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Real defect partial discharge
identification method for power
cables joints based on integrated
PJS-M and GA-SVM algorithm
with multi-source fusion

Ling-Xuan Zhang*, Yi-Yang Zhou, Shen-Jiong Yao,
Jia-Luo Chai, Ying-Jing Chen and Zhou-Sheng Zhang*

School of Electrical Engineering, Shanghai University of Electric Power, Shanghai, China

Previous studies on 10 kV cable intermediate joint defects have mainly focused
on typical defect types and employed single-sensor data acquisition, leading
to incomplete characterization of defect features and reduced recognition
accuracy. To address this limitation, three real-type partial discharge (PD)
models were developed based on common defects encountered in actual
manufacturing. PD signals were collected using a combination of High-
Frequency Current Transformer (HFCT) and Ultra High Frequency (UHF) sensors,
capturing time-domain waveforms, frequency-domain spectra, and Phase-
Resolved Partial Discharge (PRPD) patterns, from which feature quantities
were extracted. These features were used to train a novel Genetic Algorithm
Weighted Support Vector Machine (GAW-SVM) model, which incorporates
an adaptive PJS-M weighting coefficient and a correlation-analysis–based
dynamic correction mechanism into the conventional GA-SVM framework. The
proposed model was compared with several state-of-the-art SVM optimization
algorithms, including GA-SVM, PCA-SVM, and PSO-SVM. Under multi-source
feature fusion, the GAW-SVM achieved a defect recognition accuracy of 98.84%,
outperforming GA-SVM by 3.49%, PCA-SVM by 2.33%, and PSO-SVM by 1.17%.
These results demonstrate that the proposed method significantly improves the
accuracy of identifying complex real-type defects in 10 kV cable intermediate
joints undermulti-source feature conditions, providing a reliable diagnostic basis
and technical reference for partial discharge detection in industrial applications.

KEYWORDS

power cables, intermediate joints, true typical defects, partial discharge, discharge
types, feature extraction

1 Introduction

With the accelerating pace of urbanization and rural revitalization in China, the
installation of 10 kV XLPE cables in the power grid has been increasing annually.Therefore,
the online monitoring of cable operating conditions has become particularly important
to ensure that preventive measures are taken before faults occur. Cable intermediate
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joints, as weak links in power cables, are susceptible to defects
caused by factors such as manufacturing processes and installation
quality, including issues such as the tips of the outer semi-
conductive layer, scratches or cuts in the main insulation, and
misalignment of the stress cone during installation. During long-
term operation, these defects can lead to various types of partial
discharges, such as corona, surface, floating, and air-gap discharges,
under the influence of high voltages and environmental factors.
These discharges seriously threaten the insulation performance
of cables and shorten their service lives (Wojciech and Artur,
2023). Therefore, monitoring the early stage phenomena of partial
discharge, classifying the discharge types, and determining the
defect discharge types in a timely manner are essential to reduce
their effect on the power grid (Cavallini et al., 2005).

Different defects in cable joints generate different electric
field distributions under high voltages, and engineering practices
distinguish defect types based on the differences in the discharge
spectra (Yuanhu et al., 2023).Through partial dischargemonitoring,
defect types can be identified, with the process mainly involving
feature extraction and classification, where feature extraction is
crucial for recognition task (Liu et al., 2022; Rosta et al., 2016).
Currently, scholars mainly use one or two features, such as
the discharge pulse time-domain, frequency-domain, and phase-
distribution features, to extract the feature quantities for typical
defects (Shang et al., 2017; Bo et al., 2022; Korobeynikov et al., 2019).
Jing-Hai Jiao extracted discharge timing waveforms, transforming
the one-dimensional partial discharge signal into a two-dimensional
topological feature image through feature transformation, and
incorporated an attention mechanism into the Residual Network
ResNet101 model, combining Center and Softmax loss functions
for training and classification (Jiao and Jie, 2023). Jing Wu
used wavelet theory, wavelet energy spectrum theory, and phase
modulation transformation theory to extract and analyze the
time-frequency combined features of defects and proposed a
fault recognition algorithm based on wavelet energy spectrum
of modulated components (Wu, 2014). Yekun Men extracted
and analyzed harmonic feature patterns based on the grounding
current signal of cables under typical defect types using a fast
Fourier transform with a Blackman window and combined it
with a backpropagation neural network to achieve effective fault
identification of distribution cables (Yekun et al., 2024). Mei Yang
extracted multiple types of fractal features from the gray matrix
of defect feature maps as recognition feature quantities, with local
discharge pattern recognition chosen to use a back propagation
neural network (BPNN) (Yang, 2006).

In summary, current research by both domestic
and international scholars has primarily focused on
single-sensor analysis based on typical defect models
(Chang et al., 2022; Sitong et al., 2018). However, compared
with typical defect models commonly used under laboratory
conditions, real-type defectsmore accurately reflect the complex and
variable conditions encountered in actual operating environments.
Therefore, diagnostic criteria derived solely from typical defects
often fail to represent the true state of engineering systems.
Moreover, most existing studies still concentrate on the extraction
and analysis of single-domain features—such as time-domain,
frequency-domain, or phase-domain features. These single-domain
features carry limited information when dealing with complex

discharge signals, resulting in significantly reduced recognition
accuracy and making them inadequate for precise fault diagnosis.
Finally, the widely adopted conventional algorithm was not
originally designed to handle the fusion and processing of multi-
source, heterogeneous features. It lacks the representational capacity
needed for high-dimensional joint features, making it difficult to
fully exploit the correlations among multi-domain and multi-scale
information. Consequently, it cannot provide a reliable and effective
basis for practical engineering applications. To address the above
issues, this study proposes an improved GA-SVM algorithm based
on the PJS-M method, enabling accurate identification of complex
real-type defects through the fusion of multi-source feature sets.

Based on this, and building upon previously established typical
defect models, this study constructed three real defect cable
samples by referencing actual engineering conditions.These samples
simulate three types of real defects commonly encountered during
the fabrication of cable intermediate joints. Partial discharge (PD)
data from the same defect cable were collected using different
sensors. A total of 31-dimensional features were extracted, including
statistical features of time-domain waveforms, statistical features
of frequency-domain spectra, and PRPD pattern features such as
statistical characteristics, gray-level moment features, and gray-level
texture features. The fused features were then classified using a
GAW-SVM algorithm improved by the PJS-M weighting coefficient
and correlation analysis, providing a practical method and reference
basis for the industrial application of partial discharge detection.

2 Real-type partial discharge testing
system for power cable joints

2.1 Selection of real-type defects in cable
intermediate joints

Based on a comprehensive analysis of industry failure
statistics, international standard provisions, and partial discharge
mechanisms, this study ultimately selects three representative real-
type defects: outer semiconductive layer tip defects, main insulation
scratch defects, and stress cone misalignment defects. According
to the CIGRE WG B1.57, 2023 service survey, approximately 80%
of cable breakdowns originate from installation defects at joints or
terminations. Supporting this, experimental data collected in this
study show that these three defect types account for roughly 70% of
early failure cases in cable joints.

International standards provide explicit risk descriptions
regarding residual sharp tips, insulation scratch depth, and
stress cone misalignment, reflecting the strict engineering
control requirements associated with these defects. From a
discharge mechanism perspective, the three selected defects
correspond to surface-type, volume-type, and interface-type partial
discharges, respectively, forming a minimally complete set of
failure mechanisms. This also enables comprehensive validation
of the applicability of the proposed multi-source fusion diagnostic
algorithm.

Therefore, focusing on these three defect types not only ensures
high representativeness but also significantly enhances the practical
value of the proposedmethod in real-time condition assessment and
maintenance decision-making for cable systems.
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2.2 Real-type defect setup for cable
intermediate joints

Based on the defect types selected in the preceding section,
three real-type defect configurations were implemented on 10 kV
XLPE cable intermediate joints using a real-condition experimental
platform. The defect fabrication process simulates the actual
procedures and conditions encountered during cable installation
in power systems, ensuring that the defects closely resemble those
found in industrial applications. The setup is illustrated in Figure 1.
A 4-m-long defect-free cable was divided into two 2-m segments,
which were connected using a CSS-1733J-8.7/15 kV cold-shrink
joint. The test cable model was ZH-YJV with a cross-sectional area
of 185 mm2 and a rated voltage of 8.7/15 kV.

1) Construction of outer semi-conductive layer-tip defect:
During the production of intermediate cable joints, the semi-
conductive layer is usually beveled using a wallpaper knife.
However, if not handled carefully, sharp burrs can form at the
beveled edges of the outer semi-conductive layer. This defect
model was designed to simulate the discharges caused by the
concentration of electric field forces at the internal composite
insulation interface of the cable joint. To make the partial-
discharge signal more stable and easier to detect, the length
of the semi-conductive tip was designed to be 25 mm with a
width of 10 mm. After inserting the stress cone, the tip defect
protruded 5 mm from the semi-conductive part of the stress
cone, disrupting the balanced electric field near the tip because
of the presence of a sharp edge.

2) Construction of main-insulation scratch defect: During the
construction of cable joints, improper handling of the outer
semi-conductive layer can damage the main insulation,
potentially leading to a partial discharge. The defect model
was created by scratching along the axis of the main-insulation
surface using a wallpaper knife.The scratch was approximately
20 mm long, 1 mmwide, and 2 mmdeep.This defect primarily
simulates the discharge-type that occurs when air gaps or voids
are formed in the main insulation.

3) Construction of stress cone misalignment defect: During
installation of the cold-shrink intermediate joint, the tail of the
stress cone should maintain a stable electrical connection with
the outer semi-conductive layer of the cable. If the installation
is not precise and results in a misalignment such that the
outer semi-conductive layer ismisalignedwith or even extends
beyond the stress-cone tail, the stress cone can float above
the main-insulation layer, causing floating discharge. When
the voltage is significantly high, the outer semi-conductive
layer can cause a surface discharge along the main-insulation
axis. This defect can extend the misalignment distance of the
stress cone by 15 mm. The stress-cone misalignment defect
model was used to generate a floating discharge or surface
discharge caused by the electric field concentration from the
misalignment between the stress cone and the break in the
outer semi-conductive layer.

To minimize the suppression and interference from the
discharge defect signals, none of the three defects were coated with
silicone grease during fabrication, and no copper mesh was applied

during joint construction. The two cable segments were grounded
using a grounding strap connected to the outside of the joint.

2.3 Design and construction of a real
experimental platform

A real experimental platform for power cables
is shown in Figure 2 and comprises three parts: a power supply
system, real cable system, and discharge signalmeasurement system.
The power supply system comprised a signal generator and a co-
phase high-voltage amplification coupling power supply. The cable
system comprised defect-free cables, artificially defective cable
joints, and other accessories. The discharge signal measurement
system was designed to use multiple types of sensors for a more
comprehensive fusion data analysis of defects. Therefore, two signal
measurement systems were designed to measure different types
of signals. However, the signal collection of both systems was
synchronized to ensure data consistency. Meanwhile, to ensure
cost-effectiveness and the feasibility of measurement, all equipment
used in the experiments consists of commonly employed devices in
practical engineering applications.

1) The discharge signal’s time-domain and frequency-domain
waveform data were collected via a high-frequency current
transformer (HFCT) using a digital storage oscilloscope
(DSO). The frequency range of the HFCT sensor was
10 kHz–100 MHz. The DSO is a Tektronix MDO3014 with
four channels, maximum sampling rate of 5 G/s, and record
length of 10 M. In this study, sampling channel two was
selected, with a sampling rate of 5 G/s and a record length of
10 M.During themeasurement, theHFCT sensorwas clamped
to a cable-shield ground wire.

2) The PRPD spectrum of the discharge signal was collected
and displayed on a partial discharge (PD) detector using an
ultra-high-frequency (UHF) sensor. The sampling bandwidth
of the UHF sensor ranged from 300 MHz to 1,500 MHz.
The sensor operates at a sampling frequency of 5 GHz to
satisfy the Nyquist sampling criterion. The handheld partial
discharge detector was an EPD-800A model. To reduce the
shielding effect of the intermediate joint on the UHF signals,
the UHF sensor was placed at the end of the joint during
measurement.

2.4 Pressurization and sampling method

To accurately reflect the discharge patterns, reduce the sampling
data volume, and avoid interference from the randomness of
the discharges, the partial discharge starting voltage and stable
discharge voltage were first determined using a pulse current
method partial discharge detector. The measurement system is
shown in Figure 3.

The pulse current method partial discharge instrument
used was the xPD-1717 model with a working voltage of DC
8.4 V. When the partial discharge signals first appeared on
the PC, the discharge-starting voltage U0 was recorded. When
the discharge became more evident and the discharge signal
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FIGURE 1
(A) Outer semi-conductive layer-tip defect construction (B) Main-insulation scratch defect construction (C) Stress-cone misalignment defect
construction. Structural diagram and photographs of actual defects in cable joints.

stabilized, a stable discharge voltage Um was recorded, as detailed
in Table 1.

To ensure that the three jointed cable samples were
subjected to identical voltage stress conditions and to induce
sufficiently clear and representative defect discharges, a unified
voltage application scheme—comprising synchronous ramp-
up, voltage hold, and ramp-down phases—was employed in

this study. The voltage was gradually increased from zero to
10 kV, during which discharge signals were monitored. Once
stable discharge behavior was observed, both HFCT and UHF
sensors were used to perform continuous sampling over equal
time durations.

As a result, 217 sets of partial discharge (PD) data were
obtained for the outer semi-conductive tip defect, 230 sets for the
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FIGURE 2
True-scale experimental platform for power cables.

FIGURE 3
Starting voltage measurement platform.

TABLE 1 Partial discharge voltages of cable-defect models.

Defect type U0/(kV) Um/(kV)

Outer semi-conductive layer-tip defect 4.5 5.9

Main-insulation scratch defect 8.3 9.2

Stress-cone misalignment defect 5.6 6.4

main insulation scratch defect, and 223 sets for the stress cone
misalignment defect. In terms of PRPD patterns, 141 were acquired
for the outer semi-conductive tip defect, 132 for the insulation
scratch defect, and 157 for the stress cone misalignment defect.

Considering that the dataset exhibits a near-balanced
distribution—sufficient to ensure classifier performance is
not adversely affected—and to avoid irreversible damage
to test samples due to over-pressurization, no effort was
made to forcibly equalize the number of samples across
defect types.

3 Experimental results and analysis

3.1 Principle and procedure of wavelet
transform filtering

The fundamental concept of wavelet transform is to decompose
a signal using wavelet basis functions, which are combinations
of a series of low-pass and high-pass filters, to capture different
frequency components through scaling and translation. The scale
parameter controls the width of the wavelet, while the translation
parameter determines its position, thereby effectively separating the
noise components from the signal. Subsequently, noise suppression
is performed on the decomposed coefficients, and the signal is
reconstructed to achieve the purpose of denoising. The specific
implementation steps are as follows:

1) Selection of the wavelet basis function: An appropriate wavelet
basis function is chosen based on the characteristics of the
signal, such as Daubechies wavelets, Haar wavelets, Symlet
wavelets, or Morlet wavelets.
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2) Wavelet decomposition: The signal is decomposed into
different scales using the discrete wavelet transform (DWT)
through multiresolution analysis, yielding approximation
coefficients (AC), which represent the low-pass filtered
components, and detail coefficients (DC), which represent
the high-pass filtered components. The decomposition
process typically employs downsampling to reduce the signal
length and computational complexity. The same procedure
is repeatedly applied to the approximation coefficients for
multilevel decomposition. For a discrete signal x [n], the DWT
decomposes it into approximation coefficients. Where: φj,n
is the scaling function, which is used for reconstructing the
approximation coefficients, and ψj,n is the wavelet function,
which is used for reconstructing the detail coefficients. The
approximation coefficients AC is given by Equation 1. The
detail coefficients DC is given by Equation 2.

ACj =∑
n
 x[n] ·φj,n (1)

DCj =∑
n
 x[n] ·ψj,n (2)

3) Thresholding: A threshold value is determined based on the
noise level, and the detail coefficients are processed using either
hard thresholding (HD) or soft thresholding (ST). Assuming
the threshold is λ, the hard thresholding is given by Equation 3,
and the soft thresholding is given by Equation 4. Where: sign
denotes the sign of the signal amplitude.

D̂Cj =
{
{
{

DCj, |DCj| ≥ λ

0, |DCj| < λ
(3)

D̂Cj =
{
{
{

sign(DCj) · (|DCj|−λ), DCj|≥ λ

0,|DCj|< λ
(4)

4) Wavelet reconstruction: The denoised signal is reconstructed
from the processed coefficients using the inverse discrete
wavelet transform (IDWT). Reconstruction at each level
involves upsampling and filtering operations. The denoised
signal is given by Equation 5.

̂x[n] = ∑
j
(ÂCj ·φj,n + D̂Cj ·ψj,n)  (5)

The above equations are used to implement the filtering
and denoising of defect discharge signals in both the time and
frequency domains.

3.2 Time-domain signal spectrum analysis

Figure 4 shows the time-domain waveforms collected using an
HFCT sensor under a 10 kV voltage level for the three types of real
defects after noise filtering.

From the figure, the following can be observed:

FIGURE 4
(A) Construction of the outer semi-conductive layer-tip defect (B)
Construction of the main-insulation scratch defect (C) Construction
of stress-cone misalignment defect. Time-domain spectrum of cable
defect discharge.

1) The discharge amplitude of the outer semi-conductive layer-tip
defect was relatively low, with themaximum positive discharge
amplitude of approximately 400 mV and the maximum
negative discharge amplitude of approximately 580 mV. The
discharge shows asymmetry between the positive and negative
half-axes, with a noticeable discharge concentration and clear
height of the discharge clusters.

2) The discharge amplitude of the stress-cone misalignment
defect was the lowest, with the positive and negative half-
axes exhibiting asymmetry. The maximum positive discharge
amplitude is approximately 320 mV, and the maximum
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negative discharge amplitudes were approximately 400 mV.
After discharge, the amplitude exhibited non-uniform
attenuation.

3) The discharge amplitude of the main-insulation scratch defect
was relatively high, and the positive and negative half-axes
exhibited asymmetries. The maximum positive discharge
amplitude was approximately 2.4 V, and the maximum
negative discharge amplitude was approximately 1.5 V. After
discharging, the amplitude decayed quickly.

3.3 Frequency-domain signal spectrum
analysis

Figure 5 shows the frequency-domain spectra of the three types
of real defects collected using anHFCT sensor under a 10 kV voltage
level after noise filtering.

Evidently, both the outer semi-conductive layer-tip defect and
the stress-cone misalignment defect exhibit a relatively narrow
frequency domain bandwidth concentrated between seven and
45 MHz. However, the spectrum of the outer semi-conductive layer-
tip defect has a bimodal shape, whereas the spectrum of the stress-
cone misalignment defect has more denser peaks. Therefore, the
peak density of the stress-cone misalignment defect is higher than
that of the outer semi-conductive layer-tip defect; however, the
outer semi-conductive layer-tip defect has higher amplitude in the
spectrum. The spectrum amplitude of the main-insulation scratch
defect was significantly higher than those of the other two defects,
with the highest peak at 0.013. Its frequency-domain bandwidth was
broader, with a maximum bandwidth of 75 MHz.

From the spectrum, it is also possible to understand that the total
harmonic distortion of the different defects varies considerably.

3.4 PRPD spectrum analysis

As shown in Figure 6, the PRPD patterns of the three types of
actual defects at the 10 kV voltage level were collected using the
UHF sensor. In the figure, the colors red, yellow, and green represent
different ranges of discharge repetition counts: green indicates a
discharge count between 0 and 20, yellow represents a count between
20 and 40, and red corresponds to a count greater than 40.

Evidently, the PRPD spectra of the three types of defects
exhibit several differences: the discharge points of the outer semi-
conductive layer-tip defect are mainly concentrated in the power
frequency phase ranges of 50°–120° and 230°–310°. The amplitude
distribution of the positive and negative half-cycles of the power
frequency shows significant differences, with the positive half-cycle
amplitude range between −50 and −40 dB, and the negative half-
cycle amplitude range between −50 and −33 dB. The discharge
amplitudes near 90° and 270° are higher, with a higher concentration
of discharges at lower amplitudes.The overall shape of the spectrum
was triangular, with a general leftward shift in the profile. The
discharge signals of themain-insulation scratch defects were present
in the power frequency phase ranges of 0°–170° and 180°–350°
and were mainly distributed between 0°–90° and 180°–270°. The
distribution patterns of the positive and negative half-cycles are
generally similar; however, the discharge amplitude in the positive

FIGURE 5
(A) Construction of the outer semi-conductive layer-tip defect (B)
Construction of the main-insulation scratch defect (C) Construction
of stress-cone misalignment defect. Frequency-domain spectrum of
cable defect discharge.

half-cycle is slightly higher (approximately 5 dB) than that in
the negative half-cycle. The overall shape of the spectrum was
trapezoidal, with a leftward shift indicatingmore intense discharges,
and the discharge points were densely distributed across the
entire amplitude range. The discharge range of the stress-cone
misalignment defect was between the power frequency phases
of 60°–200° and 240°–360°, with most of the discharge points
concentrated in the second and fourth quadrants. The differences
in the contours and distribution of the discharge patterns in the
positive and negative half cycles are small. The discharge amplitude
is higher and concentrated between −25 and −15 dB, and the
distribution of discharge signals roughly forms a “gate” shape.
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FIGURE 6
(A) Construction of the outer semi-conductive layer-tip defect (B)
Construction of the main-insulation scratch defect (C) Construction
of stress-cone misalignment defect. PRPD spectrum of cable defect
discharge.

From the contour features of the PRPD patterns, it is visually
evident that there are significant differences between real defects and
typical defects. Under more complex actual operating conditions
in practical production, it is necessary to investigate defect
identification methods tailored to complex discharge patterns, in
order to enhance the practical relevance of the results for actual
operating conditions.

3.5 Summary of experimental results and
analysis

Based on the above analysis, it can be concluded that the time-
domain waveforms, frequency-domain spectra, and PRPD spectra
of the different defects have varying degrees of distinguishable
features. For spectra with obvious characteristics, the defect
type can be identified through a relatively straightforward visual
differentiation. However, for spectra that are more difficult to
distinguish, feature extraction and algorithms are necessary.

4 Feature extraction

4.1 Time-domain signal feature extraction

Based on the analysis of the time-series signal in the previous
section, the following features were extracted according to the
waveform characteristics:The specificmeanings and expressions are
as follows.

Signal energy: Describes the total power or energy of the signal,
representing the magnitude of the signal’s energy. where y(t) is the
time-domain signal amplitude, T is the discharge signal period, and
Ec is given by Equation 6.

Ec =
T

∑
t=0
|y(t)|2 (6)

Crest Factor: The ratio of the peak value to the root mean
square (RMS) value of the signal, characterizing the relative
strength of the spikes to the average energy and the instantaneous
peak characteristics in the time-domain signal. The CrestFactor
is given by Equation 7.

CrestFactor =max(|y(t)|)√ 1
T

T−1

∑
t=0
|y(t)|2 (7)

Kurtosis describes the sharpness or concentration of a signal
waveform. A waveform with a higher kurtosis indicates sharper
peaks, whereas a waveform with a lower kurtosis indicates a flatter
signal. Where: E is the mathematical expectation, x is the sample
amplitude of the signal, and μ is the mean value of the signal. The
Kurtosis is expressed using Equation 8.

Kurtosis =
E[(x− μ)4]

(E[(x− μ)2])2
(8)
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Attenuation coefficient:The ratio of the average amplitude of the
signal during the initial discharge period to the average amplitude
after signal attenuation. The attenuation coefficient Ac of the signal
can be expressed using Equation 9, where M1 is a segment of the
fault time during the initial discharge, and M2 is a segment of time
after the signal is attenuated.

Ac =
1
M1

M1

∑
i=1
|yi(t)|/

1
M2

M2

∑
j=1
|yj(t)| (9)

Based on these feature parameters, a four-dimensional time-
domain feature vector set was obtained.

4.2 Frequency-domain signal feature
extraction

From the frequency spectrum, it can be observed that
the frequency spectrum amplitude, bandwidth, and frequency
distribution differ for various types of defects in real defective cables.
Based on these characteristics, the frequency-domain signal features
were extracted using the following calculations:

Frequency amplitude ratio: the ratio between the amplitudes of
different frequency bands within a certain frequency range. Where
N1 andN2 are the sample numbers in the first and second frequency
bands, respectively. P(k) and P( f ) represent the signal amplitudes
in the first and second frequency bands, respectively. The frequency
amplitude ratio Far is given by Equation 10.

Far =
1
N1

N1

∑
i=1

Pi(k)/
1
N2

N2

∑
j=1

Pj( f) (10)

The total Harmonic Distortion: Reflects the ratio of harmonic
components to the fundamental frequency component. Where:N is
the number of harmonics, and k1 is the fundamental frequency.The
total harmonic distortion Thd is given by Equation 11.

Thd =
1
N
√

N

∑
n=2
|y(nk1)|2/y(k1) (11)

Spectral peak density: The ratio of the number of spectral peaks
exceeding the mean value within a certain frequency range to the
total number of spectral peaks in that range, which describes the
complexity of the spectrum. where M is the number of spectra
within the frequency range, P(h) is the amplitude of the signal in
the frequency band, Pa(h) is the average amplitude of the frequency
band. The spectral peak density Spd is given by Equation 12.

Spd = (
M

∑
i=1
|Pi(h)| > Pa(h))/M (12)

Based on these feature parameters, a three-dimensional
frequency-domain feature vector set is obtained.

4.3 PRPD spectrum feature extraction

4.3.1 Statistical parameters features
Statistical features primarily describe the two-dimensional

spectrum. The profile differences of the spectra were described by

calculating the skewness (SK) and kurtosis (Ku) of the positive and
negative half-cycle spectra of the spectrum are described (Deb et al.,
2002). The total discharge amount, Q0, was calculated by the
superposition of the discharge amplitudes and counts to represent
the energy differences in the spectrum. Finally, a three-dimensional
PRPD spectrum statistical feature vector set was extracted.

4.3.2 Gy-level moment parameters features
Gray-level processing is an important technique in computer

vision for analyzing image features because it simplifies data, enhances
features, and improves processing efficiency (Chen et al., 2022). The
PRPD spectrum of the three types of real defects in the cables were
converted into grayscale images, and the corresponding grayscale
images were generated. The interval was divided into the phase ×
discharge amplitude (362 × 395). A grayscale value of 0 represents the
highest discharge frequency and a grayscale value of 255 represents
no discharge.This transformed the grayscale value into a matrix with
numerical values ranging from 0 to 255. The grayscale value of each
grid was calculated using Equation 13, where RGBa,b is the grayscale
value at coordinates (a, b) in the image, ca,b is the numerical value of
the grid, and cmax is the maximum value among all grids.

RGBa,b = (1− ca,b/cmax) × 255 (13)

Moment features describe characteristics such as shape,
orientation, and size of the image. Various moment features have
been proposed for image analysis (Hu, 1962), in which the central
moment, central distance, and second-order central moments were
chosen as the main research parameters. For the grayscale image
f(x, y), the p + qth order moment is given by Equation 14.

mpq =∑
x
∑
y
xpyp f(x,y) (14)

When p = 0 and q = 0, m00 represents the sum of all the grayscale
values in the image. The centroid of the grayscale image (x0, y0) is
the ratio of the first-order moment to the zero-order moment and is
calculated using Equation 15.

{{{{{{
{{{{{{
{

x0 =
m10

m00

y0 =
m01

m00

(15)

The p + qth order central moment of the grayscale image f(x, y)
is given by Equation 16.

upq =∑
x
∑
y
(x− x0)

p(y− y0)
q f(x,y) (16)

The second-order central moments are represented by inertia
parameters u02 and u20. Here, u02 represents the moment in the
horizontal direction, and u20 represents the moment in the vertical
direction. The grayscale image is more widely distributed in the
direction of the larger moment and vice versa. The principal axis
direction feature is the ratio of these two second-order central
moments, which describes the shape features of the grayscale image,
and is calculated using Equation 17.

v =
u20
u02
=
m20m00 −m2

10

m02m00 −m2
01

(17)

From Equations 10–12, a five-dimensional moment parameter
feature vector set is extracted from the PRPD spectrum.
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4.3.3 Gy-level texture parameters features
Gray-level texture features primarily describe the distribution

and variation of grayscale values in local regions of an image,
providing information about the arrangement of grayscale values in
the image. The gray-level co-occurrence matrix (GLCM) method,
proposed by ProfessorHaralick R M, is one of themost fundamental
methods for texture feature extraction (Haralick et al., 1973). The
GLCM provides comprehensive information regarding the gray-
level distribution of the image based on the direction, adjacent
intervals, and change amplitude.

In this study, four linearly uncorrelated features were selected
based on the literature, and their meanings and expressions
are as follows:

Angular second moment (ASM) describes the uniformity
of the grayscale distribution. A smaller energy value indicates
a more uneven distribution and vice versa. The formula is
as shown in Equation 18:

ASM =
K−1

∑
e=0

K−1

∑
l=0

Pt,α(i, j)2 (18)

where (e, l) represents the element coordinates in the co-occurrence
matrix, t is the distance between two pixel points, α is the angle
between the two and the horizontal axis, K is the grayscale level,
and Pt,α(i,j) is the element value at coordinate (i, j) in the co-
occurrence matrix.

Entropy (ENT) reflects the richness of the information and the
complexity of the texture in the grayscale image. The formula is
as shown in Equation 19:

ENT =
K−1

∑
i=0

K−1

∑
j=0

Pt,α(i, j) log(Pt,α(i, j)) (19)

Inertia moment (CON) reflects the contour features and
distribution characteristics of texture differences in a grayscale
image. The formula is as shown in Equation 20:

CON =
K−1

∑
i=0

K−1

∑
j=0
(i− j)2Pt,α(i, j) (20)

Correlation (COR) reflects the degree of similarity in the
horizontal and vertical directions of the elements in the co-
occurrence matrix and can be expressed using Equations 21, 22.

COR =
K−1

∑
i,j=0

pi,j
[[[[

[

(i− μi)(j− μj)

√(δ2i )(δ
2
j )

]]]]

]

(21)

{{{{{{{
{{{{{{{
{

μi = iPt,α(i, j)

μj = jPt,α(i, j)

δ2i = (i− μi)
2Pt,α(i, j)

δ2j = (j− μj)
2Pt,α(i, j)

(22)

Based on these formulas, the texture feature values of the
grayscale matrix at various angles (α = 0°, 45°, 90°, 135°) were
calculated, resulting in a total of 16 feature parameters. By
combining the time-domain, frequency-domain, and PRPD spectral
features, a 31-dimensional feature vector set was obtained for further
recognition research.

5 Construction of the GAW-SVM
algorithm with weighted parameter
optimization

5.1 Selection based on
genetic-algorithm-optimized SVM

In studies of real-world (in-service) defects, small sample sizes
limit the effectiveness of deep-learning approaches such as CNNs
and Transformers; on limited datasets these models cannot fully
exploit their capacity, and relying on extensive data augmentation
or heavy regularisation often leads to pronounced over-fitting and
unstable convergence. Concurrently, the large-scale deployment of
GPU resources tailored for deep learning proves challenging in
actual industrial settings, constraining their widespread adoption.
Alternative approaches, such as defect identification models based
on Extreme Learning Machines (ELM), exhibit accelerated training
speeds.However, ELM’s random initialization of connectionweights
and bias thresholds renders its recognition accuracy vulnerable to
external interference. For industrial applications, Support Vector
Machine (SVM)–based diagnostic models are widely favoured for
their robustness, high accuracy, feature interpretability, visualisable
decision boundaries, and low deployment cost.

The Genetic-Algorithm-optimised SVM (GA-SVM) employs
genetic optimisation to tune the hyperparameters of the Support
Vector Classifier (SVC), achieving global optima and delivering
greater stability when classifying high-dimensional feature vectors
(Guohai et al., 2013; Mingyu and Wang, 2022; Zhu and Shen,
2024). Although GA-SVM is not a novel approach, recent
domain-specific modifications targeting distinct defect and fault
identification scenarios have demonstrated enhanced recognition
performance.This substantiates that optimization research based on
GA-SVM algorithms continues to hold significant research value
(Zhao et al., 2021; Yunfeng et al., 2025).

In the context of multi-source fused-feature identification
for real-type defects, the feature sets originate from different
measurement devices and characterise the defects from entirely
different perspectives. Simply concatenating these heterogeneous
features and training a conventional GA-SVM tends to weaken
complementary information, making it difficult to achieve the
desired recognition accuracy. Accordingly, this paper improves the
GA-SVM framework by refining the feature-selection strategy and
the genetic crossover–mutation operations to better accommodate
multi-source fusion.

5.2 Improved genetic algorithm

The selection operation in the GA-SVM algorithm is typically
driven by a single fitness metric, such as classification accuracy or
cross-validation error. However, when selecting features for multi-
source feature identification, relying solely on a single distribution-
based metric may overlook valuable real-time discriminative
information provided by the model during the training process.

In this study, the PJS-M method is employed to dynamically
amplify the influence of strong features and suppress the influence
of weak features during the genetic algorithm iterations through
a group-wise weighting mechanism. Specifically, the method
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adaptively fuses Probabilistic Jensen–ShannonDivergence (PJS) and
Margin Contribution (MC) to achieve dual weighting based on
both data-driven and model-driven strategies. This guides the GA’s
search and crossover-mutation processes to converge toward the
most discriminative feature subsets, thereby reducing the impact
of redundant features, accelerating convergence, and ultimately
improving classification accuracy.

The specific formulas are as shown in Equations 23, 24:

PJSk = JSD(P
(+)
k ∥ P

(−)
k ) (23)

JSD(P ∥ Q) = 1
2
DKL(P ∥

P+Q
2
)+ 1

2
DKL(Q ∥

P+Q
2
) ∈ [0,1] (24)

In the equation, P(+)k and P(−)k  represent the probability density
estimates of the kth feature group for the positive and negative
classes, respectively, and DKL denotes the Kullback–Leibler (K-L)
divergence. The PJS metric is used to achieve maximal mutual
information, quantifying the distributional discrepancy of the same
feature group across different classes. The greater the separation
between distributions, the stronger the discriminative power of the
feature group, and consequently, the larger its assigned weight.

MCk =
1
|Gk|
∑
i∈Gk

|wi| (25)

In the Equation 25, Gk denotes the kth feature group (k = 1,
…,K), and wi represents the ith component of the SVM weight
vector. MCk indicates the average contribution of the kth feature
group to the current SVM margin. This metric reflects the ability
of the feature group to minimize structural risk, as a larger margin
implies better generalization performance and lower generalization
error. The specific formulas are as shown in Equations 26, 27.

ξ(t)k = (PJSk)
αt(MCk)

1−αt (26)

αt = 1−
t

Tmax
(27)

The exponential fusion term ξ(t)k can be regarded as a linear
combination. The temporal decay coefficient αt decreases linearly
with respect to generation t, where t denotes the current generation
in the genetic algorithm. When t = 0 and α0 ≈ 1, the fusion relies
entirely on the pure data distribution, helping the GA quickly move
away from random noise. As t→Tmax and αTmax ≈ 0, only the model
feedback is retained, guiding the search to focus on the feature
groups that truly support the decision margin.

In the early stages of iteration, due to the high diversity of
the population, static distributional differences are first used to
perform global search. In the later stages, dynamic margin-based
feedback is introduced to perform fine-grained local adjustments.
The coefficientαt is employed to balance the contributions of PJS and
MC, such that in the early generations, αt emphasizes distributional
differences, while gradually shifting toward model feedback in later
generations.

By adopting a dual data–model-driven strategy and
incorporating cross-validated classification accuracy AccCV  , the
algorithm retains high-quality individuals while maintaining
population diversity, thereby preventing the recognition process
from converging to local optima.The specific formulas are as shown

in Equations 28, 29.

w(t)k =
ξ(t)k + ε

∑K
j=1
(ξ(t)j + ε)

(28)

K

∑
k=1

w(t)k = 1 (29)

In the equation, w(t)k  denotes the weight coefficient of
the kth feature group obtained in the tth iteration. First,
the normalized weights for each feature group are calculated
according to Equation 28, and based on these weights, either fitness
weighting or feature scaling is applied. The selection, crossover, and
mutation operators of the genetic algorithm are then employed to
complete one evolutionary cycle.

At the end of each generation, the best-performing offspring
in the current population is selected to re-estimate the feature
group importance and update the raw weight vector wraw

k  . A local
information entropy–guided mechanism is embedded within the
genetic search framework, enabling the feature weights to adaptively
converge during the evolution process. This continuously amplifies
the influence of highly discriminative features while suppressing
redundant or noisy ones, thereby accelerating convergence and
improving the overall classification performance of the model.

5.3 Construction of the PJS-M optimized
GAW-SVM algorithm

The PJS-M method introduced in Section 5.2 is incorporated to
optimize theGA-SVMalgorithm.Theoptimized algorithm, referred
to as GAW-SVM, is then used to perform classification of real defect
types. The specific identification procedure is outlined as follows:.

1. Acquire the raw time-domain data, frequency-domain data,
and PRPD patterns of real defects in cable intermediate joints.
Feature extraction is performed separately for each of the
three data types, and the extracted features are quantified into
a common interval using standardization and normalization
techniques.

2. The standardized and normalized data are randomly divided
into a training set and a testing set at a ratio of 4:1. Additionally,
5-fold cross-validation is performed within the training set.
The training set is used for hyperparameter optimization of the
algorithm, while the testing set is used to validate the accuracy
of the model in the final recognition results.

3. The GA-SVM algorithm is optimized through weighted
enhancement using the PJS-M method. The specific steps
are as follows:
① Initialize the parameters of the genetic algorithm and the

SVMmodel to obtain the initial algorithm configuration.
② Individual evaluation: Train the current individual and

compute the fitness of the initial (parent) data. The raw
weight vector wraw

k  is then obtained.
③ Compute the weighted metrics PJSk and MCk for each

feature group. Then, perform adaptive fusion of PJSk and
MCk based on the linearly decaying iteration coefficient αt .

④ Normalize the weight coefficients, and reapply them
through fitness weighting or feature scaling mechanisms.
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FIGURE 7
Flowchart for defect-type identification.

4. Perform crossover and mutation to generate the next-
generation, compute the fitness of the offspring, and evaluate
it against the termination criteria (t = Tmax or validation error
ΔAcc<η).

5. If the termination criteria are not met, the process returns to
Step 3 for the next iteration. During the iterative process, the
weight factors are also continuously updated based on the new
parent population using the weight allocation function.
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TABLE 2 Recognition rates of real defect types with different feature combinations (four algorithms).

Feature combination GA- SVM PCA-SVM PSO-SVM GAW-SVM

Time-domain features 0.8203 0.8117 0.8123 -

Frequency-domain features 0.7734 0.7456 0.7433 -

PRPD spectrum features 0.8750 0.8604 0.8713 -

Time-frequency joint features 0.8906 0.8964 0.8872 0.9063

Three-feature fusion 0.9536 0.9651 0.9767 0.9884

6. If the termination criteria are satisfied, output the optimal
feature subset S and the corresponding SVM hyperparameters
obtained by the GA-SVM+ PJS-M algorithm, and evaluate the
final classification accuracy on the testing set. A recognition
flowchart is shown in Figure 7.

6 Recognition results

To verify the effectiveness of the improved algorithm, the
recognition accuracy of the proposed GAW-SVM algorithm was
compared with that of the GA-SVM, PCA-SVM (Sinha et al., 2025),
and PSO-SVM (Li et al., 2024) algorithms using different feature
combinations. A summary of the recognition accuracy results is
presented in Table 2.

1. For single-feature identification, since feature fusion is
not involved, only the results from the GA-SVM, PCA-
SVM, and PSO-SVM algorithms are available. Observations
of the data indicate that the overall defect recognition
accuracy under single-feature conditions is relatively low.
Even for the relatively better-performing PRPD pattern
feature, the recognition rate under the GA-parameter-
optimized SVM algorithm reaches only 87.50%, indicating
suboptimal identification performance.This demonstrates that
although single-domain features can be used for real defect
identification, their limited characterization capability leads to
misclassification in cases of real defects involving multiple PD
sources coupled together, as the similarity of signals under a
single featuremay cause incorrect judgments and consequently
lower recognition rates.

2. In the analysis of time–frequency combined feature sets, the
recognition accuracies of the four algorithms, ranked from
highest to lowest, are as follows: GAW > PCA > GA > PSO.
Among them, the GAW-SVM algorithm achieved the highest
recognition accuracy at 90.63%,while the PSO-SVMalgorithm
yielded the lowest at 88.72%. Compared with single-domain
features, the time–frequency fusion primarily performs data
augmentation on existing features without introducing new
representational dimensions, resulting in a limited overall
improvement. Nevertheless, the enhanced GAW-SVM still
demonstrated superior performance, indicating that the
proposed weight optimization strategy effectively improves
defect classification capability.

3. In themulti-source, three-feature fusion analysis, the proposed
GAW-SVM achieved the highest defect-recognition accuracy
(98.84%), followed by PSO-SVM (97.67%), PCA-SVM
(96.51%), and GA-SVM (95.35%). These results demonstrate
that multi-source, multi-feature fusion markedly improves
overall recognition performance. Compared with single-
source time-frequency fusion, the multi-source, multi-feature
approach increased accuracy for GA, PCA, PSO, and GAW
classifiers by 6.29%, 6.87%, 8.95%, and 8.21%, respectively.
Moreover, the GAW-SVM outperformed GA-SVM, PCA-
SVM, and PSO-SVMby 3.49%, 2.33%, and 1.17%, respectively,
further confirming the effectiveness of the proposed
improvements for identifying real-world cable-joint defects.
These findings indicate that multi-source, multi-feature fusion
is a superior strategy for real-defect identification, overcoming
the misclassification errors that arise when single-source
features are used for complex defects. In particular, the
inclusion of the PJS-M weighting coefficient and correlation-
analysis–based dynamic correction mechanism in the GAW-
SVM framework substantially enhances recognition accuracy
for fused multi-feature datasets.

7 Conclusion

In this study, the traditional GA-SVM algorithm was
improved using the PJS-M method, and the defect recognition
performance for real-type defects was enhanced through multi-
sensor fusion–based identification.The main conclusions drawn
from the study findings are as follows.

1. The time-domain waveforms of the three types of real defects
selected in this study exhibit varying degrees of differences
in discharge amplitude, symmetry between the positive
and negative half-axes, and decay rate. Differences in the
frequency-domain spectra are primarily reflected in frequency
bandwidth, spectral energy, and spectral peak characteristics.
The PRPD patterns differ in discharge phase, amplitude,
discharge concentration, and overall pattern morphology.
From the PRPD patterns, it is visually evident that there
are distinct contour differences between the patterns of
real defects and those of typical defects. This indicates
that the research on real defect identification conducted
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in this study holds practical value for applications in
industrial production.

2. Compared with the highest-performing single-domain
feature—PRPD feature-based recognition—the multi-source
and multi-feature fusion approach achieved recognition
accuracy improvements of 7.85%, 10.47%, and 10.54%
under the GA-SVM, PCA-SVM, and PSO-SVM algorithms,
respectively. Furthermore, relative to single-source multi-
feature fusion, the recognition accuracies were enhanced by
6.29%, 6.87%, 8.95%, and 8.21% across the GA-SVM, PCA-
SVM, PSO-SVM, and GAW-SVM algorithms, respectively.
This indicates that multi-source fusion identification can
overcome the limitations of incomplete characterization of
real defects caused by relying solely on single-domain features
or single-source features.

3. This study integrates non-homogeneously acquired features
from the time domain, frequency domain, and phase-
resolved partial discharge (PRPD) patterns, and incorporates
a Probabilistic Jensen–Shannon Margin (PJS-M) adaptive
weighting mechanism into the GA-SVM framework. By
combining data-driven and model-driven dual-weighting
strategies, the proposed approach effectively leverages the
complementary information among heterogeneous feature
types, mitigates model overfitting, and improves the utilization
efficiency of multi-source fused features. The resulting
improved GAW-SVM algorithm achieves a defect recognition
accuracy of 98.84%, demonstrating superior discriminative
capability for complex real-type defects compared to other
benchmark algorithms. This research provides a reliable basis
and technical reference for partial discharge detection in cable
intermediate joints, offering significant value for practical
engineering applications.

4. Existing studies have shown that slight variations in cavity
dimension, shape, and position can affect the characteristics
of PD pulses, potentially influencing feature extraction and
the performance of classification models. However, due to
experimental limitations, this studywas unable to performdata
acquisition and comparative analysis for defects of different
sizes during the experimental process. Therefore, future
experimental research could include such control groups
to further expand the practical applicability of the method
proposed in this study.
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