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In this paper, we deal with the use of the earthworm optimization algorithm
(EOA) in foraging to estimate and extract the intrinsic electrical parameters of
single-, double-, and triple-diode solar cells and photovoltaic modules across
different technologies. This method was chosen to address the challenges
associated with the nonlinear behavior, complexity, andmathematical modeling
of solar cells and photovoltaic modules (PVMs). The objective function is
modified to minimize the absolute errors between experimental and simulated
current values. The EOA in foraging is applied to three different case studies:
the RTC France solar cell, the Photowatt-PWP 201 PVmodule, and the Schutten
Solar STM6-40/36 monocrystalline module, under varying solar irradiance and
ambient temperature conditions. The goal is to identify the parameters of the
single-diode (SD), double-diode (DD), and triple-diode (TD) models. In addition,
the proposed objective function is computed based on the current–voltage
(I–V) characteristic curve. The extracted parameters for each case study are
used to reconstruct the I–V and power–voltage (P–V) characteristic curves for
the respective solar cell and photovoltaic module technologies. To validate
the performance and efficiency of the algorithm, various statistical criteria are
computed, including individual absolute error (IAE), relative error (RE), rootmean
square error (RMSE),mean absolute error (MAE), standard deviation (SD), tracking
signal (TS), normalized forecastmeasure (NFM), and the autocorrelation function
(ACF). These metrics are compared to assess the accuracy of the parameters
obtained by the EOA in foraging. The reconstructed I–V and P–V curves exhibit
strong agreement with experimental data, demonstrating superior accuracy
compared to other recently publishedmethods. The EOA in foraging also shows
clear superiority in RMSE across the three model configurations (SD, DD, and
TD). For instance, in the case of the RTC France solar cell, the EOA in foraging
improves RMSE by 27.33% over MCO-R, 89.25% over NRM, 62.11% over CM, and
94.24% over GA, with comparable results to LW (88.85%), An.5-Pt (86.46%), and
WOA (91.36%). In the DD model, the EOA in foraging shows improvements of
11.29% over MCO-R, 12.70% over HS, 99.69% over GA, 93.37% over PSO, and
92.86% over WOA. In the TDmodel, the EOA in foraging achieves improvements
of 35.32% over MCO-R, 71.58% over MFO, 93.96% over WOA, 81.36% over
SCA, and 63.94% over MVO. These results confirm that the EOA in foraging
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significantly outperforms other methods in terms of accuracy, particularly in the
DD and TD models.

KEYWORDS

photovoltaic module, parameter extraction, objective function, optimization,
earthworm optimization algorithm

1 Introduction

In the recent years, the consumption of alternative sources
of energy is quickly increasing, and the deployment of solar
power centered on photovoltaic systems is becoming increasingly
prevalent (Renewable, 2024). The fundamental challenge in
solar energy systems originates from the instability, nonlinear
behavior, and complexity of the mathematical equations governing
current–voltage (I–V) and power–voltage (P–V) characteristics
(Mishra et al., 2023). The electrical behavior in the I–V and P–V
curves of solar cells and photovoltaic modules is both implicit and
nonlinear, with an exponential function (Samadhiya and Namrata,
2022).This subject presents several kinds of issues in approximating
numerous parameters. Numerous solar cell models have been
published in the literature study, such as mathematical and electrical
models that describe the electrical and thermal behavior of solar
cells and photovoltaic modules (Yaman and Arslan, 2021). On the
other hand, numerous studies revolved around the modeling of
the PV and generated numerous electrical models with varying
levels of complexity and nonlinear behavior (Louzazni and Al-
Dahidi, 2021). Generally, the electrical model of a solar cell includes
two types: a static model and an alternative model, incorporating
capacitance and parallel dynamic resistance, along with diode and
photocurrent components (Nemnes et al., 2017). In particular, the
accuracy of photovoltaic characteristic curves is notably influenced
by the prevailing weather conditions, dust, and wind speed. As such,
it becomes crucial to precisely and simultaneously determine the
characteristic curves of the solar cell and the photovoltaic module
system with high performance.

The nonlinear nature of exponentials in electrical circuits makes
it difficult to accurately predict and extract electrical, dynamic, and
thermal information. Moreover, implicit techniques are incapable
of anticipating the behavior of solar cells and photovoltaic modules
under a wide range of conditions (Ahmed et al., 2023). Additionally,
solar cell models exhibit multimodal characteristics and local
maximum power points, with parameters that change based on
operating conditions such as temperature, solar radiation, dust
accumulation, wind, shadowing, and other environmental factors
depending on the region where the PV modules are installed
(Wan et al., 2024; Saidan et al., 2016; Shaik et al., 2023). The main
objective of modeling solar cells and photovoltaic modules (PVMs)
is to determine the intrinsic parameters such as photocurrent,
the two resistances shunt and series, and the parameters of
the diode. In the literature, various papers have discussed and
extracted, identified, and minimized the distance between the
experimental and theoretical data to identify the electrical behaviors
and characteristics of solar cells. Each paper used a different method
and algorithm, and they are classified into three categories, namely,
the analytical methods and metaheuristic methods.

The analytical technique, which is primarily based on key
data points provided by the manufacturers, calculates the model
parameters by mathematical manipulation such as derivation
and approximation. The analytical approaches use a sequence
of interrelated mathematical equations to establish connections
between various model parameters (Wan et al., 2024). These
approaches rely heavily on the precision of numerous crucial
points on the characteristic curves and are influenced by the
solar irradiation and temperature. The analytical techniques
are developed by utilizing elementary functions tailored to
distinct characteristic points found on the I–V and P–V curves.
Alternatively, they may involve employing simplifications and
approximations to transform equations into explicit formulations.
The Lagrange multiplier method was utilized in the study by
Saidan et al. (2016) to approximate the I–V and P–V characteristic
curves of solar cells and PVMs using an analytical optimization.
A modification based on linear interpolation/extrapolation using
experimental data points of solar cells and PVMs was used in
the study by Shaik et al. (2023). This was based on various
solar irradiation and temperature conditions to estimate and
predict the I–V and P–V characteristics of various solar cells
and PVMs. Another technique proposed by Pindado and Cubas
(2017) used only a single experimental point with no additional
information about the translation parameter. An explicit method
based on Chebyshev polynomials and experimental data points
and the manufacturer’s datasheet was proposed to estimate the I–V
characteristic and maximum power point under solar irradiation
and temperature (Louzazni et al., 2019). A different approach
has been devised, which involves mathematical manipulation
through approximation and derivation of the solar cell characteristic
equation to yield a simpler and more accessible equation such
as Lambert W-functions (Tsuno et al., 2009; Lun et al., 2015a),
Taylor’s series expansion (Lun et al., 2013a; Hishikawa et al.,
2019), and Padé approximants (Lun et al., 2013b). In general,
these techniques are developed by using fundamental functions
that are customized to certain curve characteristics or by
converting mathematical equations into explicit representations
using simplifying assumptions and approximations.

These techniques and methods are based on ignoring or
approximating several terms to obtain simplified functions. Such
simplification, approximation, and estimation can introduce
significant inaccuracies or reduce the precision of the solution in
certain scenarios. Hence, metaheuristic optimization algorithms
have significant potential for addressing modern global
optimization challenges posed by nonlinear and complex systems.

The metaheuristic algorithm has been widely used in several
fields andhas received attention for solving complex andmultimodal
problems (Younis et al., 2022; Feng et al., 2024; Azizi et al.,
2025). Most metaheuristics are based on swarm intelligence
and are stochastic in nature, drawing inspiration from various
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natural phenomena. These algorithms offer superior accuracy
and computational efficiency compared to analytical methods.
The effectiveness of these algorithms depends greatly on the
precise tuning of the control parameters (Younis et al., 2022).
Its potential in addressing modern global optimization challenges
posed by nonlinear and complex systems is significant (Fu et al.,
2017). The benefits of metaheuristic algorithms include that they
may quickly explore the possibilities without being constrained
by the size of the search space. In general, metaheuristics are
developed with the following primary objectives in mind: speeding
up problem-solving procedures, efficiently addressing large-scale
challenges, and constructing robust algorithms (Younis et al., 2022).
Several metaheuristic algorithms have been used in parameter
identification, extraction, and optimization. Bouzateur et al. (2023)
applied the snake optimization algorithm to extract the PVM
and solar cell parameters. Other metaheuristics algorithms such
as the artificial ecosystem optimization algorithm (Salimi, 2015;
Wang et al., 2024), orbital search algorithm (Fu et al., 2017),
niche-based particle swarm optimization (Noordin et al., 2023),
butterfly optimization algorithm with a chaos learning strategy
(Belabbes et al., 2023), and tree seed algorithm (Wang et al., 2024)
have also been proposed. Optimization using the gorilla troops
optimizer was applied to extract the parameters of photovoltaic
triple-diode models under different solar radiation and temperature
conditions (Ali et al., 2023). The hybrid Kepler optimization
algorithm was utilized to estimate the parameters of solar cells and
five PVMs under different conditions (Lin andWu, 2020). In all the
published papers, research workers used metaheuristic algorithms
or analytical methods with different objective functions. The
objective functions were designed to decrease the absolute errors
between the observed and the approximated voltage measurements.
However, in all of the proposed methods, they use the same
experimental data, and they have calculated the error metrics to
compare with other methods and techniques.

Recently, a bioinspired metaheuristic algorithm was developed
byWang et al. (Ru, 2024) in 2018, which was named the earthworm
optimization algorithm (EOA) and was inspired by animal
migration behaviors, for solving global optimization problems. The
earthworm swarm algorithm is also an algorithm that belongs to the
latter, for global optimization problems (Ru, 2024), and is inspired
by the reproductive methods of earthworms. This concept arises
from observing the natural resource search strategies employed by
these organisms, providing a new perspective for solving complex
problems in mathematics and engineering. Earthworms, in their
search for food, develop strategies to overcome obstacles and
optimize their search. Likewise, the algorithmmimics this capability
by avoiding focusing solely on a local solution, which is a challenge
that is often encountered in traditional optimization methods.
Instead, the swarm explores the entire search space, increasing the
chances of discovering the optimal solution. The algorithm process,
inspired by the behavior of earthworms, is based on communication
mechanisms between the members of the virtual swarm. These
communications allow an exchange of information about potential
solutions, making it possible to gradually refine the solutions
adopted by the entire swarm. This virtual collaboration between
the “earthworms” improves the efficiency of the exploration of the
solution space, ultimately leading to the discovery of the optimal
parameters of the mathematical model considered. The most

important requirement for choosing a method to extract, estimate,
or optimize the parameters of the solar cell/PVM/photovoltaic
generator is its precision, that is, how accurately it approximates
the parameters. The following are the primary requirements for the
determination of the solar cell/photovoltaic parameters: precision,
reliability, efficiency, detection limit, quantitation limit, flexibility,
operating range, and robustness. An estimation method with a
low error is widely accepted as successful, and the calculated
error is measured on the basis of the discrepancy between the
calculation and the experimental values. Essentially, these factors
are calculated on the basis of the difference between measured
data points and estimated values over the time frame. Moreover,
these errors can provide information about the selected method;
this will decide the nature and scope of the verification studies
needed. The most popular validation methods are as follows:
classification, analysis, and imperfection evaluation. Therefore,
reviewing calculated errors is a vital procedure that enables the
correlation of prediction models and identification of the most
appropriate model and method (Beşkirli and Dağ, 2023).

In this paper, we propose the extraction and estimation of
the single, double, and triple diodes of solar cells and PVMs
for different technologies under different solar irradiation and
temperature conditions using the EOA. The goal is to find the
optimal parameters of the model that minimize the gap between
experimental data and the estimated values using the proposed
algorithm. The three case studies are as follows: the RTC France
solar cell at 33°C, for which the experimental I–V data used are
from the study by Shaheen et al. (2023), the Photowatt-PWP 201
photovoltaic module with 36 solar cells associated in series under
1,000 W/m2, for which the experimental data can be collected
from the study by Shaheen et al. (2023), and the PVM Schutten
Solar STM6-40/36 monocrystalline, for which the experimental
data were obtained from the study by Mohamed et al. (2024) at
51°C and 1,000 W/m2. This approach offers several advantages,
such as the ability to handle complex and nonlinear models, as
well as the potential to efficiently explore the parameter space to
find optimal solutions. The results obtained can provide valuable
insights for the design and optimization of solar cells/PVMs
with one, two, and three diodes, contributing to improving their
efficiency and performance. Finally, it is appropriate to highlight the
crucial importance of evaluation through statistical criteria such as
individual absolute error (IAE), relative error (RE), rootmean square
error (RMSE), mean absolute error (MAE), standard deviation
(SD), tracking signal (TS), normalized forecast measure (NFM),
and autocorrelation function (ACF) to evaluate the correctness
of the reconstructed I–V and P–V curves. These measurements
provide an essential quantitative assessment of the model’s accuracy
against experimental data, providing relevant insights for refining
and validating the model in question. Each of these criteria provides
a unique perspective on the performance of the model, allowing
a comprehensive analysis of its ability to faithfully represent the
phenomenon being studied. To carry out this evaluation, we have
chosen to use the Python programming language, a choice that is
justified by its versatility and widespread adoption in the scientific
community. The richness of the scientific libraries available in
the Python ecosystem, combined with its clear syntax and ease
of learning, makes it an ideal choice for analysis and modeling
tasks. Libraries such as Pandas for data manipulation, NumPy for
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FIGURE 1
Solar cell model’s equivalent circuit.

scientific calculations, and Matplotlib or Seaborn for visualization
offer a plethora of powerful tools. This approach facilitates the
implementation of calculations for statistical criteria while allowing
for in-depth customization according to the specific needs of the
model and experimental data. In summary, the use of statistical
criteria such as IAE, RE, RMSE,MAE, SD, TS, NFM, andACF, along
with the Python programming language, offers a comprehensive
and robust method for evaluating model accuracy. This approach
ensures a thorough and transparent analysis supported by powerful
tools, contributing to the reliability of the results and the continuous
progression of scientific research.

The article is organized in the following manner: Section 2
presents the problem’s formulation, mathematical modeling, and
essential descriptions of the photovoltaic cell and model. Section 3
describes the used EOA. Section 4 shows the statistical criteria.
Section 5 exhibits the simulation results, as well as the comparative
results and the explanation of estimated values. Finally, Section 6
draws conclusions and discusses future work.

2 Problem formulation

Precise theoretical and electrical models are essential for
understanding the unpredictable behavior of solar cells and PVMs.
In the scientific field, numerous electrical models have been
proposed to illustrate the electrical behavior of solar cells and PVMs
or PV generators in terms of I–V and P–V. These mathematical
or electrical representations differ principally in terms of various
parameters such as single, double, or triple diodes; the presence of
parallel and series resistances; and the methods used to identify the
unknown parameters. The single-diode model is commonly used
to optimize, regulate, and predict the electrical output, operation,
and efficiency of PV systems. The double-diode model is frequently
recognized as the best andmost realistic approach for representing a
comparable electrical circuit.Within this study, three distinct forms,
known as single, double, and triple diodes, are utilized to extract
and identify the unknown characteristics of each electrical model
using the EOA.

3 Photovoltaic modeling

The output characteristics of solar cells, PVMs, and PV
generators are modeled by their I–V and P–V characteristic curves.
Generally, the solar cells are presented by single, double, and
triple diodes (Wang et al., 2018) and are considered the most
used models in the literature for the extraction of the unknown
parameters.

Figure 1 presents the electrical circuit of the single diode when
K1 = K2 = 0, that of the double diodes when K1 ≠ 0, and that of
the triple diodes model when K1 ≠ 0 and K2 ≠ 0 of the solar cell.
In this electrical presentation, the diodes are connected in parallel
with a series resistance and parallel resistance, and a photo-current
is presented in parallel with the diodes.

Figure 1 presents the different parameters of solar cells, such
as five, seven, and nine parameters. This parameter determines the
properties of an implicit nonlinear equation that governs the I–V
and P–V relationship in the PN junction.

The model with a single diode offers a more explicit
mathematical depiction of a solar cell’s electrical characteristics.
It assumes that the solar cell may be effectively represented as a
single diode connected to an electrical source. Although simplistic,
the single-diode model covers the most important characteristics
of the solar cell’s electrical reaction while being computationally
feasible. In the SDM, the I–V relationship of a PV cell can be
described as follows:

Equation 1 presents the implicit equation characterizing the
behavior of the terminal of the solar cell and PVM source, and it
can be presented as follows:

I = Iph − I01(e
V+IRs
n1Vt − 1)−K1I02(e

V+IRs
n2Vt − 1)−K2I03(e

V+IRs
n3Vt − 1)−

V+ IRs
RP
.

(1)

The factors K1 and K2 determine the number of diodes; if K1 ≠
0, there are two diodes, and when K1 ≠ 0 and K2 ≠ 0, then there are
three diodes.

This equation is combined from the photocurrent (Iph) in
parallel with the diodes, parallel resistances, and series resistance,
and each diode has the currents of reverse saturation (I01, I02, I03)
for each diode, and diode ideality factor. The single-, double-, and
triple-diode equations can be given as follows:
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FIGURE 2
EOA flowchart.

{{{{{{{{
{{{{{{{{
{

I = Iph − I01(e
V+IRs
n1Vt − 1)−

V+ IRs
RP

I = Iph − I01(e
V+IRs
n1Vt − 1)− I02(e

V+IRs
n2Vt − 1)−

V+ IRs
RP

I = Iph − I01(e
V+IRs
n1Vt − 1)− I02(e

V+IRs
n2Vt − 1)− I03(e

V+IRs
n3Vt − 1)−

V+ IRs
Rp

.

(2)

The three-diode model can better represent the actual behavior
of solar cells. Itmakes it possible to considermore precisely the losses
and non-idealities that can affect the performance of a solar cell.

The PV module consists of many cells that are linked in parallel
for greater current and linked in series for enhanced voltage. The
numerical formula for a single diode in a photovoltaic module is
defined as follows:

I = NpIph −NpI01(e
NpV+NsIRs
NpNsn1Vt − 1)−

NpV+NsIRs

NpNsRp
, (3)

where Ns and Np are the total quantity of solar cells linked in series
and in parallel, respectively.

Equation 4 may be represented simply as follows:

I = Iphm − I0m1(e
V+IRsm
nm1Vt − 1)−

V+ IRsm

Rpm
. (4)

The same is found for double and triple diodes:

{{{
{{{
{

I = Iphm − I0m1(e
V+IRsm
nm1Vt − 1)− I0m2(e

V+IRsm
nm2Vt − 1)− V+ IRsm

Rpm

I = Iphm − I0m1(e
V+IRsm
nm1Vt − 1)− I0m2(e

V+IRsm
nm2Vt − 1)− I0m3(e

V+IRsm
nm3Vt − 1)−

V+ IRsm

Rpm

, (5)

where Iphm = NpIph, I0m1 = NpI01, I0m2 = NpI02, I0m3 = NpI03
nm1 = Nsn1, nm2 = Nsn2, nm3 = Nsn3, Rsm =

Ns
Np
Rs, and Rpm = NsRp.

The equations provided for each model show how the I–V
interaction of a solar cell and a PVM changes with factors such as
radiation from the sun, environmental temperature, speed of the
wind, and dust, and it depends on standard deviations found in
data sheets.

4 Objective function

The implemented objective function should extract, determine,
and evaluate the unidentified parameters from the measured data
of the current and voltage of the four solar cells and PVM
given in the previous section. In literature research, a three-
objective function was used to identify the known parameters of
solar cells and PVMs, such as the RMSE (Frías-Paredes et al.
(2018), Easwarakhanthan et al. (1986)), sum of squared error
(SSE) (Tong and Pora, 2016), and the IAE (Taleshian et al., 2023).
The cost function is constructed based on I = f(V) using the
unknown parameters of the solar cell and PVM as the parameters’
constraints. During the tuning procedure, all constraint parameters
are described by a vector for single, double, and triple diodes.

The unknown parameters of the solar cells with single,
double, and triple diodes are the constraints’ function and are
defined as x1 = [Iph I01n1RsRp], x2 = [Iph I01 I02 n1 n2RsRp], and
x3 = [Iph I01 I02 I03 n1 n2n3RsRp], respectively.

For single, double, and triple diodes in the PVM or
generator, the constraints’ function can be defined as x1m =
[Iphm I0mnmRsmRpm], x2m = [Iphm I0m1 I0m2nm1nm2RsmRpm], and
x3m = [Iphm I0m1 I0m2 I0m3nm1nm2nm3RsmRpm], respectively.

The objective function is used to optimize solar cells
and PVMs on large amounts of space and extract their
parameters. Equation 5 shows how the cost function base
in the unknown parameters is generated using the I = f(V)
characteristic curves of the solar cell and PVM for single, double,
and triple diodes.

{{{{{
{{{{{
{

f1,2,3(V, I) = I− Iph +
3

∑
i=1

I0i(e
V+IRs
niVt − 1)+

V+ IRs

RP

f1m,2m,3m(V, I) = I− Iphm +
3

∑
i=1

I0mi(e
V+IRsm
nmiVt − 1)+

V+ IRsm

Rpm

, (6)

where f1, f2, f3 and f1m, f2m, and f3m present the cost functions
for the one, two, and three diodes for the solar cell and PVM,
respectively, for the three case studies.

In order to determine the fundamental unknown parameters
Iph, I01,I02,I03,n1,n2,n3,Rs,andRp, we optimized the model of

Frontiers in Energy Research 05 frontiersin.org

https://doi.org/10.3389/fenrg.2025.1625288
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org


Wardi et al. 10.3389/fenrg.2025.1625288

TABLE 1 Comparative analysis of the RTC France solar cell SD model.

Algorithms

Parametersmets

Iph
(A)

I01
(μA)

I02
(μA)

I03
(μA)

n1 n2 n3 Rs
(Ω)

Rp
(Ω)

EOA∗ 0.76100 3.57026 - - 1.57366 - - 0.03592 54.9993

MCO-R 0.760417 0.323034 - - 1.562885 - - 0.037142 66.1825

NRM 0.7608 0.3223 - - 1.4837 - - 0.0364 53.763

CM 0.7608 0.4039 - - 1.5039 - - 0.0364 49.5050

GA 0.7619 0.8087 - - 1.5751 - - 0.0299 42.3729

LW 0.7611 0.2422 - - 1.4561 - - 0.0373 42

SCA 0.7515 0.25606 - - 1.4593 - - 0.0372 54.2298

GA-CCC 0.76077 0.32302 - - 1.4811 - - 0.03637 53.7185

CS 0.76048 0.36015 - - 1.4929 - - 0.03492 43.84232

SA 0.7620 0.4798 - - 1.5172 - - 0.0345 43.1034

EOA∗∗ 0.760760 0.1 0.41219 - 1.9999 1.5906 - 0.0352 64.1705

MCO-R 0.76060 2.07793 0.45643 - 3.27736 1.60095 - 0.034796 67.49358

HS 0.76176 0.12545 0.2547 - 1.49439 1.49989 - 0.03545 46.82696

GA 0.7608 0.0001 0.0001 - 1.3355 1.481 - 0.0364 53.7185

PSO 0.7623 0.4767 0.01 - 1.5172 2 - 0.0325 43.1034

WOA 0.7658 0.29957 0.39438 - 1.4795 1.9201 - 0.0493 59.0196

MVO 0.7629 0.39698 0.34509 - 1.6007 1.5443 - 0.0332 50.6069

SCA 0.7586 0.39637 0.2 - 1.8613 1.4413 - 0.0300 60

GA-CCC 0.760781 0.226286 0.746665 - 1.451131 2 - 0.036739 55.478521

HISA 1.032368 2.64194 1.00E-
09

- 47.6574 47.6325 - 1.23178 748.4507

CS 0.76223 0.02732 0.50832 - 1.70274 1.52893 - 0.03530 97.73242

PSO-WOA 0.761091 0.20123 0.93611 - 1.463324 1.773674 - 0.034223 82.82299

SA 0.7623 0.4767 0.01 - 1.5172 2 - 0.0345 43.1034

mGWO 0.76088 0.49333 1.52522 - 0.17345 1.94264 - 0.034646 62.17868

EGWO 0.76251 0.20856 1.6971 - 0.12109 1.3982 - 0.03837 32.8813

IGWO 0.760725 0.52878 1.5420 - 0.23949 1.74057 - 0.03330 80.84466

RCBBOG 0.76215 0.33429 0.00390 - 1.48495 1.85202 - 0.03591 42.77882

EOA∗∗∗ 0.7610 0.115808 0.1203 1.224 1.5743 1.5785 1.5698 0.0359 54.7390

MCO-R 0.7603 0.216414 0.27365 0.1742 1.5838 1.9316 1.5963 0.0342 71.59356

MFO 0.7605 0.2 0.4 0.3 1.5863 2 1.5358 0.0300 50

WOA 0.7667 0.22309 0.3902 3.9029 1.9539 1.7596 1.5185 0.0488 58.6704

(Continued on the following page)
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TABLE 1 (Continued) Comparative analysis of the RTC France solar cell SD model.

Algorithms

Parametersmets

Iph
(A)

I01
(μA)

I02
(μA)

I03
(μA)

n1 n2 n3 Rs
(Ω)

Rp
(Ω)

SCA 0.7560 0.2 0.35918 4 2 2 1.5081 0.0302 60

MVO 0.7614 0.33273 0.3997 0.2217 1.9463 1.5218 1.6737 0.0351 59.1165

EOA∗: the optimal parameter of the single-diode model. EOA∗∗: the optimal parameter of the double-diode model. EOA∗∗∗: the optimal parameter of the triple-diode model.

FIGURE 3
Compared RMSE and MAE for different methods: (a) single diode, (b) double diode, and (c) triple diode.

Equation 6 by minimizing the Integral of Absolute Error
(IAE) function across the experimental and theoretical
curves. The used experimental data are widely used in the
research literature by various papers. In this research, we
utilize f(x) = IAE(I,V) as the cost function to maximize
I = f(V) of each model by minimizing this function. The
nine objective functions are optimized under the following
conditions presented in Supplementary Table S1 in the
Supplementary Material section.

5 Earthworm optimization algorithm
in foraging

The EOA was implemented to identify the unknown parameter
of different technologies of solar cells and PVMs for one, two, and
three diodes.The process of using the EOA in the solar cell and PVM
can be detailed as presented in the following:

We start by initializing the EOA. In this step, we define the
number of earthworms which possess a determined number of
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FIGURE 4
Compared MAE for different methods and techniques: (a) single diode and (b) double diode.

FIGURE 5
Statistical metric analysis of SD model, covering (a) SD, (b) NFM, (c) TS, and (d) ACF obtained by EOA.

parameters depending on the properties of the PVM or solar cell
by using the Roulette wheel function, as follows:

P =
{{{
{{{
{

[Iph I01n1RsRp] for solar cell single diode
[Iph I01 I02 n1 n2RsRp] for solar cell double diodes
[Iph I01 I02 I03 n1 n2n3RsRp] for solar cell triple diodes

. (7)

After initializing and defining the unknown parameters, we
determine an appropriate number of iterations and randomly
initialize the earthworm parameters, ensuring that optimization
occurs within each parameter’s restrictions. Furthermore, in the
optimization loop, we continue to cycle through the following stages
until a halting condition is reached, which is commonly specified as
achieving themaximumnumber of iterations.This step can be given
in two steps, as follows:

• Evaluating each earthworm using the solar cell parameters to
obtain the predicted currents.

• Calculating the error for each earthworm using the
error function (Equation 6) focusing on a minimum error.

IAE = | f(V, I)|. (8)

We update each earthworm’s parameters using specialized
updated equations that include information from other earthworm
parameters in the algorithm:

Pji
t+1 = Pit + r(Pibest − Pi

t), (9)

where i is the number of parameters, t is the number of iterations,
j is the number of earthworms, Pibest is the best earthworm (best
parameters), and r is the random defined as r ∈ [0,0.02] for current
lower than 1 A and r ∈ [0,0.1] for current higher than 1 A.

After completing the required number of repetitions, we extract
the parameters associated with the best-performing earthworm.
These parameters are the fitted values of the solar cell model that
best match the experimental data.
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FIGURE 6
(a) IAE, (b) RE, (c) I–V, and (d) P–V curves for SD.

This EOA is simple and effective, allowing for a complete
investigation of the search space. It is particularly useful for
determining the best solution from a large number of options.
Figure 2 shows the flowchart used for the EOA based on
Equations 8, 9.

6 Statistical criteria assessment

Estimation error occurs when there is a persistent difference
between the measured and approximated results. Within any of
the predictive approaches, it is critical to examine and measure
the prediction error and precision (Oliva et al., 2017). In general,
estimates are susceptible to being both too high and too low,
as is typical with independent estimates. A successful prediction
approach has zero predictionmetrics, whichmeans that it has a total
estimation error of 0. If the anticipated discrimination is zero, the
positive and negative fitting faults even out. It is generally recognized

that a method with very little precision (strong comparative
error) has negligible fit discrimination, whereas a system with
high accuracy (with a low comparative error) has considerable
forecast bias. The qualities of the results will be evaluated following
different statistical criteria, as described in Supplementary Table S2
presented in the Supplementary Material.

7 Experimental results

To extract the parameters of the photodiode model, this
technique simulates the optimization behavior of a swarm of
earthworms during foraging. An initial population of “earthworms”
is generated, with each earthworm representing a randomly
initialized set of parameters within predefined constraints.
In each iteration, the algorithm evaluates the error between
the measured current and the model-predicted current for
every earthworm using Equation 8. If an earthworm’s error
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FIGURE 7
Statistical analysis of DD, covering (a) SD, (b) NFM, and (c) TS obtained by EOA, and (d) Autocorrelation.

is lower than the best-known error, it replaces the current
optimal solution.

Each earthworm then updates its position (parameters)
by moving toward the best-performing earthworm, with
the exploration intensity regulated by Equation 4. The
updated parameters are constrained to remain within
permissible bounds.

This process repeats for a fixed number of iterations, and the
algorithm ultimately returns the best parameter set that is found.

The efficiency of the optimization algorithm depends primarily
on the proper tuning of its key parameters. The optimal
configurations were determined as follows:

• Standard model: population size = 800 earthworms, iterations
= 19,000, and natural noise variance = 0.07.

• Binary dyad: population size = 500 earthworms, iterations =
19,000, and natural noise variance = 0.3.

• Ternary dyad: population size = 800 earthworms, iterations =
19,000, and natural noise variance = 0.03.

We evaluated parameter impacts by testing multiple values
while keeping other factors constant. Results demonstrate that
insufficient population sizes or iteration counts significantly
reduce the quality of the solution. Our experiments show
that population sizes of 500–800 earthworms combined with
approximately 19,000 iterations achieve an optimal balance
between accuracy and computational efficiency for both binary and
ternary dyads.

• For the RTC France implementation, the parameter
optimization times were as follows:

• One-diode model: 15 min 30 s.
• Two-diode model: 13 min 15 s.
• Three-diode model: 19 min 39 s.

This part deals with the implementation of the EOA to
reconstruct and approximate the I–V and P–V characteristic curves
of the SD, DD, and TD models of solar cells and PVMs in
three different case studies. The first test scenario deals with the
commercial solar cell fabricated by RTC France, with a diameter
of 57 mm. The experimental I–V data were measured at T =
33°C under full solar irradiation. The second test scenario is
the PVMs, commercialized under the name PhotoWatt PWP-
201, which is composed of 36 cells connected in series. The
experimental I–V characteristics were determined at T = 45 °C
and G = 1,000 W/m2 (Hosseini Rad and Abdolrazzagh-Nezhad,
2020). The third test scenario is utilized to assess the Schutten
Solar STM-40/36 monocrystalline solar module. This assessment
is based on experimental data obtained at T = 51 °C and G =
1,000 W/m2. The module, measuring 38 mm by 128 mm, consists
of 36 cells connected in series (Ns = 36, Np = 1) (Zhang et al.,
2011). All these units are frequently employed in scientific literature
to evaluate parameter estimation methods for similar models,
and the I–V experimental data are sourced from the study by
Cotfas et al. (2016). The suggested method’s efficiency is evaluated
and confirmed using experimental data from many solar modules
produced using various production processes.The resulting findings
are compared to several empirical and meta-heuristic techniques,
such as the gray wolf optimizer (GWO) (Mirjalili et al., 2014), the
genetic algorithm with convex combination crossover (GA-CCC)
(Hamid et al., 2019; Jervase et al., 2001; Zagrouba et al., 2010),
whale optimization algorithm (WOA) (Oliva et al., 2017), particle
swarm optimization (PSO) (Taleshian et al., 2023; Oliva et al., 2017;
Ye et al., 2009; Ebrahimi et al., 2019), sine–cosine algorithm (SCA)
(Mirjalili, 2016), and multiverse optimizer (MVO) (Batzelis et al.,
2016). The Improved Chaotic Whale Optimization Algorithm
(Oliva et al., 2017), the Lambert W-function (LW) (Zhang et al.,
2011), Genetic Algorithms (GA) (Jervase et al., 2001). Numerical
methods usually use nonlinear optimization techniques, such as the
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FIGURE 8
Comparison of (a) IAE, (b) RE, and the reconstructed (c) I–V and (d) P–V characteristics of DD model.

Newton–Raphson method (NRM) (Easwarakhanthan et al., 1986),
conductivity method (CM) (Chegaar et al., 2001), harmony search
(HS) (Askarzadeh and Rezazadeh, 2012), moth–flame optimization
(MFO) (Mirjalili, 2015), pattern search (PS) (Mirjalili, 2015),
BAT (Gandomi et al., 2013), slime mould algorithm (SMA)
(Li et al., 2020), hunger games search (HGS) (Lim et al., 2024),
hybridized interior search algorithm (HISA) (Kle et al., 2019),
cuckoo search (CS) algorithm (Chen and Yu, 2019), simulated
annealing algorithm (SA) (El-Naggar et al., 2012), modified gray
wolf optimizer (mGWO) (Mittal et al., 2016), enhanced gray
wolf optimization algorithm (EGWO) (Joshi and Arora, 2017),
improved GWO (IGWO) (Long et al., 2017), alpha-guided GWO
(AgGWO) (Hu et al., 2019), PSO-WOA (Xiong et al., 2018),
artificial bee colony (ABC) algorithm (Oliva et al., 2014), real-
coded BBO with Gaussian mutation (RCBBOG) (Gong et al.,
2010), blended BBO (BlendedBBO) (Ma and Simon, 2011), and

Monte Carlo optimization and parallel resistance adjustment
(Wardi et al., 2025).

7.1 Test scenario 1: French RTC solar cell

The implemented technique is used in the first test scenario to
identify the electrical parameters of SD, DD, and TD models of
mono-crystalline silicon solar cells commercialized under French
RTC, with 57-mm diameter of each cell. The parameters recovered
by several techniques (Iph, I01, I02, I03 n1, n2, n3, Rs, and Rp) for the
single-, double-, and triple-diode models are compared in Table 1,
and their performance is assessed using error metrics such as
RMSE and MAE.

Tounderstand the qualities of the characteristic curves evaluated
by the implemented EOA method, the statistical criteria are
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FIGURE 9
Statistical analysis of the triple-diode model, covering (a) SD, (b) NFM, (c) TS, and (d) ACF obtained by EOA.

FIGURE 10
(a) IAE, (b) RE, and the reconstructed characteristics (c) I–V and (d) P–V using EOA compared with experimental data for TD.
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TABLE 2 Comparative analysis of the Photovoltaic module Photowatt-PWP 201.

Algorithms

Parametersmets

Iph (A) I01 (μA) I02 (μA) I03 (μA) n1 n2 n3 Rs (Ω) Rp (Ω)

EOA 1.03227 1.448780 - - 49.8852 - - 1.301707 643.4220

GA 1.0441 3.4360 - - 48.5862 - - 1.1968 555.5556

PS 1.0313 3.1756 - - 48.2889 - - 1.2053 714.2857

NR 1.0318 3.2875 - - 48.4500 - - 1.2057 555.5556

WOA 1.03265 2.1278 - - 46.8347 - - 1.22796 624.58027

SCA 1.0722 5.2254 - - 50 - - 1.27171 2000

EOA 1.03445 4.029e-07 1e-06 - 49.52 49.9 - 1.3014 557.9

EOA 1.0326 1.002e-07 5.55e-07 7.6e-07 49.40 49.77 49.87 1.302 622.2

TABLE 3 Comparative analysis of the Schutten Solar STM6-40/36 monocrystalline for single-, double-, and triple-diode models.

Algorithms

Parametersmets

Iph (A) I01 (μA) I02 (μA) I03 (μA) n1 n2 n3 Rs (Ω) Rp (Ω)

EOA 1.6658 1.477736 - - 59.999 - - 0.0599 468.06

HGS 1.8753 7.7701 60 0.1580 658.8333

ABC 1.65205 3.74780 1.60830 0.00247 80.1264

EGWO 1.68652 7.5773 1.70401 0.0027 8.54522

WOA 1.680 0.49760 1.39497 0 7.2316

RCBBOG 1.66131 10.16407 1.74239 0 111.3437

EOA 1.66357 0.246101 0.1073 - 59.971 59.999 - 0.19999 571

EOA 1.66255 0.658868 0.4146 0.233722 59.893 59.552 59.604 0.15409 584,319

calculated and evaluated. Figures 3, 4 illustrate the compared RMSE
andMAE of the used algorithm with other techniques and methods
published in the research field for the three models (SD, DD,
and TD). The algorithm that produces the best results, with
the lowest RMSE and MAE, is the EOA. The EOA’s consistency
and dependability are confirmed by a statistical examination of
its performance. RMSE is a popular statistic for assessing the
precision of prediction models, with lower values indicating greater
performance. In this investigation, the approaches are ordered by
their RMSE values, which vary from 0.002 to 0.018 for single,
double and triple diode model. The approach with the lowest RMSE
(approximately 0.002) for the three types of cells (SD, DD, and
TD) has an excellent precision and is deemed the top performer.
This approach is expected to have the least differences between
anticipated and experimental results, showing a high predictive

performance. The technique with the largest RMSE (approximately
0.018) performs inadequately, indicating important inaccuracies in
its estimations. To enhance precision, this procedure may need to be
refined deeper or used with an alternative approach. The variance
of RMSE values among approaches demonstrates the variety in
their performance. Methods with RMSE values in the lower range
(e.g., 0.002–0.008) for SD, DD, and TD are more trustworthy, but
those with higher RMSE values (e.g., 0.012–0.018) may require
improvement.

This analysis is critical for determining the most efficient
approach for a certain application and understanding the trade-
offs between accuracy and processing complexity, among other
things. In conclusion, the figure clearly represents the RMSE values
for several approaches, allowing for the identification of the best-
performing method with the lowest error and the method with
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FIGURE 11
(a) RMSE of SDM, (b) compared RMSE of DDM and TDM, and (c) compared MAE of SDM, DDM, and TDM.

the largest error, which may require improvement. This study is
critical for determining the best strategy for modeling predicted
activities. Figure 4 presents the compared MAE for single- (a) and
double-diode (b) models. The algorithm that produces the best
results, with the lowest RMSE and MAE, is the EOA for both
cell types.

Figure 5 illustrates the calculated errors metric for single
diode in terms of the standard deviation (SD) (a), time series
(TS) (c), normalized frequency modulation (NFM) (b), and auto-
correlation function (ACF) (c). Figure 5a shows that the SD values
are approximately 3 × 10−3 for the used method. TS and NFM
are represented in Figures 5b,c, for single diode with respect to the
quality of the estimated measurements. The values range from −1 to
+1, and for NFM, identification is challenging. TS outperforms the
NFM in identifying the estimation precision.

Figure 6 presents the IAE and RE of the single-diode
model for the French RTC solar cell. The IAE and RE are
compared with different methods, such as PS (Mirjalili (2015),
Easwarakhanthan et al. (1986), Shaheen et al. (2023), Bouzidi
et al. (2007), Louzazni et al. (2020)), GA, andGA-CCC.The IAE and

RE of the used algorithm present lower values than other techniques
and methods. The EOA exhibits a high quality compared to the
analytical, iterative methods and algorithms.

Figures 6b,c, present the comparison of the reconstructed I–V
and P–V characteristic curves using the extracted parameters of the
RTC France Silicon solar cell.The theoretical curves of I–V and P–V
are very close to the experimental data.

For the double-diode model, the statistical error metrics
compared to other techniques are presented in Figure 8. This figure
illustrates the SD, TS, NFM, and ACF. The maximum value of
the SD is approximately 0.01 and that of NFM is approximately
0.08, in which a few values were over fitting when the values were
near 0.6 V. Figure 7d demonstrates the autocorrelation test function
of the calculated values using the EOA methods. The RTC France
Silicon solar cell training evaluation yields results between −1 and 1.

Figure 8 provides more thorough comparisons of the
reconstructed double-diode models of the RTC France Silicon solar
cell to show that the proposedmethod could be utilized for solar cell
approximation in terms of IAE and RE.The comparison between the
EOA and GA-CCC (Taleshian et al., 2023), PS (Dkhichi et al., 2014),
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FIGURE 12
Statistical analysis, covering (a) standard deviation (SD), (b) normalized frequency modulation (NFM), (c) time series (TS), (d) autocorrelation function
(ACF), (e) IAE, and (f) RE of the single-diode model obtained by EOA for Photowatt-PWP 201.

SA (Hamid et al., 2019), and HS (Sajawal Ur Rehman Khan et al.,
2018) shows that the implemented method is better in terms of low
values in IAE and RE.

The reconstructed I–V and P–V characteristic curves of
double diodes are presented in Figure 8c and d using the
extracted parameters of the RTC France Silicon solar cell.
The theoretical curves of I–V and P–V are very close to the
experimental data for the single, double, and triple diodes,
respectively.

For the triple-diode model, Table 1 compares the parameters
(Iph, I01, I02, I03, n1, n2, n3, Rs, and Rp) and assesses the error metrics
(RMSE, RE, and IAE) across methods (Bo et al., 2022). Once more,
the EOA yields the most precise results with the fewest mistakes.

To verify the algorithm’s robustness, Figure 9 provides a statistical
analysis that includes TS, NFM, SD, and ACF.

Figure 10 illustrates the minimal error rates of the EOA by
highlighting the IAE and RE across voltage levels for the triple-diode
model. Finally, to verify the algorithm’s robustness, Figures 10c and
d show a great match and support the accuracy of the method
by comparing the experimental I–V and P–V curves with those
modified using the EOA.

For more validation of triple-diode model parameters’
extraction, Figures 10c and d illustrate the IAE and RE of the
EOA compared with RN-ChOA (Hosseini Rad and Abdolrazzagh-
Nezhad, 2020). Once more, the EOA yields the most precise results
with the fewest mistakes. Figure 10 illustrates the minimal error
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FIGURE 13
Statistical analysis of the double-diode model, covering (a) standard deviation (SD), (b) normalized frequency modulation (NFM), (c) time series (TS), (d)
autocorrelation function, (e) IAE, and (f) RE for the double-diode model of Photovoltaic module Photowatt-PWP 201.

rates of the EOA by highlighting the IAE and RE across voltage
levels for the TD model.

7.2 Test scenario 2: PVM Photowatt-PWP
201

In the second test scenario, the EOA is used to identify
the unknown parameters of the photovoltaic module known as
Photowatt-PWP 201 (pour le module Photowatt-PWP 201), which
is made up of 36 series-connected polycrystalline silicon cells, and
to extract the electrical parameters of single-, double-, and triple-
diode models. The parameters (Iph, I01, I02 I03 n1, n2, n3, Rs, and

Rp) extracted by the EOA and other techniques and methods for the
single-, double-, and triple-diode models are compared in Table 2.

Figure 11 presents the compared RMSE for the single diode
compared with HGS, SMA, BAT, GA, PS, NR, WOA, and SCA, and
the second illustrates the REMS for the TD and DD models. The
third compares the MAE for the three models, which present the
MAE for the double-diode model presenting the low values. The
compared MAE in Figure 14 shows a clear EOA supplementary to
the MAE of the three models (SD, DD, and TD).

The statistical errors for the single-diode model are illustrated
in Figure 12. Figure 12 clearly shows that the results of the statistical
criteria calculated for the single-diode model using SD, NFM, TS,
and ACF exhibit low errors when using the EOA.
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FIGURE 14
Statistical analysis of the triple-diode model, covering (a) standard deviation (SD), (b) normalized frequency modulation (NFM), (c) time series (TS), (d)
autocorrelation function, (e) IAE, and (f) RE for the triple-diode model of Photovoltaic module Photowatt-PWP 201.

Figures 12e,f, illustrate the IAE and RE of the single-
diode model calculated using the generated data points using
the EOA of the photovoltaic module Photowatt-PWP 201
compared with GC. The proposed and used EOA method
presents low values in IAE and RE when compared to the
GC algorithm.

The second part is about the double-diode PVM Photowatt-
PWP 201. The calculated statistical errors based on the pair data
generated by the EOA for SD, NFM, TS, and the ACF are presented
in Figure 13. The statistical errors are calculated to verify the
algorithm’s robustness, and Figure 13 provides a statistical analysis
that includes TS, NFM, SD, ACF, IAE, and RE. Figure 13 illustrates a

great match and supports the accuracy of the method by comparing
the experimental I–V and P–V curves with those modified using
the EOA.

To validate the calculated data point of the double-diode model
for the PVM Photowatt-PWP 201, we calculate the IAE and RE and
present them in Figures 13e, f. These data show a low value in IAE
and RE, which validates that the EOA can be used in the parameter’s
extraction in the double-diode model.

The statistical analysis of the triple-diode model is presented
in Figure 14 using data points of the PVM Photowatt-PWP 201
approximated using the EOA. Figure 14 illustrates SD, NFM, TS,
and the ACF.
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FIGURE 15
Compared reconstructed characteristic I–V and P–V curves with experimental data for single, double, and triple diodes of Photovoltaic module
Photowatt-PWP 201 cell.

FIGURE 16
Statistical analysis of the SD: (a) TS, (b) NFM, and (c) ACF obtained by EOA.

The reconstruction of the I–V and P–V characteristic curves
for each model (SD, DD, and TD) is presented in Figure 15. The
reconstructed characteristic curves using the proposed algorithms
show a high agreement with the experimental data points for
single, double, and triple diodes of the PVM Photowatt-PWP
201 cell.

7.3 Test scenario 3: Schutten Solar
STM6-40/36 monocrystalline

In the third application, the EOA is used to assess the
Schutten Solar STM-40/36 monocrystalline PVM. The EOA is
used based on the experimental data of the current and voltage
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FIGURE 17
Theoretical power vs. experimental power for (a) SD, (b) DD, and (c) TD models.

FIGURE 18
IAE for (a) single diode, (b) double diode, (c) triple diode and RE for (d) single diode, (e) double diode and (f) triple diode.

to extract and approximate the unknown parameter of the
proposed PVM. Table 3 compares the extracted parameters using
the EOA-based experimental data. The EOA outperformed other
algorithms that were examined. Other algorithms, on the other
hand, such as BAT and SMA, showed less consistent outcomes and
larger RMSE values.

Figure 16 depicts the TS, NFM, and ACF. Figure 16 illustrates
the calculations and NFM in terms of the estimated measurement
quality for the calculated and estimated current using the extracted
parameters using the EOA. The values range from −1 to +1, and
NFM’s identification is tough. In determining estimating precision,
the TS outperforms the NFM.
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FIGURE 19
Comparison among measured and approximated I–V and P–V curves for single, double, and triple diodes.

FIGURE 20
Statistical analysis of the double-diode and triple-diode models, covering (a) NFM, (b) TS, and (c) ACF obtained by EOA.

Figure 17 presents the compared calculated current based on the
unknown parameters obtained using the EOA. On comparison, the
measured current and estimated current using the EOA appear to
be the same. The illustrated curve is linear, which means that the
approximated data are very near to those measured.

Figure 18 shows the absolute error of current (IAE) and
relative error (RE) for three distinct photovoltaic cell models:
single-diode, double-diode, and triple-diode models. The first row
(Figures 18a, b) shows the single-diode model, in which both IAE
and RE are low at lower voltages but considerably increase beyond
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15V, suggesting poorer accuracy at higher voltages. The second
row (Figures 17c, d) represents the double-diode model, which has
more accuracy than the single-diode model, with modest error
fluctuations and localized peaks at 15 V and 18 V. Finally, the
third row (Figures 18e,f) illustrates the triple-diode model, which
decreases the overall error but increases oscillations, notably in the
mid-voltage band.The overall trend indicates that increasing model
complexity improves accuracy; however, the triple-diode model
shows larger fluctuations in RE and IAE, whichmight be attributable
to parameter sensitivity.

Figure 19 illustrates the reconstructed I–V and P–V curves
obtained using the unknown parameter extracted by the EOA
compared to the measured data. This comparison shows a good
agreement among the approximated data and measured data for
single, double, and triple diodes.

The efficiency of the EOA in precisely simulating solar cell
performance for single-, double-, and triple-diode configurations
of the Schutten Solar STM6-40/36 module is demonstrated by this
thorough analysis across tables and figures presented in Figure 20.
Both models presented in the NFM plot have modest error at lower
voltages, butdeviations risebeyond15 V,with the3Dmodel exhibiting
more variations, suggesting potential overfitting at high voltages. The
TS results for double-diode models underfit at low voltages and those
for the triple-diode model overfit at higher voltages, demonstrating
the trade-off betweenmodel complexity and generalization.The ACF
overdifferent lags fordouble- and triple-diodemodels captures similar
data patterns, but the TD model has slightly higher peaks, indicating
a stronger correlation with experimental data. Overall, the TDmodel
offers a better fit at mid-range voltages but risks overfitting, whereas
the DDmodel underfits at lower voltages but remains stable.

8 Discussions

It is important to note that very small mistakes, such as RE values
close to zero and decreased IAEs, imply a high degree of agreement
between algorithm predictions and actual experimental data. Higher
errors, on the other hand, indicate a significant difference between
expectations and experimental results. The results provided by the
EOA and GA-CCC algorithms may be analyzed more thoroughly
to assess their respective performances. From the perspective of the
EOA method, the RE and IAE appear to be low overall, indicating a
closematch between predictions and actual experimental values.This
suggests that the EOA has a reasonable ability to model experimental
data. The findings reported for various techniques, assessed in terms
ofRMSEandMAE, vary significantly.TheEOAmethodhas the lowest
RMSEofanyalgorithm,demonstratingextremely lowerrordispersion
betweenpredictionsandactual values.Again, theEOAmethodhas the
smallest MAE, suggesting minimal average absolute errors between
predictions and actual observations. These data show that the EOA
seems to perform the best in terms of accuracy.

9 Conclusion

In this paper, we deal with the identification through
optimization of a cost function based on the parameters of the
solar cell and PVM. By using the measured data points of I–V

pairs and the constraints for each parameter in single, double,
and triple diodes, the EOA technique is implemented to extract
each parameter. Three different case studies were implemented
using one solar cell, namely, the French RTC solar cell, and two
different PVMs: Photowatt-PWP 201 and Schutten Solar STM6-
40/36 monocrystalline solar modules. In order to validate the
reconstructed I–V and P–V curves, various statistical criteria are
calculated, such as IAE, RE, SD, RMSE, MAE, TS, and NFM.
The comparison is made for single, double, and triple diodes in
each case study. The obtained results have been compared with
several recent algorithms and techniques that used the same data
in terms of statistical criteria or reconstructed I–V and P–V curves.
In addition, the statistical analyses used are also included in the
study to fully evaluate the accuracy of the parameters acquired from
each approach. This rigorous process ensures a thorough validation
procedure, emphasizing the correctness and dependability of
the study’s results. The comparison study demonstrates that the
results generated with the EOA are in remarkable agreement
with experimental data, outperforming the precision reached
by the other methods. This shows that the suggested EOA-
based technique produces a more precise and dependable
estimate.
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Nomenclature

SD Single diode

DD Double diode

TD Triple diode

K1,K2,K3 The circuit breaker

Iph The photocurrent

n1,n2,n3 The diode ideality factors

N s The number of solar cells in series

Np The number of solar cells in parallel

I01, I02,I03 The currents of reverse saturation

Rs Series resistance

Rp Parallel resistances

x1, x2, x3 Vector for single, double, and triple diodes

Pji
t+1 Earthworm in time t+1

Pi
t Earthworm in time t

Pibest The best earthworm (best parameters)

r Random number less than 0.1

Iexp The experimental current

I th The calculated current

n The number of experimental points.

G Irradiance

T Temperature
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