Estimated amount of photovoltaic energy in: (a): Stornoway from Scotland, (b): Sligo from Ireland, (c): Galway from Ireland, (d): Pskov from Russia, (e):
Ivanov from Russia, (f): Tula from Russia, (g): Nyiregyhaza from Hungary, (h): Bacs kisk, (i): Teleorman, (j): Brindisi, (k): Miranda Do Douro, (l): Vila Do
Bispo, (m): Hansford, (n): Awbari, (o): Omasati.

MCDM approach facilitates ease, precision, and speed in the
evalua-tion process.

In this study, efforts were made to identify suitable areas and
predict photovoltaic energy production by relying on climatic
variables (solar irradiance, precipitation, temperature, cloud
cover, wind speed) and geographical characteristics (latitude and
longitude). It was evident in the location determination and
prediction sections that higher radiation levels in an area correspond
to greater photovoltaic energy production. Conversely, cloud cover,
temperature, andprecipitationnegatively affect photo-voltaic energy
output, indicating that areas with higher values of these variables are
less desirable. Similarly, wind speed, like solar irradiance, positively
impacts the amount of photovoltaic energy produced. Mapping
was conducted to locate several potential areas, and the results

were classified into multiple classes. These classes are represented
by a color spectrum indicating specific energy production
levels.

The repetition of this approach in various regions and the
evaluation of results demonstrate its suitability for the research
problem and objectives. Following the de-termination of the
optimal region in terms of energy production desirability,
predictive models utilizing influential climatic variables and
machine learning-based methods were employed. These models
were trained and evaluated using data collected from 500
different points worldwide, with the XGBoost model emerging
as the best method for predicting photovoltaic energy with
lower error rates and higher correlations, as presented in
Table 3.
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FIGURE 11
Site selection results.

TABLE 5 Evaluation results of prediction models.

Indicators MAPE MAE RMSE MSE nRMSE R2

Method

SVR 0.05 0.19 0.28 0.08 0.081 0.88

RF 0.04 0.18 0.27 0.07 0.075 0.90

DT 0.06 0.26 0.36 0.13 0.10 0.81

XGBoost 0.04 0.17 0.25 0.06 0.069 0.91

5.1 Limitations

Despite the promising results obtained from the integration of
Geographic Information Systems (GIS), Analytic Hierarchy Process
(AHP), and machine learning models in this study, there are
some limitations to be considered.

1. Generalizability Issues: The data used in this study was
collected from 500 specific geographic locations worldwide.
While the results are promising, there may be challenges
in generalizing these findings to other regions, especially

those with significantly different climatic conditions or
solar radiation levels. Further research could explore the
applicability of this approach in other geographic regions to
validate its broader applicability.

2. Temporal Limitations:Thedata used in this studywas collected
over a certain period. Seasonal variations and long-term
changes in climatic conditions could affect the long-term
performance of photovoltaic systems. Future studies could
consider incorporating time-series data and exploring how the
prediction models perform over different seasons or longer
timeframes.
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FIGURE 12
Comparison of actual values with predicted values in each model. (a) Actual data and predicted in SVR model. (b) Actual data and predicted in DT
model. (c) Actual data and predicted in RF model. (d) Actual data and predicted in XGBoost model.

TABLE 6 Comparison of results between this research and previous work.

Ref Factors Proposed ML method Evaluation criteria

Fan et al. (2018) temperature, precipitation, and radiation XGBoost R2 = 0.77

This study Solar radiation, precipitation, cloud amount, temperature, wind speed XGBoost R2 = 0.91

3. Data Quality and Availability: While satellite imagery and
meteorological data are powerful tools, they can sometimes
be affected by issues such as cloud cover, data resolution, and
temporal gaps. These factors can introduce uncertainty into the
analysis and should be considered when interpreting the results.
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