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This study addresses the challenges in short-term electrical bus load
forecasting. We propose a novel BLformer framework based on an enhanced
Patch-TSTransformer. The framework quantifies the importance of temporal
features across three load types and filters key input dimensions to reduce
redundant information interference. A sparse attention mechanism is designed
to dynamically allocate computational resources, balancing efficiency and
robustness. Innovatively, we integrate DCNN into the Patch-TST module,
combining the advantages of local feature extraction and global temporal
modeling to enhance the learning capability of time-frequency coupling
characteristics. Furthermore, a coupled prediction strategy is developed to
explore high-accuracy bus load forecasting models that incorporate multiple
heterogeneous loads. Experiments demonstrate that BLformer significantly
outperforms baseline models in terms of RMSE and MAPE metrics. Notably,
the indirect prediction strategy substantially reduces errors compared to direct
prediction, validating its effective learning ability for multi-load characteristics.

KEYWORDS

electrical bus load forecasting, Patch-Tstransformer, sparse attention, DCNN fusion,
multi-source load coupling

1 Introduction

With the rapid development of the energy internet and the large-scale integration of
renewable energy, the operational environment of power systems has become increasingly
complex (Shohan et al., 2022; Rafi et al., 2021). Short-term bus load forecasting, as a
core component of power system dispatching, energy trading, and risk control, requires
precise capture of the dynamic characteristics and spatiotemporal coupling relationships of
multi-source heterogeneous loads (industrial, commercial, and residential). However, the
random fluctuations of industrial loads, the seasonal patterns of commercial loads, and
the intraday periodic variations of residential loads result in load time series exhibiting
nonlinearity, strong time-varying behaviour, and high coupling characteristics. Traditional
forecasting methods struggle to account for such complex patterns, necessitating the
development of novel and efficient algorithms to support high-accuracy predictions
(Mamun et al., 2020; Lai et al., 2020).
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With the rapid advancement of artificial intelligence,
mainstream methods in the field of short-term load forecasting
include neural networks (Ding et al., 2016; Deng et al., 2019),
decision trees (Wang et al., 2021; Zhao et al., 2022), extreme
learning machines (Li et al., 2016; Chen et al., 2018), deep
learning models (Li et al., 2021), and various hybrid forecasting
approaches. In the domain of time series prediction, the self-
attention mechanism of Transformer (Vaswani et al., 2017) has
garnered significant attention due to its exceptional performance
in modeling both long- and short-term dependencies. For instance,
reference (Yan et al., 2022) proposes a forecasting method based
on the Informer model, while Zhang J. et al. (2018) introduces
a hybrid approach combining IEMD (Improved Empirical Mode
Decomposition), ARIMA (AutoRegressive Integrated Moving
Average), and WNN(Wavelet Neural Network). Pang et al. (2024)
presents a load forecasting method utilizing bagging random
configuration networks, and Hong et al. (2023) develops the
CEEMDAN-TGA model, further enhancing prediction accuracy.
Additionally, Chu et al. (2022) proposes an improved LSTM(Long
Short-Term Memory) network, and Zhang et al. (2020) suggests
a short-term load forecasting method that integrates frequency
domain decomposition with deep learning. Zhang X. et al.
(2018) introduces a novel forecasting framework combining
RBM(Restricted Boltzmann Machine) and ENN(Elman neural
networks), while Fan et al. (2009) proposes an ensemble neural
network for short-term load forecasting. Finally, Wu et al. (2021)
presents the Autoformer model, which demonstrates outstanding
performance in time series forecasting. These advancements
collectively highlight the ongoing evolution and diversification of
methodologies aimed at improving the accuracy and reliability of
short-term load forecasting.

Existing methods in short-term bus load forecasting are
primarily constrained by the following limitations: (1) Feature
engineering heavily relies on manual expertise, failing to adaptively
identify and select key features, which results in interference from
redundant information. (2) Single models struggle to balance the
advantages of local feature extraction and global temporalmodeling,
leading to a pronounced trade-off between computational efficiency
and prediction accuracy. Moreover, current models exhibit limited
capability in capturing long-term dependencies. (3) There is a
lack of effective collaborative mechanisms for multi-source loads,
with insufficient consideration of the complementary information
inherent in different load types. These issues significantly hinder
the practical application and advancement of short-term bus load
forecasting methodologies.

In response to the aforementioned challenges, this paper
proposes a novel short-term bus load forecasting framework,
BLformer, based on an enhanced Patch-TSTransformer. The key
contributions of this study are as follows:

(1) Multi-faceted Feature Analysis: We employ a comprehensive
approach to quantify the importance of temporal features in
industrial, commercial, and residential loads, thereby selecting
critical input features to minimize redundancy.

(2) Sparse Attention Mechanism: A sparse attention mechanism is
used to enhance the PatchTST model, dynamically allocating
computational resources to high-contribution temporal
segments, thereby balancing efficiency and robustness.

(3) DCNN-TSTHybrid Architecture: Dilated convolutional layers
are embedded into the PatchTST module, combining the
local feature extraction capability of DCNN with the global
dependency modeling strength of Transformer.

(4) Coupled Prediction Strategy: We explore the differences
between direct and indirect prediction strategies incorporating
multiple load types, fully leveraging the complementary
information among multi-source loads.

Experimental results demonstrate that BLformer significantly
outperforms baseline models such as Informer and Autoformer
on a regional bus load dataset. Notably, the indirect prediction
strategy achieves a substantial reduction in error compared to direct
prediction, validating the effectiveness of the proposed framework.

The remainder of this paper is organized as follows: Section 2
provides a detailed analysis of the characteristics of power system
bus loads. Section 3 elaborates on the fundamental principles and
related technologies of the proposed model. Section 4 describes the
structure and prediction workflow of the proposed model. Section 5
validates the effectiveness of the model through case studies
and comparative experiments. Finally, Section 6 summarizes the
research findings and outlines potential directions for future work.

2 Analysis of electrical bus load
characters

As critical nodes in regional power grids, power system
buses exhibit load characteristics marked by multi-source
heterogeneity. The typical load composition includes three major
user groups: industrial, commercial, and residential. The distinct
operational patterns of these load types significantly influence the
spatiotemporal distribution of bus loads.

2.1 Industrial load characteristics

Industrial users implement refined electricity management
based on electricity pricing, resulting in a typical daily load pattern
characterized by “low during the day and high at night,” as
illustrated in Figure 1. This pattern exhibits a certain periodicity,
strongly influenced by production scheduling and pricing policies.
During peak pricing periods, production shifts are adjusted to
reduce electricity consumption, while full-capacity production is
conducted during off-peak periods to optimize cost efficiency.
Notably, the load of production-oriented enterprises typically
decreases by 40%–60% on weekends and holidays, while continuous
production industries (e.g., chemical, steel) experience relatively
smoother load fluctuations.

2.2 Commercial load characteristics

Commercial loads exhibit significant weekday periodicity and
peak characteristics, as shown in Figure 2. The typical daily load
curve displays a single-peak pattern, with a pronounced drop in
load during holidays, often decreasing to 20%–30% of weekday
levels during long holidays. Variations in business types lead to
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FIGURE 1
3-day curve of industrial load.

FIGURE 2
3-day curve of commercial load.

differentiated load characteristics: large shopping centers exhibit
sharper peak loads compared to office buildings, while the catering
industry shows a single-peak pattern during midday.

2.3 Residential load characteristics

Residential loads demonstrate complex multi-peak and
time-segmented characteristics with noticeable periodicity, as
depicted in Figure 3. During the day, the morning peak is driven
by cooking, commuting-related appliances, and heating demands.
At midday, the load decreases to 60%–70% of the daily baseline. The
evening peak encompasses electricity consumption for cooking,
bathing, and entertainment activities. Additionally, residential loads
vary significantly across regions, and the emergence of new load
types, such as electric vehicles charging in the evening, has led to a
noticeable increase in off-peak loads.

FIGURE 3
3-day curve of residential load.

2.4 Comprehensive characteristics of bus
loads

As illustrated in Figure 4, bus loads exhibit weak periodicity
and strong volatility. Specifically, the daily load rate fluctuates
dramatically, and the standard deviation of the weekly load rate is
also significant. This behaviour stems from two main factors: (1)
The superposition of heterogeneous loads diminishes or weakens
the original periodic characteristics of multiple load types. (2) The
complexity of the power system operating environment, including
equipment failures, temporarymaintenance, and randomchanges in
user behaviour, leads to sharp fluctuations in the daily load curve. (3)
Extreme weather conditions, such as heavy rain, snowstorms, high
temperatures, and severe cold, significantly impact power system
operations. Furthermore, unexpected events like natural disasters,
major social activities, and grid faults can cause abrupt load changes
in a short period, further intensifying the volatility of bus loads.

Given the complex characteristics of bus loads described above,
traditional forecasting methods that overlook the diverse nature
of multi-source loads are inadequate for accurately capturing
the underlying patterns of load variations, leading to suboptimal
prediction results. Direct prediction approaches fail to sufficiently
account for the superposition effects of heterogeneous loads, random
disturbances, and the impact of sporadic events.Therefore, inpractical
power system planning and operation, it is essential to adopt more
advanced and precise forecasting methodologies that integrate a
comprehensiveconsiderationofthesefactors.Bydoingso,theaccuracy
of bus load forecasting can be significantly improved, enabling more
reliable and efficient power system management.

3 Introduction to model principles

3.1 PatchTST model

PatchTST (Patch Time Series Transformer) (Nie et al., 2022) is a
time seriesmodelingmethod based on theTransformer architecture,
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FIGURE 4
3-day curve of bus load.

specifically designed to address long-term dependencies in time
series data. It has demonstrated exceptional performance in time
series forecasting tasks.

Inspired by the concept of “image patches” in image processing,
PatchTST divides time series data into multiple small segments,
or “patches,” each representing a segment of the time series. This
approach not only reduces the dimensionality of the input sequence,
thereby lowering computational complexity, but also preserves the
locality of the time series. Simultaneously, it leverages the strengths
of Transformer to effectively model long-term dependencies.

The process of PatchTST involves three key steps: First, the
original time series data is segmented into fixed-length patches.
Second, each patch is encoded to extract its features. Finally, the self-
attention mechanism of the Transformer is employed to capture the
dependencies among these patches, enabling comprehensive time
series modeling and forecasting.

The structure of PatchTST is illustrated in Figure 5.

3.2 Sparse self attention mechanism

Similar to the Transformer, PatchTST employs a multi-head
attention mechanism, which introduces challenges such as high
computational complexity, information redundancy, difficulties in
processing long sequences, and complexities in training and tuning.
To address these issues, this paper proposes the use of a sparse
attention mechanism to enhance the multi-head attention module
in PatchTST.

In the traditional multi-head self-attention mechanism, the
inputs are the query vector Q, the key vector K, and the value vector
V, which can be expressed as shown in Formula 1:

Zi = softmax(
QiK
⊤
i

√dk
)Vi (1)

In the equation: Q ∈ RLQ
∗d, K ∈ RLK

∗d, V ∈ RLV
∗d, d is the input

dimension.

FIGURE 5
The structure of patchTST.

FIGURE 6
Schematic diagram of dilated convolution.

The outputs from all attention heads are concatenated and then
transformed through a final linear layer to produce the final output
as shown in Formula 2:

Z = Concat(Z1,…,Zh)WO (2)

In the equation, WO ∈ ℝ
hdv×dmodel  is the learned projection

matrix for the final linear transformation, and h is the number of
attention heads.

The dot-product value distribution in the traditional self-
attention mechanism follows a long-tailed pattern, indicating that
the majority of attention weights contribute minimally, while a
small subset of dot products plays a critical role. This observation
suggests that it is unnecessary to compute attention scores
between all query-key pairs. Instead, computational resources
can be focused on the most “important” keys, enabling sparse
computation.
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FIGURE 7
Model structure of BLformer.

The sparsity evaluation formula for the ith query vector Qi is
defined as shown in Formula 3:

M(qi,K) = ln
Lk
∑
j=1

e
qik

T
j
√d − 1

Lk

Lk
∑
j=1

qik
T
j

√d
(3)

In the formula: The first term, represents the Log-Sum-Exp
(LSE) over all key vectors K, and the second term is the arithmetic
mean of the dot products between the ith query vectorQi and all key
vectors K j.

Based on the sparsity evaluation method described above,
the final sparse self-attention mechanism can be formulated
as shown in Formula 4:

SparseAttention(Qi,K,V) = ∑
j∈Top−k(M(Qi,K))

softmax(
QT
i Kj

√dk
)Vj

(4)

where: Top− k(M(Qi,K)) selects the top k key vectors with the
highest sparsity scores M(Qi,K), Qi is the ith query vector, K j
and V j are the jth key and value vectors, respectively, dk is the
dimensionality of the key vectors.

This sparse attention mechanism focuses only on the
most relevant interactions, significantly reducing computational
complexity from O (n2) to O (kn). By dynamically selecting
the top k key vectors based on their sparsity scores,
the mechanism maintains the model’s ability to capture
essential dependencies while improving efficiency and
scalability, particularly for long sequences. For the detailed
derivation of the specific formula, please refer to reference
(Zhou et al., 2021).

3.3 Dilated convolutional neural network
(DCNN)

Dilated Convolution (Lei et al., 2019), also known as atrous
convolution or expanded convolution, is a convolutional operation
that introduces the concept of a dilation rate to standard
convolution. Bymaintaining the same number of kernel parameters,
it significantly enlarges the receptive field of the convolution kernel,
thereby enhancing themodel’s ability to capture long-term temporal
dependencies and multi-scale periodic features.

The core idea of dilated convolution lies in the introduction of
the dilation rate d, which is defined as follows:

For a convolution kernel of size k and a dilation rate d, the
receptive field sizeR of the dilated convolution is given by Formula 5:

R = k+ (k− 1) × (d− 1) (5)

When a convolution kernel W with a dilation rate d is applied
to an input sequence x, the computation is defined as shown in
Formula 6:

y[i] =
k−1

∑
j=0

W[j] · x[i− j · d] (6)

where: x is the input sequence,W represents the convolution kernel
parameters, d is the dilation rate, which determines the spacing
between kernel elements. By adjusting the dilation rate d, the
receptive field of the convolution kernel can be expanded without
increasing computational complexity. This enables the model to
efficiently capture long-range dependencies and multi-scale features
in the input sequence. The schematic diagram is shown in Figure 6.
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FIGURE 8
Prediction process diagram.

3.4 Gradient decision tree

LightGBM (Ke et al., 2017) is an efficient machine
learning framework based on Gradient Boosting Decision Trees
(GBDT). It employs multiple mechanisms for feature selection,
including evaluating key features based on feature importance
metrics (Split/Gain/SHAP), using histogram binning to reduce
computational complexity while retaining effective features, and
applying the Gradient-based One-Side Sampling (GOSS) strategy
to preserve samples with larger gradients, thereby diminishing the
influence of irrelevant features. Additionally, LightGBM adopts
a leaf-wise growth strategy, allowing important features to split
first, and controls model complexity through parameters such
as max_depth and num_leaves to prevent overfitting. L1/L2
regularization further constrains feature weights, and the feature
sampling mechanism (feature_fraction) randomly drops a portion
of features during training to enhance generalization. By integrating

these strategies, LightGBM efficiently and automatically selects
important features, improving training speed and prediction
performance.

3.5 MIC

The Maximal Information Coefficient (MIC) is a statistical
method used to measure the nonlinear correlation between two
variables. Its core idea is to quantify the relationship between
features using normalized maximal mutual information. The MIC
is defined as shown in Formula 7:

I(X,Y) = ∑
x∈X
∑
y∈Y

P(x,y) log
P(x,y)
P(x)P(y)

(7)

In the formula, p(x,y) is the joint probability distribution, P(x)
and P(y) is the marginal probability distribution.
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FIGURE 9
Correlation results of industrial load LightGBM.

FIGURE 10
Correlation results of industrial load MIC.

4 Short-term bus load forecasting
method based on enhanced
Patch-TSTransformer

4.1 Multiple feature selection mechanism

We propose a multi-faceted feature selection mechanism that
leverages both LightGBM and MIC to evaluate the association
between industrial, commercial, and residential loads and other
features. This approach enables complementary screening of multi-
source heterogeneous data, offering advantages over single-method
feature selection:

On one hand, LightGBM, with its gradient-boosting tree
architecture, constructs predictive models for each load type and
identifies features with significant predictive power through feature
importance scores.This allows for the extraction of features that have
a strong influence on load forecasting.

On the other hand, the Maximal Information Coefficient (MIC)
quantifies the nonlinear statistical dependence between features and
loads, avoiding the limitations of model assumptions and capturing
potential complex relationships that might otherwise be overlooked.

FIGURE 11
Correlation results of commercial load LightGBM.

FIGURE 12
Correlation results of commercial load MIC.

By integrating the results from both methods, we retain
core features that exhibit high predictive value or strong
statistical associations across different load types. This dual
approach effectively reduces the interference of redundant
information while balancing model generalization and
interpretability.

4.2 Coupling prediction strategy

We propose a novel coupling prediction strategy based on
multi-source heterogeneous characteristics, specifically optimized
for bus load forecasting scenarios. This method begins by
constructing distinct prediction models for industrial, commercial,
and residential sub-loads, each tailored to capture their unique
features. After precise modeling of each component, the predictions
are dynamically weighted and integrated. Compared to directly
forecasting the total bus load as a whole, this approach effectively
addresses the limitations of traditional aggregate forecasting
methods, which often overlook the heterogeneity of different
load types.
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FIGURE 13
Correlation results of residential load LightGBM.

FIGURE 14
Correlation results of residential load MIC.

4.3 The model structure of BLformer

To improve the accuracy of short-term bus load forecasting, this
paper proposes the BLformer model, as illustrated in Figure 7.

Layer 1: LightGBM + MIC Layer

This layer employs LightGBM and MIC algorithms to explore
the nonlinear relationships between bus loads and external features
such as meteorological parameters (e.g., temperature, humidity)
and holidays. It identifies the subset of features that contribute
most significantly to load forecasting, effectively reducing input
dimensionality while retaining key drivers of load variations. This
step provides high-information-density time series features as input
for subsequent deep learning modules.

Layer 2: Instance Norm + Patching Layer

Instance normalization (Instance Norm) performs local
standardization on bus loads to account for their time-varying
characteristics and eliminate scale differences. Patching divides
continuous time series into fixed-length windows, preserving local
patterns of short-term load fluctuations while laying the foundation
for multi-scale time series feature extraction in subsequent layers.

This block-based strategy balances local sensitivity and global
modeling capabilities.

Layer 3: Dilated Convolution Layer

By adjusting the dilation rate of the convolution kernel, this
layer captures long-term periodic patterns (e.g., annual/quarterly
load trends) and cross-temporal correlations (e.g., differences
between holiday and weekday patterns) at a low computational
cost. Compared to standard convolutions, the sparse connectivity
of dilated convolutions significantly enhances the efficiency of
time series feature propagation, making it particularly suitable
for scenarios with long-term fluctuations (e.g., seasonal electricity
usage habits) while avoiding overfitting risks associated with fully
connected layers.

Layer 4: Projection + Position Embedding Layer

The projection layer compresses multi-channel patch features
into a unified space, eliminating dimensional differences between
channels. Position embedding assigns a time-sensitive global
identifier to each patch, explicitly incorporating absolute time
information (e.g., day of the week, season) and relative temporal
relationships (e.g., time intervals between adjacent patches).

Layer 5: Multi-head Sparse Attention Transformer Encoder

The multi-head attention mechanism computes correlations
across different time scales in parallel, while the sparsity strategy
reduces computational complexity by limiting the attentionwindow.
The multi-layer Transformer encoder iteratively refines implicit
temporal patterns through self-attention, making it particularly
effective at capturing complex nonlinear temporal dependencies in
bus loads. The output is a temporal representation matrix.

Layer 6: Flatten + Linear Head Layer

The flatten operation transforms high-dimensional featuremaps
into a one-dimensional vector, which is then fed into a linear output
layer tomap the feature space to the prediction space, generating the
final forecast results.

4.4 Prediction process

The proposed bus load forecasting model follows a systematic
workflow of “data preprocessing—feature selection—model
training and optimization—prediction result reconstruction,” as
illustrated in Figure 8. The specific steps are as follows:

Step 1. Data Preprocessing

The original bus load data and meteorological data serve as
critical input sources for the model, and their quality directly
impacts the accuracy and reliability of the forecasting results.
To ensure high-quality data, the following preprocessing steps
are performed:

Outlier Removal: The Interquartile Range (IQR) method is used
to detect and remove outliers in both bus load and meteorological
data that deviate from the normal range.

Missing Value Imputation: Linear interpolation based on time
series characteristics is employed to efficiently fill in missing values
in the data.
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TABLE 1 Type and number of features.

Feature types Characteristic attribute Variable type Feature number

Historical load 16 Historical load data Continuous Variable 1–16

Weather data

Temperature Continuous Variable 17

Pressure Continuous Variable 18

Humidity Continuous Variable 19

Rainfall Continuous Variable 20

Solar irradiation Continuous Variable 21

Calendar rules

Holiday Discrete Variable 22

Hour Discrete Variable 23–46

Week Discrete Variable 47–53

Quarter Discrete Variable 54–57

TABLE 2 Feature input table.

Feature types Characteristic attribute Feature number Industrial load Commercial load Residential load

Historical load Historical load data 1–16 ✓ ✓ ✓

Weather data

Temperature 17 ✓ ✓ ×

Pressure 18 × × ×

Humidity 19 × × ×

Rainfall 20 ✓ × ×

Solar irradiation 21 × × ×

Calendar rules

Holiday 22 ✓ ✓ ✓

Hour 23–46 × × ×

Week 47–53 × 52,53 52,53

Quarter 54–57 × × ✓

TABLE 3 Parameter selection and optimization range.

Parameter name Value Value choose

d_model 512 [128, 256, 512]

n_heads 4 [4, 8, 16]

num_layers 6 [3, 6, 12]

d_ff 1,024 2∗d_model

dropout_rate 0.1 [0.1, 0.3]

learning_rate 1e-3 [1e-3,3e-4,1e-4,3e-5]

batchsize 32 [16,32,64]

Step 2. Dataset Division and Feature Selection

The preprocessed dataset is divided into training, validation,
and test sets in a 7:2:1 ratio. The training set is used for model
training. The validation set is used for hyperparameter tuning and
model performance evaluation. The test set is used for final model
performance validation.

Feature selection is then performed: LightGBM is
used to calculate the importance scores of input features.
The Maximal Information Coefficient (MIC) algorithm
is applied to assess feature redundancy. Based on the
combined results of LightGBM and MIC, features with
lower contribution rankings are removed to reduce model
complexity and improve prediction efficiency and generalization
ability.
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FIGURE 15
Prediction curve.

Step 3. Model Training and Optimization

The BLformer model is used to construct separate prediction
sub-models for industrial, commercial, and residential loads. Grid
Search is employed to optimize key hyperparameters (e.g., learning
rate). The Root Mean Square Error (RMSE) on the validation set is
used as the evaluation metric to select the optimal hyperparameter
combination, ensuring a balance between prediction accuracy and
computational efficiency.

Step 4. Prediction Result Reconstruction and Fusion

The outputs of the BLformer model for industrial, commercial,
and residential loads are reconstructed and fused: A weighted
average method is used for preliminary fusion of the three load
predictions. The weights are determined based on the historical
proportion of each load type in the total bus load. The adjusted
prediction results are denormalized and output, yielding high-
accuracy bus load forecasts.

5 Examples and experimental analysis

5.1 Dataset description and model
development environment

This study is based on real operational data from a specific
region in 2020, with a sampling frequency of 15 min. The
dataset encompasses multi-dimensional load information,
including industrial, commercial, residential, and bus load data.
Additionally, key meteorological parameters such as temperature,
air pressure, relative humidity, rainfall, and solar radiation intensity
were collected, providing comprehensive data support for the
construction of the load forecasting model.

For model development, Python 3.10 was used as the
programming language, and the prediction model was built on the
PyTorch deep learning framework. To ensure efficient and reliable

model training, the experimental platform was equipped with high-
performance computing hardware: a 14th-generation Intel Core
i7 processor, an NVIDIA GeForce RTX 4090 graphics card, and
128 GB of RAM, providing robust computational power for training
and optimizing the deep learning model.

5.2 Prediction evaluation metrics

To assess the prediction accuracy of the model, three widely
recognized statistical metrics were selected: Mean Absolute Error
(MAE), Root Mean Square Error (RMSE), and Mean Absolute
Percentage Error (MAPE). The definitions of these metrics are as
shown in Formulas 8–10:

MAE = 1
n

n

∑
i=1
|yi − ̂yi| (8)

RMSE = √ 1
n

n

∑
i=1
(yi − ̂yi)

2 (9)

MAPE = 100%
n

n

∑
i=1
|
yi − ̂yi
yi
| (10)

In the formula, yi is the actual value, ̂yi is the predicted value, and
n is the sample size.

5.3 Feature contribution analysis

Based on expert knowledge, the initial input features were
selected, including historical load information, weather data, and
calendar rules as shown in Table 1.

1. Load Information: Historical load data from the previous 4 h
for industrial, commercial, and residential loads.

2. Weather Data: Temperature, air pressure, humidity, rainfall,
and solar irradiance.
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TABLE 4 Performance comparison of load forecasting models (units:
RMSE/MW, MAE/MW, MAPE/%).

Load type Models RMSE MAE MAPE

Industrial load

BLformer 5.43 4.35 5.56

Informer 12.51 10.17 16.09

Autoformer 13.42 12.07 19.60

Fedformer 7.51 5.72 7.92

Commercial load

BLformer 4.80 3.25 14.62

Informer 6.58 4.87 26.79

Autoformer 7.08 4.59 23.23

Fedformer 8.45 5.88 21.25

Residential load

BLformer 4.72 3.80 6.12

Informer 6.59 5.35 8.37

Autoformer 11.27 9.36 17.08

Fedformer 9.85 8.12 14.01

Bus load

BLformer 8.28 6.68 4.16

Informer 14.60 11.65 7.46

Autoformer 26.64 23.77 16.90

Fedformer 14.24 11.32 7.20

3. Calendar Rules: Hour of the day, day of the week, season, and
holiday information.

To avoid mutual influence between continuous data, calendar
rule information was discretized using one-hot encoding. This
ensures that each categorical feature is represented independently,
enhancing the model’s ability to capture their distinct effects.

To explore the dominant factors affecting load forecasting
accuracy, this study employs both LightGBMandMIC algorithms to
analyze the contribution of load andweather features.The results are
shown in Figures 9–14. The analysis reveals that the two algorithms
exhibit different sensitivities to load and weather features, indicating
that combining multiple algorithms for feature importance
evaluation provides a more comprehensive understanding of feature
contributions, thereby improving prediction accuracy.

For industrial load, both algorithms show significant
correlations with historical industrial load and holiday information.
Notably, LightGBM is more sensitive to certain hour-related
features, while MIC demonstrates stronger sensitivity to rainfall
and temperature, particularly showing a significant correlation
with temperature. Given the practical impact of rainfall and high
temperatures on factory production, the industrial load prediction
model incorporates historical industrial load, temperature, rainfall,
and holiday features based on the combined evaluation results of
the two algorithms.

For commercial load, both algorithms indicate that historical
commercial load, holiday information, temperature, and weekend
information have important influences. LightGBM shows some
sensitivity to seasonal information, while MIC does not exhibit
similar characteristics. Considering the limited practical impact
of seasonal changes on commercial activities, the commercial
load prediction model includes historical commercial load,
temperature, holiday, and weekend features based on the combined
evaluation results.

For residential load, the analysis results of the two algorithms
are highly consistent, both indicating significant correlations
with historical residential load, holidays, weekends, and seasonal
information. Given the substantial influence of these factors on
residential behaviour patterns, the residential load predictionmodel
incorporates historical residential load, holidays, weekends, and
seasonal features based on the combined evaluation results.

The final input features for the three load models are
summarized in Table 2.

5.4 Model parameter settings

To achieve the best prediction performance, this study
optimized the hyperparameters of the model through grid
search algorithm, using root mean square error (RMSE) as the
evaluation index. The final determined parameter combinations
are shown in Table 3.

5.5 Analysis of model prediction
performance

To validate the predictive performance of the BLformer
model, this study selects three mainstream time series forecasting
models—Informer, Autoformer, and Fedformer—as benchmark
comparisons. The experiments adopt a coupled prediction
paradigm, where industrial, commercial, and residential loads
are independently predicted, and the bus load prediction results
are obtained through load superposition. All comparative models
undergo hyperparameter optimization, and the prediction duration
is uniformly set to a 24-h rolling forecast.

As visually compared in Figure 15, the BLformer’s prediction
curve is the closest to the true value distribution, outperforming
the benchmark models in both trend tracking and peak-valley
feature capturing. Its prediction trajectory synchronizes well
with the true curve, demonstrating excellent temporal following
capability. In contrast, Informer and Autoformer exhibit significant
prediction deviations during abrupt load changes, while Fedformer,
although improved in overall accuracy, still suffers from phase
shift issues. Specifically, the baseline models show notably larger
prediction errors in steep load rise/fall intervals compared to the
proposed method.

Furthermore, based on the model prediction accuracy
comparison results shown in Table 4, the proposed BLformer
model demonstrates significant advantages in forecasting
industrial, commercial, residential, and bus loads. Specifically,
compared to mainstream time series forecasting models such as
Informer, Autoformer, and Fedformer, BLformer achieves the
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TABLE 5 Model prediction accuracy table.

Model patchTST patchTST + DCNN patchTST + sparseATT patchTST + FeatherSelection Blformer

RMSE 15.61 12.35 11.57 12.10 8.28

MAE 11.05 9.66 8.01 7.06 6.68

MAPE 6.01 5.96 5.25 4.91 4.16

FIGURE 16
Industrial load forecast results.

FIGURE 17
Commercial load forecast results.

best performance across three key evaluation metrics (RMSE,
MAE, MAPE).

For example, in industrial load forecasting, BLformer’s
RMSE (5.43), MAE (4.35), and MAPE (5.56%) are on average

FIGURE 18
Residential load forecast results.

FIGURE 19
Bus load forecast results.

27.6%, 23.9%, and 29.8% lower, respectively, than those
of the second-best model, Fedformer. This validates the
effectiveness of BLformer in capturing complex industrial load
patterns.
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5.6 Ablation experiment

To further validate the effectiveness of each module in the
BLformer model, we conducted ablation experiments. The results,
as shown in Table 5, demonstrate that the synergistic integration
of modules in BLformer achieves simultaneous improvements in
prediction accuracy and computational efficiency. Compared to
the baseline model, PatchTST, the full version of BLformer shows
significant enhancements across all three metrics: RMSE (8.28
vs. 15.61), MAE (6.68 vs. 11.05), and MAPE (4.16% vs. 6.01%),
representing improvements of 46.9%, 39.5%, and 30.8%, respectively.
These results confirm the effectiveness of the module design.

Sparse Attention Module (sparseATT): This module
significantly reduces computational complexity. In bus load
forecasting, the single-module version reduces training time by 9.0%
(38.5 vs. 42.3 min) while lowering RMSE by 25.9% (11.57 vs. 15.61),
demonstrating its efficiency in modeling long-term dependencies.

Feature Selection Module (FeatherSelection): This module
exhibits excellent noise suppression capabilities. In bus load
forecasting, it improves the MAE metric by 36.2% (7.06 vs. 11.05)
and reduces redundant feature computations by 30% through
dynamic pruning.

Dilated Convolution Module (DCNN): This module effectively
captures abrupt load changes. However, its standalone use increases
training time by 11.3% (47.1 vs. 42.3 min), highlighting the necessity
of module co-optimization.

Integrated Performance: When all modules are integrated,
BLformer achieves a training time of 40.2 min, which is 4.9%
shorter than the baseline model and 14.6% faster than the version
using only DCNN. This efficiency gain stems from: sparseATT
reducing the spatial complexity of traditional attentionmechanisms.
FeatherSelection decreasing forward propagation computations
through adaptive feature pruning.

The experimental results demonstrate that BLformer, through
the organic integration of sparse attention mechanisms, dynamic
feature selection, and dilated convolutions, achieves precise
modeling of complex load characteristics while maintaining model
lightweightness. This provides an efficient and effective solution for
real-world power system forecasting tasks.

5.7 Comparison between direct prediction
and indirect prediction

This section validates the performance advantages of the
coupled prediction method through experimental analysis. First,
Figures 16–19 illustrate the forecasting results of the coupled
prediction model for industrial, commercial, and residential
loads. Then, Figure 19 presents a comparative analysis between
the coupled prediction approach and direct bus load prediction.
The experimental results demonstrate that coupled prediction
significantly outperforms direct prediction in both accuracy and
stability. This improvement is primarily attributed to the ability of
the coupled prediction method to fully account for the interactions
among industrial, commercial, and residential loads, as well as
the distinct characteristics of each load type. By establishing a
couplingmechanism that captures the inherent correlations between

different load types, the proposed method effectively enhances
overall forecasting performance.

6 Conclusion

This study proposes a short-term bus load forecasting
framework based on an enhanced Patch-TSTransformer,
termed BLformer. Through theoretical analysis and
experimental validation, the following conclusions
are drawn:

1. The innovatively designed multi-feature analysis mechanism
effectively identifies and selects key input features, significantly
improving prediction accuracy while reducing feature
redundancy.

2. The proposed sparse attention mechanism, combined with
the DCNN-TST hybrid architecture, optimally allocates
computational resources. This design autonomously identifies
and focuses on high-contribution temporal segments,
enhancing prediction robustness while maintaining model
efficiency.

3. Compared to traditional direct bus load forecasting methods,
the coupled forecasting strategy introduced in this study
significantly improves forecasting accuracy by capturing the
interaction relationships among multiple load types.

Experimental results demonstrate that BLformer outperforms
mainstream baseline models such as Informer and Autoformer on
regional bus load datasets. Furthermore, the indirect prediction
strategy substantially reduces forecasting errors compared to
direct prediction, fully validating the effectiveness and practical
applicability of the proposed method.

Data availability statement

The data analyzed in this study is subject to the following
licenses/restrictions: Data is confidential. Requests to access these
datasets should be directed to the corresponding author.

Author contributions

HL: Writing – original draft. QC: Writing – original draft,
Methodology. DZ: Project administration, Writing – review
and editing. HW: Writing – original draft, Investigation. XZ:
Supervision, Writing – original draft, Validation. ZZ: Writing –
review and editing, Formal Analysis. LF: Investigation, Writing –
original draft, Methodology. WW: Supervision, Writing – review
and editing, Software. SC: Writing – original draft, Visualization.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. This research is
supported by State Grid Beijing Electric Power Company Science
and Technology Project: Research and application of short-term

Frontiers in Energy Research 13 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1622991
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Liu et al. 10.3389/fenrg.2025.1622991

and ultra-short-term load accurate forecasting technology for large
urban power grids (520223240004).

Conflict of interest

Authors HL, DZ, XZ, and LF were employed by State Grid
Beijing Electric Power Company. Author SC was employed by
Beijing Tsingsoft Technology Co., Ltd.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

The authors declare that this study received funding from
State Grid Beijing Electric Power Company. The funder had the
following involvement in the study, such as providing technical
advice, collecting field data, approving manuscript content.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those
of the authors and do not necessarily represent those of
their affiliated organizations, or those of the publisher,
the editors and the reviewers. Any product that may be
evaluated in this article, or claim that may be made by
its manufacturer, is not guaranteed or endorsed by the
publisher.

References

Chen, Y., Kloft, M., Yang, Y., Li, C., and Li, L. (2018). Mixed kernel based
extreme learning machine for electric load forecasting. Neurocomputing 312, 90–106.
doi:10.1016/j.neucom.2018.05.068

Chu, X., Gao, Y., Qiu, Y., Li, M., Fan, H., Shi, M., et al. (2022). “Short-
term load forecast using improved long-short term memory network,” in 2022
IEEE 5th International Electrical and Energy Conference (CIEEC), 1228–1233.
doi:10.1109/CIEEC54735.2022.9845931

Deng, Z., Wang, B., Xu, Y., Xu, T., Liu, C., and Zhu, Z. (2019). Multi-scale
convolutional neural network with time-cognition for multi-step short-term load
forecasting. IEEE Access 7, 88058–88071. doi:10.1109/ACCESS.2019.2926137

Ding, N., Benoit, C., Foggia, G., Bésanger, Y., and Wurtz, F. (2016). Neural network-
based model design for short-term load forecast in distribution systems. IEEE Trans.
Power Syst. 31, 72–81. doi:10.1109/TPWRS.2015.2390132

Fan, S., Chen, L., and Lee, W. (2009). Short-term load forecasting using
comprehensive combination based on multimeteorological information. IEEE Trans.
Industry Appl. 45, 1460–1466. doi:10.1109/TIA.2009.2023571

Hong, Y., Wang, D., Su, J., Ren, M., Xu, W., Wei, Y., et al. (2023). Short-term power
load forecasting in three stages based on CEEMDAN-TGA model. Sustainability 15,
11123. doi:10.3390/su151411123

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., et al. (2017). Lightgbm:
a highly efficient gradient boosting decision tree. Adv. neural Inf. Process. Syst., 30.
Available online at: https://scholar.google.com/scholar?q=Lightgbm:+A+highly
+efficient+gradient+boosting+decision+tree&hl=zh-CN&as_sdt=0&as_vis=1&oi=
scholart.

Lai, C., Mo, Z., Wang, T., Yuan, H., Ng, W., and Lai, L. (2020). Load forecasting based
on deep neural network and historical data augmentation. IET Generation, Transm. &
Distribution 14, 5927–5934. doi:10.1049/iet-gtd.2020.0842

Lei, X., Pan, H., and Huang, X. (2019). A dilated CNN model for image classification.
IEEE Access 7, 124087–124095. doi:10.1109/ACCESS.2019.2927169

Li, S., Goel, L., and Wang, P. (2016). An ensemble approach for short-
term load forecasting by extreme learning machine. Appl. Energy 170, 22–29.
doi:10.1016/J.APENERGY.2016.02.114

Li, Z., Li, Y., Liu, Y., Wang, P., Lu, R., and Gooi, H. (2021). Deep learning based
densely connected network for load forecasting. IEEE Trans. Power Syst. 36, 2829–2840.
doi:10.1109/TPWRS.2020.3048359

Mamun, A., Sohel, M., Mohammad, N., Sunny,M., Dipta, D., andHossain, E. (2020).
A comprehensive review of the load forecasting techniques using single and hybrid
predictive models. IEEE Access 8, 134911–134939. doi:10.1109/access.2020.3010702

Nie, Y., Nguyen, N.H., Sinthong, P., andKalagnanam, J. (2022). A time series is worth
64 words: long-term forecasting with transformers. arXiv Prepr. arXiv:2211.14730.
Available online at: https://arxiv.org/abs/2211.14730

Pang, X., Sun, W., Li, H., Liu, W., and Luan, C. (2024). Short-term power load
forecasting method based on Bagging-stochastic configuration networks. PLOS ONE
19, e0300229. doi:10.1371/journal.pone.0300229

Rafi, S., Nahid-Al-Masood, Deeba, S., and Hossain, E. (2021). A short-term
load forecasting method using integrated CNN and LSTM network. IEEE Access 9,
32436–32448. doi:10.1109/ACCESS.2021.3060654

Shohan, M., Faruque, M., and Foo, S. (2022). Forecasting of electric load using a
hybrid LSTM-neural prophet model. Energies 15, 2158. doi:10.3390/en15062158

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., et al.
(2017). “Attention is all you need,” in Proceedings of the 31st international conference
on neural information processing systems (NIPS’17) (Red Hook, NY, USA: Curran
Associates Inc.), 6000–6010.

Wang, Y., Sun, S., Chen, X., Zeng, X., Kong, Y., Chen, J., et al. (2021). Short-term load
forecasting of industrial customers based on SVMD and XGBoost. Int. J. Electr. Power
& Energy Syst. 129, 106830. doi:10.1016/J.IJEPES.2021.106830

Wu, H., Xu, J., Wang, J., and Long, M. (2021). Autoformer: decomposition
Transformers with auto-correlation for long-term series forecasting. Adv. Neural Inf.
Process. Syst. 34 22419–22430. Available online at: https://arxiv.org/abs/2106.13008

Yan, Y., Li,W., Su, S., Bai, H., Yang, Y., Pan, S., et al. (2022). Decentralized wind power
forecasting method based on informer. Recent Adv. Electr. & Electron. Eng. 15 (Issue 8),
679–687. doi:10.2174/2352096515666220818122603

Zhang, J., Wei, Y., Li, D., Tan, Z., and Zhou, J. (2018a). Short term
electricity load forecasting using a hybrid model. Energy 158, 774–781.
doi:10.1016/J.ENERGY.2018.06.012

Zhang, Q. Y., Li, G. J., Ding, J., andMa, J. (2020). Short-term load forecasting based on
frequency domain decomposition and deep learning. Math. Problems Eng. 2020, 1–9.
doi:10.1155/2020/7240320

Zhang, X.,Wang, R., Tao, Z., Liu, Y., and Zha, Y. (2018b). Short-term load forecasting
using a novel deep learning framework. Energies 11, 1554. doi:10.3390/EN11061554

Zhao, X., Li, Q., Xue, W., Zhao, Y., Zhao, H., and Guo, S. (2022). Research on ultra-
short-term load forecasting based on real-time electricity price and window-based
XGBoost model. Energies 15, 7367. doi:10.3390/en15197367

Zhou,H., Zhang, S., Peng, J., Li, J., Xiong,H., andZhang,W. (2021). Informer: beyond
efficient Transformer for long sequence time-series forecasting. Proc. AAAI Conf. Artif.
Intell. 35 (12), 11106–11115. doi:10.1609/aaai.v35i12.17325

Frontiers in Energy Research 14 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1622991
https://doi.org/10.1016/j.neucom.2018.05.068
https://doi.org/10.1109/CIEEC54735.2022.9845931
https://doi.org/10.1109/ACCESS.2019.2926137
https://doi.org/10.1109/TPWRS.2015.2390132
https://doi.org/10.1109/TIA.2009.2023571
https://doi.org/10.3390/su151411123
https://scholar.google.com/scholar?q=Lightgbm:+A+highly+efficient+gradient+boosting+decision+tree&hl=zh-CN&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.com/scholar?q=Lightgbm:+A+highly+efficient+gradient+boosting+decision+tree&hl=zh-CN&as_sdt=0&as_vis=1&oi=scholart
https://scholar.google.com/scholar?q=Lightgbm:+A+highly+efficient+gradient+boosting+decision+tree&hl=zh-CN&as_sdt=0&as_vis=1&oi=scholart
https://doi.org/10.1049/iet-gtd.2020.0842
https://doi.org/10.1109/ACCESS.2019.2927169
https://doi.org/10.1016/J.APENERGY.2016.02.114
https://doi.org/10.1109/TPWRS.2020.3048359
https://doi.org/10.1109/access.2020.3010702
https://arxiv.org/abs/2211.14730
https://doi.org/10.1371/journal.pone.0300229
https://doi.org/10.1109/ACCESS.2021.3060654
https://doi.org/10.3390/en15062158
https://doi.org/10.1016/J.IJEPES.2021.106830
https://arxiv.org/abs/2106.13008
https://doi.org/10.2174/2352096515666220818122603
https://doi.org/10.1016/J.ENERGY.2018.06.012
https://doi.org/10.1155/2020/7240320
https://doi.org/10.3390/EN11061554
https://doi.org/10.3390/en15197367
https://doi.org/10.1609/aaai.v35i12.17325
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org

	1 Introduction
	2 Analysis of electrical bus load characters
	2.1 Industrial load characteristics
	2.2 Commercial load characteristics
	2.3 Residential load characteristics
	2.4 Comprehensive characteristics of bus loads

	3 Introduction to model principles
	3.1 PatchTST model
	3.2 Sparse self attention mechanism
	3.3 Dilated convolutional neural network (DCNN)
	3.4 Gradient decision tree
	3.5 MIC

	4 Short-term bus load forecasting method based on enhanced Patch-TSTransformer
	4.1 Multiple feature selection mechanism
	4.2 Coupling prediction strategy
	4.3 The model structure of BLformer
	4.4 Prediction process

	5 Examples and experimental analysis
	5.1 Dataset description and model development environment
	5.2 Prediction evaluation metrics
	5.3 Feature contribution analysis
	5.4 Model parameter settings
	5.5 Analysis of model prediction performance
	5.6 Ablation experiment
	5.7 Comparison between direct prediction and indirect prediction

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

