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As renewable energy continues to be widely integrated, the energy structure is
gradually transforming. The increasing grid connection of wind and photovoltaic
power signifies amajor shift in the energymix. This change is particularly evident
in heavy load areas at the regional grid and provincial dispatch levels, where
uncertainties on both the supply and demand sides impact the daily operation
of power systems. New dispatch strategies are urgently needed to address
these uncertainties. This paper introduces a two-stage day-ahead and intra-day
coordinated multi-level dispatch method that considers both the regional-level
and provincial-level power systems, addressing supply-demand uncertainties
from the perspective of regional grid-level and unmet load peak shaving. Unmet
load refers to the load that cannot be met solely by the output of regional
grid units. At the regional grid level, a unit dispatch model for unmet load peak
shaving is developed. We introduce the concept of unmet load and, based on
peak-valley weighting, propose a multi-province load peak shaving method,
improving the approach to unmet load considerations. At the provincial level, a
two-stage robust optimization dispatch model is constructed based on regional
grid dispatch, and it is solved using the Karush-Kuhn-Tucker conditions and
the Column-and-Constraint Generation (C&CG) algorithm. Finally, case study
results validate the proposed model’s effectiveness, demonstrating its ability
to provide an optimized coordinated grid-provincial dispatch strategy under
supply-demand uncertainty.

KEYWORDS

uncertainty, coordinated scheduling, unmet load, peak shaving, robust optimization,
C&CG

1 Introduction

In the current context of widespread integration of renewable energy, considering
the high degree of new energy integration in large-scale grid dispatch, the system
is prone to fluctuations due to load and the variability in wind and solar power
outputs, and is more susceptible to peak load situations, increasing the risk to
power safety. It is particularly crucial to consider dispatch strategies at both regional
grid and provincial levels to ensure power balance during peak load periods and
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to coordinate regional and provincial dispatch strategies. This aims
to ensure stable power supply at the regional grid level and promote
the consumption of new energy at the provincial level, thereby
maximizing the safety of large-scale power grids.

At the regional grid level, the impact of new energy is
significantly amplified due to the integration of multi-provincial
loads, making it highly likely to encounter peak load situations
during daily operations. Taking the East China Grid as an example,
which mainly supplies power to Shanghai, Jiangsu, Zhejiang,
Fujian, and Anhui, the daily power supply pressure is substantial,
and it frequently participates in inter-provincial power dispatch
(Li et al., 2024). Considering the limitations of line capacity and
the cost of power adjustments in conventional units, using energy
storage systems for cross-time scale power dispatch is an effective
solution. Energy storage offers flexibility, efficiency, adjustability,
rapid response, and environmental friendliness. Liu and Peng (2024)
proposes a peak load transfer optimization model for wind-power-
energy hybrid energy system based on situational awareness theory.
Uddin et al. (2018) discusses on possible challenges and future
research directions for each type of the strategy. Chua et al. (2016)
provide an effective sizing method and an optimal peak shaving
strategy for an energy storage system to reduce the electrical peak
demand of the customers. Luo et al. (2024), Zhao et al. (2024),
Cheng et al. (2018); Liao et al. (2024) construct different short-
term peak-shaving frameworks to address the modeling challenge
and optimization difficulty. Wallberg et al. (2024) presents a control
algorithm that uses a negative correlation scheme, adjusted to the
local grid load, to effectively manage the battery energy storage.
Jin et al. (2022) uses flexible hydropower to buffer the volatility and
the randomness of RE sources and aid peak shaving in response to
the transition towards sustainability. Wang et al. (2021) proposes a
nonlinear programming model to solve this problem. The research
on energy storage for peak shaving is well-established, yet there is
limited focus on regional grid-level dispatch scenarios. This paper
takes into account the common issue of insufficient unit output
at the regional grid level and considers the resulting unmet load
situations. By utilizing energy storage systems to perform peak
shaving and valley filling across multiple provinces, this study
extends the objectives of peak shaving and valley filling to include
reducing the fluctuations in unmet load.

At the provincial dispatch level, the main responsibility lies in
accommodating the consumption of new energy after implementing
unmet load peak shaving at the regional grid level. Dong et al.
(2024) studies the operation and scheduling problem of virtual
power plant with the collaborative optimization of multiple flexible
loads and new energy, and improves the mismatch between power
supply and demand through the efficient aggregation and optimal
control of new energy and demand-side resources. Yang et al.
(2024) designs a two-stage scheduling optimization framework
to minimize the operating cost in the day-ahead phase and the
system deviation cost in the intra-day phase. However, given
the increasingly complex operational environment and various
uncertainties, traditional optimization methods often fall short
of meeting practical operational needs. The two-stage robust
optimization method, an emerging optimization technology, has
garnered considerable attention in recent years. This method has
broad applicability in the field of power systems, whether in
power market design, generation dispatch, or grid planning. By

incorporating the two-stage robust optimization approach, complex
issues in actual operations can be effectively addressed. Especially in
the areas of new energy grid integration and inter-regional power
trading, this method can effectively overcome challenges posed
by uncertainties, ensuring efficient operation of the power system
and optimal resource allocation. Zhao and Guan (2015) develops
stochastic optimization models and solution methods to improve
reliability unit commitment run practice. Büsing and Schmitz
(2024), Zhu et al. (2024), Niu et al. (2022), Wang et al. (2022),
Kong et al. (2022) study different two-stage robust optimization
method under uncertainty of different variables. Zeng and Zhao
(2013) present a column-and-constraint generation algorithm to
solve two-stage robust optimization problems. Yang et al. (2023)
proposes a distributed robust optimal scheduling method for
microgrid based on discrete scenarios. Bendotti et al. (2023)
proposes the anchor-robust approach as a middle ground between
guaranteeing starting times and guaranteeing the thought.

This paper primarily introduces a two-stage robust optimization
model under the coordination of regional grid-level dispatch. Based
on regional grid dispatch strategies, it considers provincial dispatch
under the influence of new energy sources. It also takes into
account constraints such as tie-line power and inter-provincial
electricity trading, aiming tominimize economic costs.The solution
is obtained through iterative calculations.

2 Materials and methods

Figure 1 shows the model architecture in this document.

2.1 Model formulation

2.1.1 Regional grid-level dispatch model
The dispatch optimization problem at the regional grid level

studied in this paper involves two types of units: conventional
generation units and pumped-storage power stations. The main
constraints can be categorized as follows:

Controllable Conventional Unit Constraints:
Ramping Constraint Equation 1:

−RUg ≤ Pg,p,t+1 − Pg,p,t ≤ RUg (1)

In the formula, t denotes the time period index, and p represents the
province index. Pg,p,t+1,Pg,p,t are the generation power at time t+1
and t respectively. RUg represents the ramp rate limit of the thermal
power unit, indicating the maximum increase or decrease in output
per unit time.

Unit Output Boundary Constraint Equation 2:

0 ≤ Pg,p,t ≤ Pgmax (2)

In the formula, Pgmax denotes the maximum output of the unit, and
the constraint is defined with a zero lower bound, which applies to
the generation stage of all units.

Pumped-Storage Unit Constraints Equations 3–7:
Pumped-Storage Unit Equality Constraints, including water

level conversion power constraint and power balance constraint:

ηch arg eΔE = Pch arg et = ηch arg emgΔh (3)
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FIGURE 1
Model framework diagram.

ΔE = ηdisch arg ePdisch arg et

= ηdisch arg e ×(mg+ 1
2
ρV2S)×Δh

(4)

Et+1 = Et +(Ptch arg eηch arg e +
Pdisch arg et

ηdisch arg e
)Δt (5)

The boundary constraints of pumped -storage units include energy
boundary constraints as well as pumping and generating power
constraints:

Emin ≤ Et ≤ Emax (6)

{{{{
{{{{
{

0 ≤ Pch arg et ≤ xch arg et Pch arg emax

−xdisch arg et Pdisch arg emax ≤ Pdisch arg et ≤ 0

xch arg et + xdisch arg et ≤ 1

(7)

In the formula, Et represents the equivalent stored energy of the
pumped-storage unit at time period t; ΔE denotes the equivalent
energy change corresponding to the variation in water level;
m,g,h,ρ,V,S respectively refer to the mass of water in the reservoir,
gravitational acceleration, water level height, water density, volume,
and bottom area; Pch arg et ,Pdisch arg et are the pumping and generating
power of the pumped-storage unit at time period t; ηch arg e,ηdisch arg e
are the efficiency of pumping and power generation for the pumped-
storage station; Emin,Emax denote the minimum and maximum
stored energy of the pumped-storage station; Pch arg emax ,P

disch arg e
max

are the maximum output for both pumping and generating; and
xch arg et ,xdisch arg et are the pumping status of the pumped-storage
station at time period t, and they are Boolean variables.

Unit Output Proportion Constraint Equation 8:
The output of all types of units needs to be allocated to each

provincial grid according to the agreed proportions, and during the
pumping period, the corresponding proportion of grid power is also
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consumed accordingly.

Pg,p,t =
provinces

∑
p

Pg,p,t ×Rg,p (8)

In the formula, Pg,p,t represents the output power of the gth unit to
province p at time period t;Rg,p denotes the power transmission ratio
of the gth unit to the province p.

2.1.2 Provincial-level dispatch model
The provincial two-stage robust optimization model presented

in this paper is based on the unit dispatch data obtained from
the regional grid-level dispatch strategy after load peak shaving.
It addresses the source-load uncertainty problem under the
integration of renewable energy.

Controllable Generation Units:
Controllable generation units include adjustable gas turbines,

diesel generators, and others. After linearization, their cost
function can be expressed as a linear function of their
generation power Equation 9:

Cg =
T

∑
t
(aPg,t + b)Δt (9)

In the formula, Pg,t represents the generation power of the unit
at time period t; a, b are the cost coefficients; and Δt denotes the
duration of each time period.

Output Power Constraint Equation 10:

Pmin
g ≤ Pg,t ≤ Pmax

g (10)

In the formula, Pmin
g ,Pmax

g denote the minimum and maximum
generation power of the unit, respectively.

Energy Storage Components.
The cost of energy storage components is the cost associated

with the charging and discharging processes, which can be
expressed as Equation 11:

Cs =
T

∑
t
Ks[

Pdist

η
+ Pcht η]Δt (11)

In the formula, Pdist ,P
ch
t represent the charging and discharging

power of the energy storage at time period t; η is the charging
and discharging efficiency; and Ks denotes the unit charging and
discharging cost.

The constraints that the energy storage components must satisfy
are as follows Equation 12:

{{{{{{{{{{{{
{{{{{{{{{{{{
{

0 ≤ Pdist ≤ ut
sPmax

0 ≤ Pcht ≤ (1− ut
s)Pmax

η
T

∑
t
Pcht Δt−

∑T
t
Pdist Δt

η
= 0

Emin ≤ E0 + η
t

∑
i
Pchi Δt−

∑t
i
Pdisi Δt

η
≤ Emax

(12)

In the formula, Pmax represents the maximum allowable output of
the energy storage; ust is a Boolean variable indicating the charging
or discharging state of the energy storage; and Emin,Emax denote the
lower and upper bounds of the energy storage capacity.

Demand Response Load:
The flexible scheduling process of demand response load is

considered in Zhang et al. (2025a), Zhang et al. (2025b), Wang et al.
(2025); Li et al. (2025); Shao et al. (2024). Under the condition
that the electricity usage characteristics meet the requirements
for providing demand response services, the grid can adjust
users’ electricity consumption plans while providing appropriate
compensation to the users.Thus, the adjustment cost of the demand
response load is expressed as Equation 13:

CDR =
T

∑
t
KDR|P

DR
t − P

DR0
t |Δt (13)

The constraints that need to be satisfied are
as follows Equation 14:

{{{
{{{
{

T

∑
t
PDRt Δt = DDR

Dmin
t ≤ P

DR
t Δt ≤ D

max
t

(14)

In the formula, PDRt represents the actual dispatch power of the
demand response load at time period t; DDR is the total electricity
demand across all time periods; Dmin

t ,D
max
t denote the minimum

and maximum demand response load at time period t, respectively.
Since Equation 13 is a nonlinear function, auxiliary variables are

introduced to linearize it.The final cost function and constraints are

FIGURE 2
Flowchart of the C&CG algorithm.
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expressed as Equations 15, 16:

CDR =
T

∑
t
KDR(P

DR1
t + P

DR2
t )Δt (15)

{{{{
{{{{
{

PDRt − P
DR0
t + P

DR1
t − P

DR2
t = 0

PDR1t ≥ 0

PDR2t ≥ 0

(16)

In the formula, PDR1t ,P
DR2
t are the linearized auxiliary variables.

Power Trading Interaction:
When the generation output cannot meet the actual load

demand, power needs to be purchased from other sectors, and when
there is excess power, it can be sold to others.

The power trading process needs to satisfy the basic
power balance Equation 17:

Pbuyt − P
sell
t = Pg,t + P

ch
t − P

dis
t

+PDRt + P
Load
t − P

PV
t

(17)

In the formula, Pbuyt ,P
sell
t represent the power purchased or sold

at time period t; PLoadt ,P
pv
t denote the load data and photovoltaic

generation data at time period t, respectively.
The cost function and constraints of power trading are expressed

as follows Equations 18, 19:

Cm =
T

∑
t
pt(P

buy
t − P

sell
t )Δt (18)

{
{
{

0 ≤ Pbuyt ≤ u
m
t P

max

0 ≤ Psellt ≤ (1− u
m
t )P

max
(19)

In the formula, pt represents the day-ahead transaction price; umt is
a Boolean variable indicating the purchase or sale state; and Pmax is
the maximum exchange power.

In summary, the objective function of this model is to minimize
the dispatch cost, expressed as Equation 20:

min obj = Cg +Cs +CDR +Cm (20)

Uncertain Parameters:
To address the conservativeness of robust optimization results,

uncertain parameter variables and the maximum values of these
parameters are incorporated into the model to limit the frequency
of photovoltaic and load data reaching the worst-case scenarios,
ensuring that the overall model result is not overly conservative
Equation 21:

[Bpv
t ,B

Load
t ] (21)

The uncertain parameter is a Boolean variable indicating whether
the worst-case scenario is reached, used to control the actual values
of photovoltaic and load data in the optimization model. Typically,
the worst-case scenario occurs when photovoltaic generation is
insufficient while load demand is high. Thus, the model considers
the lower bound deviation of photovoltaic generation and the upper
bound deviation of load demand.

{
{
{

Ppvt = P
pv0
t −B

pv
t ΔP

pv
t

PLoadt = P
Load0
t +B

pv
t ΔP

Load
t

(22)

In the formula Equation 22, Ppv0t ,P
Load0
t represent the predicted

values of photovoltaic and load data, respectively, whileΔPpvt ,ΔP
Load
t

denote the deviation values of photovoltaic and load power at time
period t obtained through fuzzy clustering.

Additionally, the uncertain parameters need to satisfy boundary
constraints Equation 23:

{
{
{

Bpv
t ≤ B

pv
max

BLoad
t ≤ B

Load
max

(23)

In the formula, Bpv
max,BLoad

max denote the upper limit of the uncertain
parameter. The larger the upper limit, the more conservative the
model results will be.

2.2 Solution method

2.2.1 Regional grid-level dispatch objective:
Minimization of unmet load fluctuation

Based on the aforementioned variables and constraints, the
optimization model is established. The primary objective at the
regional grid-level is to use the output of generation units and
pumped-storage power stations to smooth the unmet load curves
of each province, thereby reducing the impact of peak loads on
provincial-level dispatch. To achieve this goal, referring to the
generation dispatch function of the Chinese power system, the
minimization of the variance of unmet loads is selected as the
objective function (Meng et al., 2023; Wang et al., 2023).

Thus, the objective function of this optimization
problem is Equation 24:

min objp =
T

∑
t
(P′p,t −

T

∑
i
P′p,i/T)

2

(24)

Since there is a corresponding load variance for each province, this
model is a multi-objective optimization problem.The weighted sum
method is used to combine multiple objectives into an equivalent
scalar objective.

To avoid unreasonable results caused by large differences in load
magnitudes among provincial grids, the total accepted generation
output is normalized. Then, the objective functions of different
provinces are integrated into a single objective using appropriate
weighting coefficients.

Therefore, the composite objective function can be expressed as:

min obj =
provinces

∑
p

weightp × obj′p (25)

In the formula Equation 25, obj′p represents the normalized form of
the objective function for province p.

obj′p =
T

∑
t
(
P′p,t −∑

T
i
P′p,i/T

max(Loadp)
)

2

(26)

In the formula Equation 26, weightp is the weight of province p in
the objective function, and max(Loadp) is the maximum value in
the load curve of province p.
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TABLE 1 Average load values and weights of each province.

Province Average load (MW) Weight

Province 1 600 0.4

Province 2 900 0.6

TABLE 2 Generation unit allocation ratios.

Unit index Province 1
Allocation ratio

Province 2
Allocation ratio

Generation Unit 1 0.6 0.4

Generation Unit 2 0.6 0.4

Generation Unit 3 0.5 0.5

Generation Unit 4 0.5 0.5

Pumped-Storage Unit 1 0.5 0.5

Pumped-Storage Unit 2 0.4 0.6

TABLE 3 Generation unit data.

Unit index Maximum
output (MW)

Maximum
capacity (MWh)

Generation Unit1 110 —

Generation Unit2 90 —

Generation Unit3 110 —

Generation Unit4 90 —

Pumped-Storage Unit1 50 300

Pumped-Storage Unit2 50 300

By substituting the sum of generation outputs into Equation 25,
we obtain Equation 27:

min obj =
provinces

∑
p

weightp

max(Loadp)
2

×
T

∑
t
(

G

∑
g
Pg,p,t −
∑T

t
∑G

g
Pg,p,t

T
)

2 (27)

Considering the separate optimization of peak and valley period
variances, the two optimization objectives are weighted to transform
themulti-objective problem into a single-objective problemagain, as
expressed by Equation 28:

min obj = weightpeak × objpeak
+weightvalley × objvalley

(28)

In the formula, weightpeak,weightvalley are the weights for peak and
valley periods set in this study, and objpeak,objvalley correspond to the
objective functions for peak and valley periods, respectively.

Thus, through the above formula transformations, the multi-
objective problem is converted into a single-objective problem. In
this model, the objective function is a quadratic function of the
decision variables.

The power balance constraints in this model cannot be satisfied.
However, research tests show that merely removing the power
balance constraints leads to passive output from conventional
generation units and non-unique solutions. The primary reason
is that the relaxation of constraints is too excessive, requiring
additional constraints or changes to the objective function.

This study adopts the penalty function method, adding penalty
terms to the objective function in Equation 28, as shown in
Equation 29:

ϕ =
provinces

∑
p

T

∑
t
max{0,(Loadp,t −

G

∑
g
Pmax
g ×Rg,p)}

×(Loadp,t −
G

∑
g
Pg,p,t)

(29)

Theconstructionof thepenalty function isderived fromtheweighting
method.Intheformula, themax functionisusedtodeterminewhether
the maximum generation output of units at time period ttt can meet
the load demand. If it cannot be met, unmet load is generated. The
difference is used as aweight andmultiplied by the difference between
the actual unit output and the load. By adding this penalty term to the
original objective function in Equation 28, the issue of passive output
from conventional generation units can be resolved.

The objective function after adding the penalty term is shown in
Equation 30:

min obj = weightpeak × objpeak
+weightvalley × objvalley
+ϕ

(30)

where:

P′p,t =
G

∑
g
Pg,p,t (31)

In the formula Equation 31,P′p,t denotes the total received generation
output of grid p at time period t; Pg,p,t is the power transmission
of unit g to grid p at time period t; and T is the total number of
time periods.

The highest degree term of the objective function in this model
is quadratic. Therefore, this optimization problem is a quadratic
programming problem. To prove that the model can converge to
the global optimum, the compact form of the model is presented
as follows Equation 32:

min xTax+ bx

s.t.

Keqx = k

Dx ≥ d

(32)

In the compact form, Keq,D represent the constraint coefficient
matrix in the model, and k, d are the constant matrixes
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FIGURE 3
Pumped storage 1 status. (a) Pumped storage 1 Power. (b) Pumped storage 1 Energy.

corresponding to the constraints. Since the coefficient matrix a of
the quadratic term in the objective function is a symmetric matrix,
its eigenvalues are real numbers. By solving the eigenvalue equation,
It can be concluded that all eigenvalues are non-negative, indicating
that a is a positive semi-definite matrix. Thus, this problem is a
convex quadratic optimization problem. For convex optimization,
under the conditions that are satisfied, any local optimal solution
is a global optimal solution, and this problem is solvable within
polynomial time.

2.2.2 Provincial-level dispatch objective:
minimization of economic cost

The provincial two-stage robust dispatch model constructed in
this paper is mainly solved in two stages: themaster problem and the
sub-problem.

The compact form of the provincial-level dispatch problem
is as follows:

 min
 x
{max

u∈U
min

y∈F(x,u)
cy}

s.t.

Gy ≥ h−Ex−Mu

Geqy = heq −Eeqx−Mequ

(33)

In the formula Equation 33, the variables represented by x
Equation 34, are:

x = [ust,u
m
t ]

T (34)

The variables represented by y Equation 35 are:

y = [Pg,t,Pcht ,P
dis
t ,P

DR
t ,P

DR1
t ,P

DR2
t ,P

buy
t ,P

sell
t ,P

pv
t ,P

Load
t ]

T
(35)
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FIGURE 4
Pumped storage 2 status. (a) Pumped storage 2 Power. (b) Pumped storage 2 Energy.

Equation 36 indicates the frequency of reaching the worst-case
scenarios.

u = [Bpv
t ,B

Load
t ]

T (36)

G,h,E,M and Geq,heq,Eeq,Meq respectively denote the coefficient
matrices corresponding to inequality and equality constraints.

For the objective function, it is divided into two layers, the
inner and the outer. The outer layer min

x
{∗} represents finding the

minimum value of the inner function and making decisions on
the variables x, so that x can be used as a constant term in the
inner layer’s solution. The inner function max

u∈U
min

y∈F(x,u)
cy represents

the cost minimization result under the worst-case scenario. The
feasible region y ∈ F(x,u) is defined by the feasible values of variables
x and uncertain parameters u. The function min

y∈F(x,u)
cy represents

the optimization result within this feasible region, while max
u∈U
{∗}

identifies the scenario with the worst-case photovoltaic and load
values among all cost minimization results.

Based on the above analysis, the master problem and sub-
problem can be organized as follows:

The master problem focuses on making decisions for the state
variables of energy storage and power trading in the day-ahead
stage, using the predicted photovoltaic and load data to optimize
and obtain the lower bound of the final solution, as shown in
Equation 37:

min a

s.t.

a ≥ cy

Gy ≥ h−Mu−Ex

Geqy = heq −Mequ−Eeqx

(37)
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FIGURE 5
Peak shaving results of unmet load in province 1.

The sub-problem is solved in the intraday stage, where, based on
the already determined values of x, the goal is to find the cost-
minimizing decision under the worst-case scenario, as shown in
Equation 38.

max min cy

s.t.

Gy ≥ h−Mu−Exvalue
Geqy = heq −Mequ−Eeqxvalue

(38)

For the two-stage robust optimization model above, this study
uses the Column-and- Constraint Generation (C&CG) algorithm
to solve it. The C&CG algorithm achieves the optimal solution
of the original problem by decomposing it into a master
problem and a sub-problem and solving them iteratively in
an alternating manner. The main solution logic is illustrated
in Figure 2.

In the process of solving the master problem using the C&CG
algorithm, variables and constraints related to the sub-problem are
continuously introduced, allowing for a tighter lower bound of the
original objective function value, thereby effectively reducing the
number of iterations.

The master problem and sub-problem of the provincial-level
dispatch are given byEquations 37 and 38 above.During the iterative
process of the C&CG algorithm, the uncertain parameters and
their corresponding constraints are dynamically updated. Thus, the
formal representations of the master problem and sub-problem
should be expressed as follows:

Master Problem Equation 39:

min a

s.t.

a ≥ cy

Gy ≥ h−Muk −Ex

Geqy = heq −Mequk −Eeqx

(39)

Subproblem Equation 40:

max min cy

s.t.

Gy ≥ h−Muk −Exvalue
Geqy = heq −Mequk −Eeqxvalue

(40)
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FIGURE 6
Peak shaving results of unmet load in province 2.

fundinWhere uk denotes the value of the uncertain
parameter selected in the kth iteration. In the sub-problem,
the variables x determined by the master problem are treated
as constants.

Since the sub-problem is a bilevel problem, this study employs
the KKT algorithm to reformulate the inner cost minimization
problem intoKKT conditions, transforming the bilevel problem into
a single-level problem, as shown in Equation 41:

max cy

s.t.

Gy ≥ h−Muk −Exvalue
Geqy = heq −Mequk −Eeqxvalue
GTπ1 +Geq

Tπ2 = c

(h−Muk −Exvalue −Gy)π1 = 0

(Geqy− heq +Eeqxvalue +Mequ)π2 = 0

(c−GTπ1 −GT
eqπ2)y = 0

y ≥ 0

π1 ≥ 0

(41)

It should be noted that the problem contains nonlinear constraints.
By using the Big-M method to linearize the constraints, the sub-

problem is ultimately converted into a single-level optimization
problem, as shown in Equation 42:

max cy

s.t.

Gy ≥ h−Muk −Exvalue
Geqy = heq −Mequk −Eeqxvalue
GTπ1 +Geq

Tπ2 = c

π1 ≤M∞v

Gy− h+Exvalue +Mu ≤M∞(1− v)

π2 ≤M∞l

Geqy− heq +Eeqxvalue +Mequ ≤M∞(1− l)

y ≤M∞w

c−GTπ1 −Geqπ2 ≤M∞(1−w)

y ≥ 0

π1 ≥ 0

(42)

In the formula, v, l,w represent auxiliary operators in the Big-
M method, all of which are Boolean variables; M∞ is a constant
significantly larger than all parameters; π1,π2 denote the Lagrange
multipliers in the KKT transformation.
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FIGURE 7
Total power received from conventional units in province 1.

FIGURE 8
Total power received from conventional units in province 2.

3 Results and discussion

3.1 Regional grid-level dispatch:
minimizing the fluctuation of unmet load in
each province

Given that the focus of this chapter is on multi-province
load peak shaving, a dispatch model for multiple provinces
is constructed.

In the inter-provincial dispatch model, four conventional
generation units and two pumped-storage units supplying power
to two provinces are considered, using 24-period load demand
data. The weights for receiving generation output among different
provinces are determined based on the ratio of the average load
values of each province, and weighting for peak and valley periods
is also taken into account.

The average load values of each province and the corresponding
weights, generation allocation ratios, and unit data for each
generation unit are shown in Tables 1–3.

From the data in Table 1, it can be observed that the total
maximum output of all units in this study is less than the average
load of each province, indicating that the load demand cannot be
met in every time period.

Based on the data from Tables 1 and 3, a model is constructed,
and the results are shown in Figures 3–8.

TABLE 4 Grid operation parameters.

Unit type Parameter Value

Controllable
Generation Unit

Maximum Power 800

Minimum Power 80

Cost Coefficient (a/b) 0.67/0

Energy Storage
Component

Maximum Power 500

Maximum Residual
Capacity

2000

Minimum Residual
Capacity

450

Initial Capacity 900

Cost Coefficient Ks 0.38

Charging/Discharging
Efficiency

0.95

Demand Response Load
Cost Coefficient KDR 0.32

Total Demand 2,900

Power Trading Interaction Maximum Trading Power 1,500

FIGURE 9
Upper and lower bound variation curves.

FIGURE 10
Load demand curve.
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FIGURE 11
Photovoltaic output curve.

FIGURE 12
Power trading curve.

FIGURE 13
Day-ahead transaction price curve.

As shown in Figures 7, 8, the introduction of the penalty
function allows conventional generation units to maintain a high
power state even without power balance constraints, indicating
that the penalty function construction in this study is effective.
Additionally, as seen in Figures 5, 6, the fluctuation degree of the
unmet load stabilizes after peak shaving. For Province 1, the valley
and peak periods stabilize at 100 MW and 200 MW, respectively,
while for Province 2, they stabilize at 300 MW and 440 MW,
respectively. This is beneficial for determining the output of backup
generation units or the power output from electricity sellers. Stable

FIGURE 14
Controllable generation unit output curve.

power delivery can reduce the probability of power system incidents
and increase economic benefits.

3.2 Provincial dispatch: robust
optimization for uncertainty

The grid operation parameters are shown in Table 4.
After 24 iterations, the model converged, and the upper and

lower bound variation curves are shown in Figure 9.
The final results are as follows: the upper bound value

is approximately 5,068.342, and the lower bound value is
approximately 5,057.569. The result using a standard economic
dispatch program is 5,055.049, indicating that the model incurs
additional costs to account for extreme scenarios while not deviating
significantly from the results of general dispatch methods. This
suggests that the model’s solution is reliable.

The load demand curve and photovoltaic output curve are
shown in Figures 10, 11.

The power trading curve and day-ahead transaction price curve
are shown in Figures 12, 13.

The controllable generation unit output curve and energy
storage output curve are presented in Figures 14, 15.

The expected demand response plan and actual demand
response load are shown in Figures 16, 17.

As shown in Figure 11, during periods 1 to 4 and 19 to
24, photovoltaic output is zero, indicating that the load demand
is entirely met by controllable generation units, energy storage
components, and power purchases. During these periods, when the
day-ahead transaction price is lower than the generation cost of
controllable units, the output power of controllable units is reduced
to the minimum value, as shown in periods 0 to 6 in Figures 12,
14. In the remaining periods, the output power of controllable units
is increased to the maximum value to increase the power available
for external sales, as seen in periods 7 to 16 and period 20 in
Figure 12, or to reduce the power purchase quantity, as shown in
periods 17 to 19 andperiods 21 and 22 in Figure 12, thereby reducing
operational costs.

As observed in Figure 15, under the given pricing mechanism,
the energy storage components are charged during periods 6
and 23 and discharged during periods 8, 19, and 20, thereby
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FIGURE 15
Energy storage output curve.

FIGURE 16
Expected demand response plan.

FIGURE 17
Demand response load curve.

storing energy during low-price periods and selling it during
high-price periods. In Figure 16, the peak electricity price period
corresponds to the peak of the expected demand response load
plan. By redistributing the electricity demand from periods 18 to
22 to periods 1 to 6 and period 24, the total electricity demand
and time-specific electricity constraints are satisfied, reducing
the amount of energy that needs to be purchased during peak
price periods.

4 Conclusion

This paper primarily investigates the collaborative optimization
strategy for regional grid-level and provincial-level dispatch under
the influence of renewable energy, focusing on two main issues:
peak load shaving in regional grid-level dispatch and uncertainty
optimization in provincial-level dispatch.

At the regional grid-level dispatch stage, this paper delves into
strategies for effective management of peak shaving and unmet
load in a multi-province grid system using pumped-storage units.
Traditional peak shaving and valley filling strategies primarily
adjust grid operating modes to balance power supply and demand,
reducing power consumption during peak periods and increasing
power reserves during valley periods. By introducing power variance
as the objective function of the optimization problem, this study
not only aims to smooth the traditional load curve but also
addresses the management of unmet load. Through analyzing
the actual power dispatch scenarios between the East China grid
and other provincial grids, the paper identifies potential issues
of insufficient unit output in cross-regional power trading. To
tackle this problem, the study proposes further exploration into
the peak shaving demand caused by unmet load and how to
manage it through optimized dispatch strategies. To effectively
manage load and its residual components, a comprehensive planning
method considering both load peak shaving and multi-province
dispatch is proposed. By flexibly scheduling energy storage systems
such as pumped-storage units, effective management of both load
and unmet load can be achieved. This research provides a new
perspective and approach for power system operation, enhancing
the overall stability and reliability of the grid by addressing unmet
load management in addition to traditional peak shaving and
valley filling.

At the provincial-level dispatch stage, a two-stage robust
optimization model is proposed to minimize economic costs.
This model aims to enhance the operational efficiency and
reliability of the power system by closely integrating day-ahead
dispatch and real-time dispatch. Based on existing modeling
methods considering source-load uncertainty, a two-stage robust
optimizationmodel is developed.Thefirst stage, day-ahead dispatch,
primarily determines the unit status for the following day, while
the second stage, real-time dispatch, deals with uncertainties
caused by forecast deviations. The model effectively decomposes
the complex optimization problem into a master problem and
sub-problems. Using the KKT condition algorithm and Column-
and-Constraint Generation (C&CG) algorithm, the model can
be solved, improving decision accuracy and execution speed.
The effectiveness of the proposed two-stage robust optimization
model is validated through specific case studies. The results
show that this model can maintain power system stability and
efficiency by appropriately increasing costs in the face of high
uncertainty.
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Glossary

Sets

T Set of time periods, indexed by t

P Set of provinces, indexed by p

G Set of generation units, indexed by g

Variables and parameters

Regional grid-level variables
Pg ,p,t Output power of unit g to province p at time period t

Et Equivalent stored energy of pumped-storage unit at time period

t

Pcharge
t Pumping power of pumped-storage unit at time period t

Pdischarge
t Generating power of pumped-storage unit at time period t

xcharget Boolean variable for pumping status at time period t

xdischarget Boolean variable for generating status at time period t

Provincial-level variables

Pg ,t Generation power of controllable unit g at time period t

Pch
t Charging power of energy storage at time period t

Pdis
t Discharging power of energy storage at time period t

ust Boolean variable for energy storage charging/discharging state

PDR
t Actual dispatch power of demand response load at time period

t

Pbuy
t Power purchased at time period t

Psell
t Power sold at time period t

umt Boolean variable for power trading state (purchase/sale)

Ppv
t Actual photovoltaic power at time period t

PLoad
t Actual load power at time period t

Bpv
t Boolean uncertain parameter for photovoltaic power

BLoad
t Boolean uncertain parameter for load power

Key parameters

RU g Ramp rate limit of thermal power unit g

Pmax
g Maximum output of unit g

Pmin
g Minimum generation power of unit g

ηcharge Efficiency of pumping for pumped-storage station

ηdischarge Efficiency of power generation for pumped-storage station

Emin Minimum stored energy of pumped-storage station

Emax Maximum stored energy of pumped-storage station

Rg ,p Power transmission ratio of unit g to province p

a,b Cost coefficients for controllable generation units

K s Unit charging and discharging cost of energy storage

KDR Cost coefficient for demand response load

η Charging and discharging efficiency of energy storage

DDR Total electricity demand across all time periods

pt Day-ahead transaction price at time period t
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